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INTRODUCTION 
 
As one of the most common neoplasms of the neck and 
head region, prognosis of laryngeal carcinoma (LC) 
remains poor. The incidence of LC is increasing 
gradually, and presents an early-rising trend. The 
patient data from the Surveillance, Epidemiology, and 
End Results database (SEER) from 2004 to 2015 
showed that when patients were diagnosed with LC at a 
younger age (< 40 years old) the disease tended to be 
more aggressive and associated with a poorer survival 
rate than in older patients (> 40 years old) [1]. Although 
patients diagnosed at an early stage could be treated 
surgically following combination therapy [2], most 
cases were diagnosed at an advanced stage due to lack  

 

of early diagnostic capability. These patients suffered 
from symptoms such as persistent cough, stridor, bad 
breath, earache and difficulty swallowing. There are 
very limited therapeutic methods available for advanced 
patients who could not be treated surgically for 
whatever reason [3]. Thus, there is an urgent need to 
discover new diagnostic biomarkers specifically 
targeting LC for the purpose of early diagnosis and 
development of new treatments which could improve 
survival rate and quality of life for LC patients.  
 
Long noncoding RNAs (lncRNAs) are clusters of 
noncoding transcripts longer than 200 nucleotides which 
play key roles in various biological processes involving 
transcriptional regulation, chromatin modification, RNA 
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ABSTRACT 
 
Laryngeal cancer (LC) is a malignant tumor in the head and neck region. It was recently elucidated that long non-
coding RNAs (lncRNAs) participate in the pathogenesis of LC. However, the detailed mechanism of lncRNA in LC and 
whether long non-coding RNAs serve as effective biomarkers remains unclear. Ribonucleic acid (RNA) sequence 
data of LC and 11 patient clinical traits were extracted from The Cancer Genome Atlas (TCGA) database and 
analyzed by weighted gene co-expression network analysis (WGCNA). A total of 9 co-expression modules were 
identified. The co-expression Pink module significantly correlated with four clinical traits, including history of 
smoking, lymph node count, tumor status, and the success of follow-up treatment. Based on the co-expression Pink 
module, lncRNA-microRNA (miRNA)-messenger RNA (mRNA) and lncRNA-RNA binding protein-mRNA networks 
were constructed. We found that 8 lncRNAs significantly impacted overall survival (OS) in LC patients. These 
identified lncRNA and hub gene biomarkers were also validated in multiple LC cells in vitro via qPCR. Taken 
together, this study provided the framework of co-expression gene modules of LC and identified some important 
biomarkers in LC development and disease progression. 
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editing, posttranscriptional processing, molecules 
metabolism, cell cycle regulation, alternative splicing, 
immune response, and organelle biogenesis [4–7]. Many 
previous studies have confirmed that lncRNAs are 
closely associated with proliferation, metastasis, drug 
sensitivity, and progression of the tumor [8]. Recent 
studies demonstrate that RNA species could regulate 
each other by competing for shared miRNA response 
elements. This regulatory model is called competing 
endogenous RNA (ceRNA). The identified ceRNAs 
include lncRNAs, which provide a new perspective of 
regulatory mechanism of lncRNA [9, 10]. Additionally, 
lncRNA can also combine with other RNA binding 
proteins, such as transcription factor, to affect target 
mRNA expression [11]. LncRNA has two main functions 
in transcription factors and other transcriptional 
regulatory proteins, including recruitment and inhibition. 
LncRNA may promote or inhibit the transcription 
process in specific conditions [12]. Weighted Gene Co-
expression Network Analysis (WGCNA) is used to find 
highly correlated gene clusters (co-expression modules) 
and widely used to demonstrate correlation between 
gene-based networks and clinical phenotypes based on 
microarray data or RNA sequencing data [13]. The 
identified co-expression modules can be summarized 
using the module eigengene or intramodular hub genes. 
Correlation networks of genes and clinical phenotypes 
can be used to identify potential biomarkers or 
therapeutic targets [14]. These methods are increasingly 
being applied in various biological contexts, such as 
cancer research, proteomic data, metabolomics data, and 
analysis of imaging data [15]. For example, RNA 
sequence data of uveal melanoma and patient clinic traits 
was obtained from TCGA database. Co-expression 
modules were built by WGCNA and applied to 
investigate the relationship underlying modules and clinic 
traits. Their findings demonstrated that hub genes 
SLC17A7, NTRK2, ABTB1 and ADPRHL1 might play 
a vital role in recurrence of uveal melanoma [16]. 
Another study also which used WGCNA to identify 6 
modules associated with pathological stage and grade 
discovered that the co-expression Blue module was the 
most relevant module in clear cell renal cell carcinoma 
[17]. Their findings showed that 9 genes were associated 
with progression and prognosis of renal clear cell 
carcinoma patients including PTTG1, RRM2, TOP2A, 
UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20. 
Currently, there is only one study which uses WGCNA to 
decipher potential hub genes driving the development of 
LC [18]. 
 
The present study collected RNA sequencing data 
(including lncRNA expression data and mRNA 
expression data) from The Cancer Genome Atlas 
(TCGA) database to elucidate significant co-expression 
modules in LC patients compared to healthy controls. 

Those modules were closely related to clinical traits in 
LC patients, and the genes in those identified modules 
might affect the development and progression of LC. 
The co-expression Pink module was selected for further 
analysis because it contains many significant clinical 
traits and could be developed into novel biomarkers for 
LC patients. Furthermore, analysis of lncRNA-miRNA-
mRNA and lncRNA-RNA binding protein-mRNA 
networks might offer new insight into the molecular 
mechanisms of LC, which could be helpful in 
improving early diagnosis and overall prognosis for LC 
patients.  
 
RESULTS 
 
Construction of co-expression modules of LC 
 
The 5000 genes (including 2500 lncRNA and 2500 
mRNA expression data) were normalized by Limma 
package with Voom function. The auxiliary data was then 
removed and the expression data was transposed for 
further WGCNA analysis. The expression values of top 
2500 lncRNAs in 99 LC samples (Supplementary Table 
1) and top 2500 mRNAs in 99 LC samples 
(Supplementary Table 2) were used to develop co-
expression modules with WGCNA package. The clinical 
characteristics information of these LC patients is listed in 
Supplementary Table 3, including age at initial pathologic 
diagnosis, history of smoking, history of alcohol 
consumption, intermediate dimension of tumor, lymph 
node count, neck lymph node dissection, pathologic N 
stage, radiation therapy, targeted molecular therapy, tumor 
status, success of follow-up treatment, and overall 
survival. The red line (cut height = 50) was the filter 
which we used to remove outlier samples in sampleTree. 
The TCGA-KU-A66S sample was excluded after 
removing outliers in the sample based on gene expression 
data (Figure 1A). The sample dendrogram and trait 
heatmap grouped the selected samples into the different 
clusters, and provided the distribution map of clinical trait 
data (Figure 1B). The independence and the average 
connectivity degree of the co-expression modules were 
decided by power value (β) and scale R2 value. First, a set 
of soft-thresholding powers were plotted (Supplementary 
Table 4). When the power value was equal to 5, the scale 
R2 was up to 0.87 (Figure 2A). Therefore, we define the 
adjacency matrix using soft thresholding with beta=5 to 
construct and identify distinct co-expression gene 
modules in LC samples. A cluster dendrogram of all 
selected genes was constructed based on a TOM-based 
dissimilarity measure. These identified co-expression 
modules were distributed in different colors (Figure 2B). 
The interactions of these co-expression modules were 
analyzed with the Pearson correlation coefficient (Figure 
2C). The darker background indicated higher module 
correlation. Hierarchical clustering of module eigengenes 
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summarizing the modules were found in the clustering 
analysis. Branches of the dendrogram (the meta-modules) 
were grouped together based on the correlation of 
eigengenes. Each row and column in the heatmap plot of 
topological overlap corresponded to one module 
eigengene labeled by a different color. Each module 
contains different gene clusters. In the heatmap, blue 
represented negative correlation, while red represented 
positive correlation. Squares of red along the diagonal 
were the meta-modules (Figure 2D). 

Gene co-expression modules correspond to clinical 
traits 
 
Principal component analysis of each module elected the 
first principal component as its eigengenes. Eigengene 
external traits (including age at initial pathologic 
diagnosis, history of smoking, history of alcohol 
consumption, intermediate dimension, lymph node count, 
neck lymph node dissection, pathologic N stage,  
radiation therapy, targeted molecular therapy, tumor

 

 
 

Figure 1. Sample cluster analysis based on RNA data from TCGA database. (A) Sample clustering to detect outliers based on RNA 
data. The red line represents the cut-off of data filtering in the step of data preprocessing. (B) Sample dendrogram and trait heatmap based 
on gene expression data and clinical data. (a) age at initial pathologic diagnosis, (b) history of smoking, (c) history of alcohol consumption, (d) 
intermediate dimension, (e) lymph node count, (f) neck lymph node dissection, (g) pathologic N stage, (h) radiation therapy, (i) targeted 
molecular therapy, (j) tumor status, (k) success of follow-up treatment. 
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status, success of follow-up treatment) were correlated 
with different co-expression modules and the most 
significant associations were identified (Figure 3). A 
heatmap of the correlation between module eigengenes 
and clinical traits of LC showed correlation coefficient 
(R) and significant difference (p value). The Module-trait 
relationships plot demonstrated that the co-expression 
Red module contained 121 genes, co-expression Yellow 

module contained 336 genes, co-expression Blue module 
contained 1123 genes, co-expression Pink module 
contained 73 genes, co-expression Black module 
contained 88 genes, co-expression Green module 
contained 301 genes, co-expression Brown module 
contained 372 genes, co-expression Turquoise module 
contained 1186 genes, and co-expression Grey module 
contained 1390 genes (Table 1). The hub genes of each 

 
 

Figure 2. Construction of co-expression modules of LC. (A) Analysis of network topology for various soft-threshold powers. Check 
scale-free topology, and here the adjacency matrix was defined using soft-thresholds with beta= 5. (B) Clustering dendrograms of genes, with 
dissimilarity based on topological overlap, together with assigned module colors. (C) The heatmap depicts the topological overlap matrix 
(TOM) among genes based on co-expression modules. (D) Visualizing the gene network using a heatmap plot. 
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module might be potential biomarkers for the specific 
clinical characteristics. The correlation analysis of gene 
co-expression module and clinical traits demonstrated 
that the co-expression Red module was significantly 
associated with documented alcohol history (R =0.23, 
p=0.02); the co-expression Yellow module was 
significantly associated with age at initial pathologic 
diagnosis(R =0.23, p=0.03), and the number of packs of 
cigarettes per year the patient had smoked (R=0.23, 
p=0.02); the co-expression Blue module was significantly 
associated with intermediate dimension of tumor (0.2 to 
1.4 cm) (R=0.25, p=0.01), and success of follow-up 
treatment (R=0.27, p=0.007); the co-expression Green 
module was significantly associated with success of 
follow-up treatment (R=0.27, p=0.008); the co-
expression Brown module was significantly associated 
with tumor status (R=0.27, p=0.008), and success of 
follow-up treatment (R=0.36, p=3e-04); the co-

expression Turquoise module was significantly 
associated with pathologic N stage (R=0.27, p=0.008), 
and targeted molecular therapy (R=0.36, p=3e-04); and 
the co-expression Pink module was significantly 
associated with cigarette packs per year (R=-0.26, 
p=0.009), lymph node examined count (R=-0.24, 
p=0.02), tumor status (R=0.21, p=0.03), and success of 
follow-up treatment (R=0.42, p=1e-05). A scatterplot of 
gene significance (y-axis) vs. module membership (x-
axis) was shown in the most significant module. Most 
interestingly, the scatterplot of gene significance (GS) vs. 
module membership (MM) was plotted in the co-
expression Pink module. In modules related to a trait of 
interest, genes with high module membership often had 
high gene significance, implying that hub genes of the 
co-expression Pink module tend to be highly correlated 
with selected clinical characteristics. The results 
consistently revealed that MM in the Pink module 

 

 
 

Figure 3. Analysis of module-trait relationships of LC based on TCGA data. Each row corresponds to a module eigengene, and 
column to a trait. (a) age at initial pathologic diagnosis, (b) history of smoking, (c) history of alcohol consumption, (d) intermediate dimension, 
(e) lymph node count, (f) neck lymph node dissection, (g) pathologic N stage, (h) radiation therapy, (i) targeted molecular therapy, (j) tumor 
status, (k) success of follow-up treatment. 
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Table 1. Number of genes in 9 co-expression modules. 

Module colors Gene frequency  
red 121 
yellow 336 
blue 1123 
pink 73 
black 88 
green 301 
brown 372 
turquoise 1186 
grey 1390 

 

significantly correlated with history of smoking (R=-
0.28, p=0.016), lymph node count (R=-0.219, p=0.028), 
tumor status (R=0.263, p=0.003), and success of follow-
up treatment (R=0.43, p=0.00015) (Figure 4A–4D). The 
correlation results in the co-expression Pink module 
showed consistency between module-trait relationships 
plot and the scatterplot of gene significance (GS) vs. 
module membership (MM) plot. Considering the 
correlation coefficient, p value, and consistency between 
module-trait relationships plot and the scatterplot, we 
chose the co-expression Pink module for further analysis. 

 

Functional enrichment gene analysis in the co-
expression Pink module 
 
Based on the heatmap, we extracted all 73 of the co-
expression Pink module genes (Supplementary Table 5) 
and hub genes (including IFIT2, XAF1, UBE2L6, 
IFITM3, HLA-C, CTSL, ARHGDIB, LGALS3BP, 
IFITM1, MLKL, SERPING1, TRIM21) (Supplementary 
Table 6). A total of 10 statistically significant signaling 
pathways were obtained by pathway analysis based on 
the co-expression Pink module (Table 2). The data

 
 

Figure 4. A scatterplot of Gene Significance (GS) vs. Module Membership (MM) in the co-expression Pink module. (A) A 
scatterplot of Gene Significance (GS) for number of packs per year vs. Module Membership (MM). (B) A scatterplot of Gene Significance (GS) 
for lymph node count vs. Module Membership (MM). (C) A scatterplot of Gene Significance (GS) for tumor status vs. Module Membership 
(MM). (D) A scatterplot of Gene Significance (GS) for success of follow-up treatment vs. Module Membership (MM). 
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Tabel 2. The pathways enriched in the pink coexpression module. 

Pathway p Value 
Benjamini hochberg  

p value 
Gene list 

cluster1    

Cytokine Signaling in Immune system 7.19E-57 3.16E-55 
HLA C;HLA G;IFI6;IFIT2;IFITM1;IFITM2;IFITM3; 
IL12RB2;IL15;OAS1;OAS2;OASL;RSAD2;SP100;TRIM21; 
TRIM22;TRIM5;UBE2L6;XAF1 

Interferon Signaling 3.98E-24 1.16E-22 
HLA C;HLA G;IFI6;IFIT2;IFITM1;IFITM2;IFITM3;OAS1; 
OAS2;OASL;RSAD2;SP100;TRIM21;TRIM22;TRIM5;UBE2L6; 
XAF1 

Immune System 1.73E-21 3.81E-20 
C1R;C1S;CFH;CFI;CTSL;HLA C;HLA G;IFI6;IFIT2;IFITM1; 
IFITM2;IFITM3;IL12RB2;IL15;OAS1;OAS2;OASL;RSAD2; 
SERPING1;SP100;TRIM21;TRIM22;TRIM5;UBE2L6;XAF1 

Interferon alpha/beta signaling 1.58E-19 2.78E-18 
HLA C;HLA G;IFI6;IFIT2;IFITM1;IFITM2;IFITM3;OAS1; 
OAS2;OASL;RSAD2;XAF1 

Interferon alpha beta signaling 5.93E-14 8.70E-13 IFI6;IFIT2;IFITM1;IFITM2;IFITM3;RSAD2;XAF1 

Type II interferon signaling (IFNG) 1.29E-04 7.08E-04 IFI6;IFIT2;OAS1 

cluster2    

Interferon gamma signaling  0.00E+00 
HLA C;HLA G;OAS1;OAS2;OASL;SP100;TRIM21;TRIM22; 
TRIM5 

Herpes simplex infection 8.59E-06 6.88E-05 HLA C;HLA G;IL15;OAS1;OAS2;SP100 

Epstein Barr virus infection 1.96E-03 5.40E-03 HLA C;HLA G;OAS1;OAS2 

cluster3    

Endosomal/Vacuolar pathway 4.95E-06 4.36E-05 CTSL;HLA C;HLA G 

Antigen processing and presentation 1.13E-03 3.67E-03 CTSL;HLA C;HLA G 

Antigen processing Cross presentation 2.99E-04 1.55E-03 CTSL;HLA C;HLA G 

Phagosome 6.98E-04 2.79E-03 C1R;CTSL;HLA C;HLA G 

Ebola Virus Pathway on Host 5.00E-03 1.22E-02 CTSL;HLA C;HLA G 

cluster4    

Natural killer cell mediated 
cytotoxicity 

3.98E-04 1.95E-03 HLA C;HLA G;RAC2;TNFSF10 

Viral myocarditis 5.17E-04 2.40E-03 HLA C;HLA G;RAC2 

Human cytomegalovirus infection 2.20E-02 3.66E-02 HLA C;HLA G;RAC2 
Human immunodeficiency virus 1 
infection 

2.38E-03 6.17E-03 HLA C;HLA G;RAC2;TRIM5 

cluster5    

classical complement pathway 6.22E-04 2.61E-03 C1R;C1S 
Classical antibody mediated 
complement activation 

2.36E-02 3.85E-02 C1R;C1S 

Pertussis 1.08E-03 3.67E-03 C1R;C1S;SERPING1 

Complement Activation 1.56E-03 4.73E-03 C1R;C1S 

Oxidative Damage 5.11E-03 1.21E-02 C1R;C1S 

Systemic lupus erythematosus 5.33E-03 1.20E-02 C1R;C1S;TRIM21 

Initial triggering of complement 3.26E-02 4.79E-02 C1R;C1S 

Creation of C4 and C2 activators 2.77E-02 4.28E-02 C1R;C1S 

cluster6    

Regulated Necrosis 8.18E-04 3.13E-03 MLKL;TNFSF10 

RIPK1 mediated regulated necrosis 8.18E-04 3.00E-03 MLKL;TNFSF10 
DNA Damage Response (only ATM 
dependent) 

3.49E-02 4.96E-02 MLKL;RAC2 

Programmed Cell Death 4.15E-02 5.80E-02 MLKL;TNFSF10 

cluster7    
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The human immune response to 
tuberculosis 

1.56E-03 4.90E-03 IFITM1;OAS1 

B cell receptor signaling pathway 1.54E-02 2.77E-02 IFITM1;RAC2 

Choline metabolism in cancer 2.88E-02 4.37E-02 RAC2;SLC22A3 

cluster8    

Antigen Presentation: Folding, 
assembly and peptide loading of class 
I MHC 

1.86E-03 5.27E-03 HLA C;HLA G 

Autoimmune thyroid disease 8.83E-03 1.77E-02 HLA C;HLA G 

Allograft rejection 4.62E-03 1.16E-02 HLA C;HLA G 

Graft versus host disease 5.36E-03 1.18E-02 HLA C;HLA G 

Type I diabetes mellitus 5.88E-03 1.26E-02 HLA C;HLA G 

Proteasome Degradation 1.27E-02 2.37E-02 HLA C;HLA G 

Cellular senescence 8.86E-03 1.73E-02 HLA C;HLA G;TRPV4 

Viral carcinogenesis 1.64E-02 2.88E-02 HLA C;HLA G;SP100 
Human T cell leukemia virus 1 
infection 

2.05E-02 3.54E-02 HLA C;HLA G;IL15 

Immunoregulatory interactions 
between a Lymphoid and a non 
Lymphoid cell 

2.10E-02 3.56E-02 HLA C;HLA G;IFITM1 

Allograft Rejection 2.46E-02 3.87E-02 HLA C;HLA G 

cluster9    

JAK STAT MolecularVariation 1 2.25E-03 6.01E-03 IL12RB2;IL15;TNFSF10 

Cytokine cytokine receptor interaction 4.35E-02 5.98E-02 IL12RB2;IL15;TNFSF10 

JAK STAT pathway and regulation 4.96E-02 6.61E-02 IL12RB2;IL15;TNFSF10 

cluster10    

Rheumatoid arthritis 2.41E-02 3.86E-02 CTSL;IL15 

TNF signaling pathway 3.49E-02 5.04E-02 IL15;MLKL 

 

revealed 10 distinct clusters which might possibly 
indicate that LC is potentially related to multiple 
signaling pathways (Figure 5). Cluster 1 contains 
cytokine signaling in the immune system, interferon 
signaling, immune system, interferon alpha/beta 
signaling, interferon alpha-beta signaling, and type II 
interferon signaling. Cluster 2 contains interferon gamma 
signaling, the herpes simplex infection pathway, and the 
Epstein-Barr virus infection pathway. Cluster 3 contains 
an endosomal/vacuolar pathway, antigen processing and 
presentation, antigen processing cross presentation, 
phagosome, and Ebola Virus pathway. Cluster 4 contains 
natural killer cell which mediate cytotoxicity, viral 
myocarditis, human cytomegalovirus infection, and 
human immunodeficiency virus 1 infection. Cluster 5 
contains classical complement pathway, classical 
antibody-mediated complement activation, pertussis, 
complement activation, oxidative damage, systemic lupus 
erythematosus, initial triggering of complement, and 
creation of C4 and C2 activators. Cluster 6 contains 
regulated necrosis, RIPK1-mediated regulated necrosis, 
DNA damage response, and programmed cell death. 
Cluster 7 contains the human immune response to 
tuberculosis, B cell receptor signaling pathway, choline 

metabolism in cancer. Cluster 8 contains antigen 
presentation, autoimmune thyroid disease, allograft 
rejection, Graft-versus-host disease, Type-I diabetes 
mellitus, proteasome degradation, cellular senescence, 
viral carcinogenesis, human T-cell leukemia virus 1 
infection, immunoregulatory interactions between a 
lymphoid and a non-lymphoid cell, and allograft 
rejection. Cluster 9 contains JAK-STAT molecular 
variation 1, and cytokine-cytokine receptor interaction. 
Cluster 10 contains rheumatoid arthritis and TNF 
signaling pathway. Most enriched genes of those 
identified pathways were cytokines, chemokines, 
histocompatibility antigens, complement factors, auto-
antigens and/or innate immune response molecules, all of 
which were thought to play a role in tumorigenesis, 
immunity, and gene regulation. In recent years, new 
molecules have been widely reported which are 
associated with cancer progression and immune escape 
and there are also strong correlations between 
antitumoral and immunomodulation effect [19]. The 
mechanisms that support evolution of the inflammatory 
environment and its relationship with neoplasms are 
unclear [20]. Tumor-associated inflammation is 
predictive of poor prognosis and associated with a variety 
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of tumorigenic phenotypes, including angiogenesis, 
apoptosis, tumor proliferation and survival, autophagy, 
invasiveness, and metastasis [21]. Here, we identified an 
inflammation activation related pathway in the co-
expression Pink module. The present understanding of 
this area is not yet comprehensive, but certain 
inflammatory pathways have emerged as important 
mediators of the crosstalk between tumor biology 
behavior and inflammation in tumors [22].  
 
The 73 genes in the co-expression Pink module were 
uploaded to STRING for protein–protein interaction 
(PPI) analysis (Figure 6A). The combined scores of 

nodes ranged from 0.400 to 0.999. The PPI results also 
determined co-expression coefficient between proteins 
(Supplementary Table 7). High combined scores and 
co-expression coefficients indicated that there were 
interaction effects on spatial position and expression 
events between proteins. Some of interaction results 
showed both high combined scores (value > 0.9) and 
high co-expression coefficients (value > 0.8), such as 
RSAD2 and OASL, RSAD2 and XAF1, DDX60 and 
RSAD2, RSAD2 and IFIT2, IFITM2 and IFITM1, 
OAS1 and IFI6, C1R and C1S, IFITM2 and IFITM3 
(Supplementary Table 7). Some interaction results 
showed high combined scores (value > 0.9), but low co-

 

 
 

Figure 5. Pathway enrichment analysis involved in the co-expression Pink module. 
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expression coefficients (value = 0), including TRIM5 
and HLA-C, HLA-G and IFI6, HLA-G and IFITM3, 
IFITM2 and HLA-G, HLA-G and IFITM1, HLA-G and 
XAF1, HLA-G and OAS2, HLA-G and IFIT2, HLA-G 
and TRIM5, HLA-G and TRIM21, HLA-G and 
TRIM22, HLA-C and XAF1, TRIM22 and HLA-C. 
This indicated that interaction effects between proteins 
were not only at the level of expression, but also 
signaling cascade. 
 
GO enrichment analysis of genes also revealed biological 
processes in the co-expression Pink module (Supple-
mentary Table 8). The genes in the co-expression Pink 
module were mainly distributed in three parts, including 
protein trimerization, regulation of complement 
activation, and response to interferon. Among the 
biological processes, the responses to interferon also 
included many detailed functions. This includes: negative 
regulation of multi-organism process, regulation of 
symbiosis, encompassing mutualism through parasitism, 
response to type-I interferon, response to interferon-
gamma, negative regulation of viral process, regulation 
of viral process, defense response to virus, response to 
interferon-alpha, response to interferon-beta, viral 
genome replication, cellular response to interferon-
gamma, cellular response to type I interferon, regulation 
of viral life cycle, negative regulation of viral life cycle, 
negative regulation of viral transcription, regulation of 
viral transcription, interferon-gamma-mediated signaling 
pathway, type I interferon signaling pathway, regulation 
of viral genome replication, negative regulation of viral 
genome replication, viral entry into host cell, regulation 
of viral entry into host cell, and negative regulation of 
viral entry into host cell (Figure 6B). We found 
consistency was between KEGG and GO analysis, which 
indicated the function of tumor immunity. 
 
Network analysis and survival-associated lncRNAs 
 
A ceRNA network analysis was used to determine 
whether lncRNAs regulate the identified mRNAs in the 
co-expression Pink module through miRNAs. The 
ceRNA network analysis found three lncRNAs (CYTOR, 
HCP5, and DANCR) in the co-expression Pink module: 
33 miRNAs (hsa-miR-106a-5p, hsa-miR-106b-5p, hsa-
miR-128-3p, hsa-miR-135a-5p, hsa-miR-135b-5p, hsa-
miR-139-5p, hsa-miR-140-5p, hsa-miR-144-3p, hsa-miR-
17-5p, hsa-miR-186-5p, hsa-miR-203a, hsa-miR-20a-5p, 
hsa-miR-20b-5p, hsa-miR-214-3p, hsa-miR-216a-5p, hsa-
miR-216a-5p, hsa-miR-22-3p, hsa-miR-27a-3p, hsa-miR-
27b-3p, hsa-miR-299-3p, hsa-miR-29a-3p, hsa-miR-29b-
3p, hsa-miR-29c-3p, hsa-miR-328-3p, hsa-miR-33a-5p, 
hsa-miR-33b-5p, hsa-miR-3619-5p, hsa-miR-496, hsa-
miR-519d-3p, hsa-miR-653-5p, hsa-miR-758-3p, hsa-
miR-761, hsa-miR-93-5p). 23 identified mRNAs 
(FLJ36031, SLC22A3, TNFSF10, TRIM22, UBE2L6, 

OAS2, IL15, DDX60, MLKL, SP100, C1S, CFI, OAS1, 
HLA-G, CFH, PLSCR1, CTSL1, PARP12, PARP10, 
RAC2, LGALS3BP, TRIM5, SIX5) in the co-expression 
Pink module were involved in a ceRNA network  
(Figure 7A).  
 
LncRNA-RNA binding protein-mRNA network analysis 
was used to determine whether lncRNAs regulate 
identified mRNAs through RNA binding proteins. 
Through this analysis, we found in the co-expression Pink 
module 13 lncRNAs (CYTOR, CTD-2341M24.1, 
DANCR, RP11-661A12.4, HCP5, RP11-1398P2.1, 
RP11-247A12.2, RP11-38L15.3, RP11-661A12.5, RP11-
218C14.8, RP11-430H10.3, RP11-977B10.2, RP5-
884M6.1). We also found 19 RNA-binding proteins 
(FUS, CAPRIN1, DGCR8, eIF4AIII, FMRP, FUS-
mutant, HuR, IGF2BP1, IGF2BP2, IGF2BP3, LIN28, 
LIN28A, LIN28B, PTB, TAF15, TIA1, TIAL1, U2AF65, 
UPF1) and 45 identified mRNAs (C22orf46, CTSL1, 
DDX60L, HLA-C, IFI6, IFITM1, IL15, LGALS3BP, 
OAS1, PARP10, PCSK7, PLSCR1, SIX5, SLC22A3, 
SLC4A11, TDRD7, TRANK1, C1R, C1S, C4orf33, 
CFH, CFI, DDX60, HLA-G, HYI, IFIT2, IFITM2, 
FITM3, IL12RB2, LGALS9C, MLKL, OASL, PARP12, 
RAC2, SERPING1, SP100, TNFSF10, TRIM21, 
TRIM22, TRIM5, UBE2L6, OAS2, RSAD2, TRPV4, 
XAF1) in the co-expression Pink module which were 
involved in the network (Figure 7B). 
 
Furthermore, the Kaplan Meier-plotter analysis revealed 
that 8 out of the 26 identified lncRNAs in the co-
expression Pink module were significantly associated 
with overall survival (p < 0.05), including CYTOR 
(p=0.0202), MIR4435-2HG (p=0.0169), RP1-137D17.2 
(p=0.0340), RP11-247A12.2 (p=0.0016), RP11-
646E18.4 (p=0.0286), RP11-661A12.4 (p=0.0417), 
RP11-661A12.5 (p=0.0134), RP11-977B10.2 (p=0.0201) 
(Figure 8). 
 
RT-qPCR validation of identified molecules 
 
qRT-PCR was used to validate the expressions of 
survival-associated lncRNAs and hub mRNAs resulting 
from WGCNA analysis, including 8 lncRNAs 
(CYTOR, MIR4435-2HG, RP1-137D17.2, RP11-
247A12.2, RP11-646E18.4, RP11-661A12.4, RP11-
661A12.5, and RP11-977B10.2) and 12 hub mRNAs 
(IFIT2, XAF1, UBE2L6, IFITM3, HLA-C, CTSL, 
ARHGDIB, LGALS3BP, IFITM1, MLKL, SERPING1, 
TRIM21) in cultured LC cells (Hep-2 and TU177) and 
one control cell (HaCaT keratinocytes) (Figure 9) [23]. 
The results indicated significant difference for five 
survival-associated lncRNAs (CYTOR, MIR4435-2HG, 
RP11-247A12.2, RP11-661A12.4, and RP11-661A12.5) 
(Figure 9A), and eight hub mRNAs (CTSL, XAF1, 
ARHGDIB, LGALS3BP, IFITM1, MLKL, SERPING1,  
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Figure 6. PPI and GO analysis involved in the co-expression Pink module. (A) PPI analysis involved in the co-expression Pink module. 
(B) GO analysis involved in the co-expression Pink module.  
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Figure 7. LncRNA-RNA binding protein-mRNA network and LncRNA- miRNA-mRNA network. (A) LncRNA-RNA binding protein-
mRNA network based on the co-expression Pink module. (B) LncRNA-miRNA-mRNA network based on the co-expression Pink module.  
 

 
 

Figure 8. Analysis of OS-related identified lncRNAs in the co-expression Pink module. Kaplan-Meier survival analysis of RP11-
977B10.2 (A), RP11-661A12.5 (B), RP11-661A12.4 (C), RP11-646E18.4 (D), RP11-247A12.2 (E), RP1-137D17.2 (F), MIR4435-2HG (G), CYTOR 
(H). X-axis represented survival time (days), and y-axis represented survival rate. 
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and TRIM21) (Figure 9B) between LC cells and control 
cells. 
 
DISCUSSION 
 
Even with advancement in medical technology, the five 
year survival rate was still devastating in advanced LC 
patients. Various factors can increase the risk of LC; 
smoking is a leading cause [24]. There is also evidence of 
a link between consumption of alcohol without food and 
high incidence of LC [25]. Additionally, postoperative N 
stage was one of independent prognostic factors for 
patients with LC after curative resection [26]. 
Postoperative radiotherapy was also studied as a 
prognostic factor, and it is indicated that accelerated 
hyperfraction radiotherapy is better than conventional 
fractionation radiotherapy for early glottic cancer based 
on the optimal data [27]. Furthermore, new targeted 
therapy of laryngeal cancer provides fresh insight into 
treatment for LC patients. LncRNA plays a key role in 
various biological processes including transcriptional 

regulation, chromatin modification, RNA editing, 
posttranscriptional processing, and molecular meta-
bolism. In the previous study, the identified lncRNA 
ST7-AS1 and lncRNA UCA1in LC cells promoted tumor 
progression [28, 29]. Regarding mechanism research, 
lncRNA-miRNA- mRNA axis or lncRNA-RNA binding 
protein-mRNA axis was also studied in LC. LncRNA 
SNHG1 is significantly upregulated in LC and associated 
with prognosis of LC patients through activation of the 
miR-375/YAP1/Hippo signaling axis [30]. LncRNA 
NEAT1 promotes laryngeal squamous cell cancer 
through regulation of the miR-107/CDK6 pathway [31]. 
 
In this study, a total of 9 co-expression gene modules 
were constructed by 5000 good genes (including 2500 
lncRNAs and 2500 mRNAs) from 99 human LC 
samples. The samples were provided by WGCNA, 
which was used to identify significant gene modules in 
relation to important clinical phenotypes. WGCNA was 
performed to screen the clusters of co-expressed genes 
to identify prognostic biomarkers in breast cancer and

 

 
 

Figure 9. qRT-PCR validation of 8 survival-related lncRNAs (A) and 12 hub-mRNAs (B) in LC cell models compared to control cells. * p < 0.05. 
** p < 0.01. *** p < 0.001. 
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also to obtain hub genes. In one prognostic study 
performed by WGCNA, a significant negative 
correlation between the high expression of PYCR1 and 
TRPM2-AS and the breast cancer survival was 
elucidated [32]. In other groups, WGCNA and PPI 
network analysis were applied to identify hub genes 
correlated with bladder cancer progression to explore 
the underlying disease mechanisms, and identify more 
effective biomarkers for bladder cancer. Survival 
analyses of the identified genes indicated that elevated 
expressions of six potential biomarkers, including 
COL3A1, FN1, COL5A1, FBN1, COL6A1 and THBS2 
were significantly associated with a worse OS [33]. So 
far, there has only been one study applying WGCNA to 
study the mechanisms of LC. The microarray of 
GSE51958, including 10 samples, was analyzed in this 
study by WGCNA package in R. The results showed 
that TPX2, MCM2, UHRF1, CDK2 and PRC1 were 
found to have a possible association with LC [34]. In 
our study, the co-expression Pink module was 
significantly correlated with four clinical traits, 
including history of smoking, lymph node count, tumor 
status, and success of follow-up treatment.  
 
In our analysis, we found some consistency with previous 
reports. For example, the identified immune cytokine 
tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) in the co-expression Pink module has received 
high attention as a promising drug due to its ability to 
trigger cancer cell apoptosis and anti-tumor immune 
response without causing toxicity in vivo [35]. IL-15 is an 
inflammatory cytokine that plays an essential role in the 
development and activation of natural killer (NK) cells 
[36]. In a recent study, the activation of the IL-15 
signaling in adipose tissue probably activated and 
expanded the NK cell population and inhibited tumor 
growth [37]. HLA-G expression was increased in benign 
and premalignant lesions, and gradually decreased in 
invasive carcinomas and in respective draining cervical 
lymph nodes. The expression of the nonclassical HLA-G 
molecules in laryngeal lesions was reported as 
biomarkers of tumor invasiveness [38]. However, we also 
made some new discoveries that were not previously 
reported in LC, such as CFH, C1R, CFI, C1S, SP100, 
OAS1, IL15, OAS2, RAC2, RSAD2, TRIM21. The 
newly identified biomarkers in LC showed important 
functions. For example, TRIM21 mediates ubiquitination 
of Snail and modulates epithelial to mesenchymal 
transition in breast cancer cells [39]. RAC2 promotes 
abnormal proliferation of quiescent cells by enhanced 
JUNB expression via the MAL-SRF pathway. 
 
Furthermore, the ceRNA network and identification of 
integrated lncRNA-RNA binding protein-mRNA 
signatures were constructed for mechanism research in 
LC. Some of lncRNAs were reported in previous 

studies and closely related to the proliferation, 
apoptosis, angiogenesis, invasiveness, and migration of 
cancer [40]. For example, lncRNA DANCR was 
significantly upregulated in bladder cancer tissues and 
cases with lymph node metastasis, late tumor stage, 
high histological grade, and poor patient prognosis [41]. 
LncRNA HCP5 is frequently downregulated in human 
ovarian cancer, suggesting that HCP5 may be involved 
in the pathogenesis of the disease [42]. Additionally, the 
K-M plot analysis revealed that 8 out of the identified 
lncRNAs in the co-expression Pink module were 
significantly associated with OS of LC patients, 
including CYTOR, MIR4435-2HG, RP1-137D17.2, 
RP11-247A12.2, RP11-646E18.4, RP11-661A12.4, 
RP11-661A12.5, RP11-977B10.2. MIR4435-2HG 
promoted cell proliferation and tumorigenesis in gastric 
cancer, non-small cell lung cancer and breast cancer 
[43–45]. CYTOR modulated proliferation, migration, 
invasion of colorectal cancer, head and neck squamous 
cell carcinoma [46, 47]. The other identified lncRNAs 
were not reported in previous studies, and therefore our 
work adds valuable data indentifying new lncRNA 
biomarkers to the field of LC.  
 
We do acknowledge the limitations of our study. In this 
study, there were LC patients with incomplete clinical 
information, which might affect the clinical assessment 
of the research result. Second, the identified lncRNAs 
and mRNAs were confirmed in cell culture models; 
therefore, it might be also necessary to further validate 
these results in large-scale clinical samples for their real 
clinical application. Finally, although the sample size 
(n=99) was acceptable for analysis of hub molecules 
and survival analysis in the mRNA level, it does not 
account for the final expression of these proteins. It 
would be necessary to further verify those hub molecule 
biomarkers in the protein level in clinical samples. 
 
CONCLUSIONS 
 
In this study, we used WGCNA to determine that the 
co-expression Pink module was significantly correlated 
with four clinical traits. These obtained genes (including 
lncRNAs and mRNAs) from the co-expression modules 
enriched in various pathways and cell functions were 
closely related with the risk factors and development 
progress of LC. Furthermore, we elucidated a series of 
new biomarkers which could be useful for the diagnosis 
and treatment of LC.  
 
MATERIALS AND METHODS 
 
TCGA data of LC patients 
 
Data of LC patients was obtained from the TCGA 
database (http://cancergenome.nih.gov/). Level 3 RNA-

http://cancergenome.nih.gov/
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seq V2 (including lncRNA and mRNA expression data) 
and clinical data of 99 LC patients was downloaded. 
The basic pretreatment method of RNA-seq data is to 
remove genes where the missing value (expression = 0) 
is more than 20%. OS analysis was performed with R 
survival package, according to genes expression data 
(cutoff value = median value of gene expression) and 
survival time in LC patients. 11 LC clinical traits were 
extracted, including age at initial pathologic diagnosis 
(Patients were aged 38 to 83), history of smoking (from 
0.9 packs to 150 packs), history of alcohol consumption 
(yes or no), intermediate dimension (from 0.2cm-
1.4cm), lymph node count (from 0 to 104), neck lymph 
node dissection (yes or no), pathologic N stage (N0, N1, 
N2, N3, and NX), radiation therapy (yes or no), targeted 
molecular therapy (yes or no), tumor status (with tumor 
or tumor free), and success of follow-up treatment 
(complete remission/response, partial remission/ 
response, persistent disease, progressive disease, and 
stable disease). 
 
Weighted correlation network analysis of lncRNAs 
and mRNAs 
 
Based on the processed TCGA data in LC patients, the 
top 2500 lncRNAs and 2500 mRNA were selected as 
good genes for further WGCNA analysis. Those 5000 
genes were normalized by Limma package with Voom 
function, then the auxiliary data was removed and 
expression data was transposed for further analysis. 
First, all samples were checked for outliers with 
flashClust to construct sampleTree. The outlier in the 
sample was then removed based on cutHeight. A 
sample dendrogram and trait heatmap were visualized 
by WGCNA package of R software (http://www.r-
project.org/) to develop networks to investigate the 
relationship between the corresponding sample gene 
expression data and clinical phenotypes [15]. The 
adjacency matrix aij that calculated the connection 
strength between each pair of nodes was measured as 
follows: sij = |cor(xi, xj)| aij = Sijβ. Xi and Xj were 
vectors of expression values for genes i and j, sij 
represented the Pearson’s correlation coefficient of 
genes I and j, aij encoded the network connection 
strength between genes i and j. β value was the soft-
threshold (power value). Moreover, the Scale-Free 
Topology Fit Index (SFTFI) (scale free R2) ranging 
from 0 to 1 was used to determine a scale-free topology 
model. Choosing a set of soft-thresholding powers 
(range: 1 to 20) can help calculate the scale free 
topology model fit [16]. In this study, we defined the 
adjacency matrix using soft thresholding with beta=5, 
and the corresponding scale free R2 value was 0.87 to 
obtain a good scale-free topology model. In the co-
expression network, genes with highly absolute 
correlations were clustered into the same module to 

generate a cluster dendrogram (The parameters are 
described below: TOMType = unsigned method, 
minModuleSize = 30, reassignThreshold = 0, 
mergeCutHeight = 0.25). The dendrogram can be 
displayed together with the color assignment to form the 
network heatmap plot using the adjacency matrix 
algorithm method. The average linkage hierarchical 
clustering was conducted according to Topological 
Overlap Matrix (TOM)-based dissimilarity measure. 
Heatmap tool package was plotted to analyze the 
strength of network interactions. The relationships 
between co-expression modules and 11 LC clinical 
traits were calculated by the Pearson correlation 
coefficient and plotted by heat map. In addition, the 
Gene Significance (GS) was defined as mediated p-
value of each gene (GS = lgP) in the linear regression 
between gene expression and the clinical traits.  
 
Bioinformatics analysis provided insight into 
pathways and potential functions 
 
The pathway (http://ci.smu.edu.cn/genclip3/analysis 
.php) and Gene Ontology (GO) (http://www.cytoscape. 
org/) enrichment analyses within the co-expression 
modules were performed to identify LC-related pathway 
and biological functions, with an adjusted p value < 
0.05 (Benjamini-Hochberg for multiple testing). 
Furthermore, the LC survival-related lncRNAs in the 
co-expression Pink module were plotted with Rstudio.  
 
Identification of hub molecules with molecular 
complex detection 
 
The mRNA-mRNA interactions were constructed by 
STRING and analyzed with Cytoscape software (version 
3.2.0; National Resource for Network Biology) to obtain 
the hub genes. The hub genes were extracted from the 
identified clinical-related co-expression modules using 
Molecular Complex Detection. MCODE plugin is a 
reliable method to distinguish hub molecules from non-
hub molecules. The criteria for hub-molecule searching 
was set as the molecular complex detection (MCODE) 
score > 6, and statistical significance of p < 0.05 [17]. 
 
The ceRNA network and identification of integrated 
lncRNA-RNA binding protein-mRNA signatures 
 
StarBase provides systematical data of the RNA-
RNA and protein-RNA interaction networks from 
108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, 
CLASH) data sets generated by 37 independent 
studies [48]. LncRNA-miRNA-mRNA and lncRNA-
RNA binding protein-mRNA interaction networks 
based on the co-expression modules were decoded 
from the large-scale CLIP-Seq data by starBase v2.0  
(http://starbase.sysu.edu.cn/starbase2/index.php). Network 

http://www.r-project.org/
http://www.r-project.org/
http://ci.smu.edu.cn/genclip3/analysis.php
http://ci.smu.edu.cn/genclip3/analysis.php
http://www.cytoscape.org/ClueGO
http://www.cytoscape.org/ClueGO
http://starbase.sysu.edu.cn/starbase2/index.php
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visualization was perform-ed with Cytoscape 3.4.0 
(http://www.cytoscape.org/). 
 
Cell lines and cell culture 
 
LC cell lines Hep-2, TU177 cells and normal control 
cell line HaCaT keratinocytes cells were purchased 
from Keibai Academy of Science (Nanjing, China). 
Hep-2 cells were cultured in EMEM medium, TU177 
cells were cultured in 1640 medium, and HaCaT cells 
were in DMEM medium (Corning, NY, USA) 
supplemented with 10% fetal bovine serum (FBS, 
Gibco). All these cells were maintained with 5% CO2 
atmosphere at 37°C [23]. 
 
RNA extraction and qRT-PCR 
 
Total RNAs were extracted from cell lines with 
TRizol Reagent (Invitrogen) according to the 
manufacturer’s instructions. Total RNAs were 
reversely transcribed into cDNAs and then used to 
perform quantitative real-time PCR (qRT-PCR) with 
SYBR Premix ExTaq (TaKaRa). Beta-actin was used 
as an internal control for gene quantification. The 
RNA molecules that were assessed on the cell lines 
and their corresponding primers were listed in 
Supplementary Table 9. 
 
Statistical analysis 
 
All data was analyzed by R software 3.4.3 (https://www.r-
project.org/). In all cases, p < 0.05 was considered 
statistically significance. For KEGG pathway and GO 
analysis, Pearson correlation coefficient was calculated, 
and Benjamin-Hochberg was used for multiple testing and 
calculated to adjust the p-value. 
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SUPPLEMENTARY MATERIALS 
 

 

 
Please browse Full Text version to see the data of Supplementary Tables 1–3. 
 
Supplementary Table 1. LncRNA expression of laryngeal cancers from TCGA database for the WGCNA analysis. 

Supplementary Table 2. mRNA expression of laryngeal cancers from TCGA database for the WGCNA analysis. 

Supplementary Table 3. The clinical characteristics of these LC patients. NA represents the missing data. 
 

Supplementary Table 4. Analysis of network topology for various softthresholding powers. 

Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k. 

1 0.7 11.3 0.784 723 7.07E+02 1190 
2 0.156 0.669 0.979 170 1.55E+02 440 
3 0.65 -1.56 0.986 52.6 4.29E+01 206 
4 0.811 -1.91 0.969 19.7 1.37E+01 112 
5 0.87 -1.95 0.975 8.56 5.04E+00 67.5 
6 0.898 -1.93 0.986 4.18 2.06E+00 43.8 
7 0.91 -1.9 0.986 2.25 1.08E+00 30.1 
8 0.91 -1.84 0.975 1.32 5.59E-01 21.7 
9 0.882 -1.65 0.959 0.839 2.87E-01 16.2 

10 0.814 -1.52 0.897 0.57 1.55E-01 12.4 
12 0.91 -1.8 0.932 0.316 4.75E-02 7.67 
13 0.86 -1.67 0.888 0.254 2.80E-02 6.19 
14 0.82 -1.48 0.866 0.214 1.65E-02 5.06 
15 0.759 -1.24 0.854 0.186 9.72E-03 4.36 
16 0.792 -1.62 0.812 0.167 5.78E-03 3.82 
17 0.801 -1.45 0.881 0.153 3.51E-03 3.37 
18 0.772 -1.32 0.848 0.143 2.19E-03 2.99 
19 0.737 -1.15 0.816 0.135 1.39E-03 2.66 
20 0.699 -0.824 0.826 0.129 8.55E-04 2.38 

Note:SFT= scale-free topology;sq=square,k=number of clusters. 
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Supplementary Table 5. List of genes in the co-expression pink module. 

Gene ID Description  
AP001610.5 long intergenic non-protein coding RNA,AP001610.5 
C1R complement C1r  
C1S complement C1s  
C22orf46 chromosome 22 open reading frame 46 
C4orf33 chromosome 4 open reading frame 33  
CFH complement factor H  
CFI complement factor I 
CTD-2341M24.1 long non-coding RNA CTD-2341M24.1 
CTSL1 cathepsin L  
CYTOR cytoskeleton regulator RNA  
DANCR differentiation antagonizing non-protein coding RNA 
DDX60 DExD/H-box helicase 60  
DDX60L DExD/H-box 60 like 
FLJ36031 coiled-coil domain containing 71 like, C7orf74 
HCP5 HLA complex P5  
HLA-C major histocompatibility complex, class I, C 
HLA-G major histocompatibility complex, class I, G  
HYI hydroxypyruvate isomerase (putative) 
IFI6 interferon alpha inducible protein 6  
IFIT2 interferon induced protein with tetratricopeptide repeats 2 
IFITM1 interferon induced transmembrane protein 1  
IFITM2 interferon induced transmembrane protein 2 
IFITM3 interferon induced transmembrane protein 3  
IL12RB2 interleukin 12 receptor subunit beta 2 
IL15 interleukin 15 
LGALS3BP galectin 3 binding protein  
LGALS9C galectin 9C  
LINC01869 long intergenic non-protein coding RNA 1869 
LINC01932 long intergenic non-protein coding RNA 1932 
LINC02012 long intergenic non-protein coding RNA 2012 
LINC02100 long intergenic non-protein coding RNA 2100 
MIR4435-2HG MIR4435-2 host gene 
MLKL mixed lineage kinase domain like pseudokinase  
OAS1 2'-5'-oligoadenylate synthetase 1  
OAS2 2'-5'-oligoadenylate synthetase 2  
OASL 2'-5'-oligoadenylate synthetase like  
PARP10 poly(ADP-ribose) polymerase family member 10  
PARP12 poly(ADP-ribose) polymerase family member 12 
PCSK7 proprotein convertase subtilisin/kexin type 7  
PLSCR1 phospholipid scramblase 1  
RAC2 Rac family small GTPase 2 
RP11-1398P2.1 long non-coding RNA RP11-1398P2.1 
RP11-20D14.6 long non-coding RNA RP11-20D14.6 
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RP11-218C14.8 long non-coding RNA RP11-218C14.8 
RP11-247A12.2 long non-coding RNA RP11-247A12.2 
RP11-288L9.4 long non-coding RNA RP11-288L9.4 
RP11-326G21.1 long non-coding RNA RP11-326G21.1 
RP1-137D17.2 long non-coding RNA RP1-137D17.2 
RP11-38L15.3 long non-coding RNA RP11-38L15.3 
RP11-430H10.3 long non-coding RNA RP11-430H10.3 
RP11-646E18.4 long non-coding RNA RP11-646E18.4 
RP11-661A12.4 long non-coding RNA RP11-661A12.4 
RP11-661A12.5 long non-coding RNA RP11-661A12.5 
RP11-977B10.2 long non-coding RNA RP11-977B10.2 
RP5-1185I7.1 long non-coding RNA RP5-1185I7.1 
RP5-884M6.1 long non-coding RNA RP5-884M6.1 
RSAD2 radical S-adenosyl methionine domain containing 2  
SERPING1 serpin family G member 1 
SIX5 SIX homeobox 5  
SLC22A3 solute carrier family 22 member 3  
SLC4A11 solute carrier family 4 member 11 
SP100 SP100 nuclear antigen 
TDRD7 tudor domain containing 7 
TNFSF10 TNF superfamily member 10 
TRANK1 tetratricopeptide repeat and ankyrin repeat containing 1 
TRIM21 tripartite motif containing 21 
TRIM22 tripartite motif containing 22 
TRIM5 tripartite motif containing 5  
TRPV4 transient receptor potential cation channel subfamily V member 4  
UBE2L6 ubiquitin conjugating enzyme E2 L6  
XAF1 XIAP associated factor 1  
ZNF649-AS1 ZNF649 antisense RNA 1, non coding RNA 
ZNRD1ASP zinc ribbon domain containing 1 antisense, non coding RNA 
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Supplementary Table 6. The hub genes in the co-expression pink module. 

Hub genes Description 
IFIT2 interferon induced protein with tetratricopeptide repeats 2  
XAF1 XIAP associated factor 1 
UBE2L6 ubiquitin conjugating enzyme E2 L6 
IFITM3 interferon induced transmembrane protein 3 
HLA-C major histocompatibility complex, class I, C 
CTSL cathepsin L 
ARHGDIB Rho GDP dissociation inhibitor beta 
LGALS3BP galectin 3 binding protein 
IFITM1 interferon induced transmembrane protein 1 
MLKL mixed lineage kinase domain like pseudokinase 
SERPING1 serpin family G member 1 
TRIM21 tripartite motif containing 21 

 

Please browse Full Text version to see the data of Supplementary Table 7 

Supplementary Table 7. The coexpression and combined score between nodes base on String network in the  
co-expression pink module. 
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Supplementary Table 8. Gene ontology analysis that are involved with the genes in the co-expression pink module. 

GO ID GO term 
Group 

P 
value 

Group PValue 
corrected with 

benjamini-
hochberg 

% 
Associated 

genes 

Nr. 
genes Associated genes found 

GO:0070206 protein trimerization 0.00 0.00 6.78 4.00 [MLKL, TRIM21, 
TRIM22, TRIM5] 

GO:2000257 regulation of protein 
activation cascade 0.00 0.00 4.07 5.00 [C1R, C1S, CFH, CFI, 

SERPING1] 

GO:0030449 regulation of complement 
activation 0.00 0.00 4.13 5.00 [C1R, C1S, CFH, CFI, 

SERPING1] 

GO:0043901 negative regulation of 
multi-organism process 0.00 0.00 6.32 11.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2, SP100, TRIM21, 

TRIM5] 

GO:0043903 
regulation of symbiosis, 

encompassing mutualism 
through parasitism 

0.00 0.00 4.64 11.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2, SP100, TRIM21, 

TRIM5] 

GO:0034340 response to type I 
interferon 0.00 0.00 14.29 13.00 

[HLA-C, HLA-G, IFI6, 
IFIT2, IFITM1, IFITM2, 
IFITM3, OAS1, OAS2, 
OASL, RSAD2, SP100, 

XAF1] 

GO:0034341 response to interferon-
gamma 0.00 0.00 6.78 12.00 

[HLA-C, HLA-G, 
IFITM1, IFITM2, 

IFITM3, OAS1, OAS2, 
OASL, SP100, TRIM21, 

TRIM22, TRIM5] 

GO:0048525 negative regulation of 
viral process 0.00 0.00 11.96 11.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2, SP100, TRIM21, 

TRIM5] 

GO:0050792 regulation of viral process 0.00 0.00 5.42 11.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2, SP100, TRIM21, 

TRIM5] 

GO:0051607 defense response to virus 0.00 0.00 5.56 13.00 

[DDX60, IFIT2, IFITM1, 
IFITM2, IFITM3, IL15, 
OAS1, OAS2, OASL, 

PLSCR1, RSAD2, 
TRIM22, TRIM5] 

GO:0035455 response to interferon-
alpha 0.00 0.00 20.83 5.00 [IFIT2, IFITM1, IFITM2, 

IFITM3, OAS1] 

GO:0035456 response to interferon-
beta 0.00 0.00 21.74 5.00 [IFITM1, IFITM2, 

IFITM3, PLSCR1, XAF1] 

GO:0019079 viral genome replication 0.00 0.00 7.21 8.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2] 
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GO:0071346 cellular response to 
interferon-gamma 0.00 0.00 5.73 9.00 

[HLA-C, HLA-G, OAS1, 
OAS2, OASL, SP100, 

TRIM21, TRIM22, 
TRIM5] 

GO:0071357 cellular response to type I 
interferon 0.00 0.00 14.94 13.00 

[HLA-C, HLA-G, IFI6, 
IFIT2, IFITM1, IFITM2, 
IFITM3, OAS1, OAS2, 
OASL, RSAD2, SP100, 

XAF1] 

GO:1903900 regulation of viral life 
cycle 0.00 0.00 7.19 10.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2, TRIM21, 

TRIM5] 

GO:1903901 negative regulation of 
viral life cycle 0.00 0.00 13.33 10.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2, TRIM21, 

TRIM5] 

GO:0032897 negative regulation of 
viral transcription 0.00 0.00 12.00 3.00 [IFITM3, SP100, 

TRIM21] 

GO:0046782 regulation of viral 
transcription 0.00 0.00 4.41 3.00 [IFITM3, SP100, 

TRIM21] 

GO:0060333 
interferon-gamma-
mediated signaling 

pathway 
0.00 0.00 9.28 9.00 

[HLA-C, HLA-G, OAS1, 
OAS2, OASL, SP100, 

TRIM21, TRIM22, 
TRIM5] 

GO:0060337 type I interferon signaling 
pathway 0.00 0.00 14.94 13.00 

[HLA-C, HLA-G, IFI6, 
IFIT2, IFITM1, IFITM2, 
IFITM3, OAS1, OAS2, 
OASL, RSAD2, SP100, 

XAF1] 

GO:0045069 regulation of viral genome 
replication 0.00 0.00 9.64 8.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2] 

GO:0045071 negative regulation of 
viral genome replication 0.00 0.00 15.69 8.00 

[IFITM1, IFITM2, 
IFITM3, OAS1, OASL, 

PARP10, PLSCR1, 
RSAD2] 

GO:0046718 viral entry into host cell 0.00 0.00 4.07 5.00 
[IFITM1, IFITM2, 
IFITM3, TRIM21, 

TRIM5] 

GO:0046596 regulation of viral entry 
into host cell 0.00 0.00 14.71 5.00 

[IFITM1, IFITM2, 
IFITM3, TRIM21, 

TRIM5] 

GO:0046597 negative regulation of 
viral entry into host cell 0.00 0.00 20.00 4.00 [IFITM1, IFITM2, 

IFITM3, TRIM5] 
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Supplementary Table 9. The list of RNA molecules that were assessed on the cell lines. 

RNA type Primer name Primer sequence (from 5′ to 3′) 

lncRNA 

CYTOR-F CCACATTCCAACCTCCGTCTGC 
CYTOR-R TCGGCGGGCAACAGGTAGAG 

MIR4435-2HG-F GTTGCCCGCCGATCACAGC 
MIR4435-2HG-R ACCGACCAGACCAGCCCATG 
RP1-137D17.2-F CCAAGTTCTGCTGCTGCCTCAG 
RP1-137D17.2-R TCCCTCCCATGCCCTGAAACC 
RP11-247A12.2-F AGGCTGGAGTGCGGTGGTG 
RP11-247A12.2-R GGGAGGGTGAGGCAGGAGAATC 
RP11-646E18.4-F GGGAGGGCTAGTCACGGAACG  
RP11-646E18.4-R CCTCAGCCTCTGCTCCTCCAC 
RP11-661A12.4-F ACCAGAAGGGGCTACCGCATAG 
RP11-661A12.4-R TTGGCGAGAGAGCAGAGGTCAG 
RP11-661A12.5-F AGAGCAGGAGAAGACGCAGGAG 
RP11-661A12.5-R TGATCTGTGCAGTGCGGTTGTC 
RP11-977B10.2-F GGTCTTGAGTGGGGCAATCAGC 
RP11-977B10.2-R GAGGTCTTTGCAGGAGCCGATG 

mRNA 

IFIT2-F AACCTACTGGCCTATCTAAAGC 
IFIT2-R CATGCTCTTGCTGGATTAACTC 
XAF1-F AAGAGGTTCTGGTTTCAGGAAA 
XAF1-R CTGAGCTTGAGTATCTCCAGAG 

UBE2L6-F AGCTGGAGGATCTTCAGAAGAA 
UBE2L6-R TGGTTGTGAATTTGATCATGGG 
IFITM3-F CTTCTTCTCTCCTGTCAACAGT 
IFITM3-R GTTCATGAAGAGGGTGTTGAAC 
HLA-C-F CTACGACGGCAAGGATTACATC 
HLA-C-R CTCATGGTCAGAGACGAGATG 
CTSL-F TATTTTGAGCCAGACTGTAGCA 
CTSL-R GATTCTGTGCTTTCAAATCCGT 

ARHGDIB-F GCAAGCTCAATTATAAGCCTCC 
ARHGDIB-R CTTCCAGATCTCCAGTAAGGTC 
LGALS3BP-F CAATGGTACTTCTACTCCCGAA 
LGALS3BP-R GAACTGTAGGCAGAGCTTCTC 

IFITM1-F GTTCAACACCCTCTTCTTGAAC 
IFITM1-R CATCTTCCTGTCCCTAGACTTC 
MLKL-F TCCTCTGGGAAATCGCCACTGG 
MLKL-R GCTCCTGCTGCCGCTTCAC 

SERPING1-F GATGCTATTCGTTGAACCCATC 
SERPING1-R CAAGTCAGAGCAGAGAGTAACA 

TRIM21-F TCCTTCTACAACATCACTGACC 
TRIM21-R CAATATTCAGTGGACAGAGGGT 

Note: F means forward, and R means reverse. 


