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INTRODUCTION 
 
Soft tissue sarcoma (STS) is a group of rare tumors 
including more than 50 different histological subtypes  

 

[1]. It accounts for approximately 1% of adult 
malignancies and 15 % of pediatric malignancies [2, 3]. 
STS is derived from mesenchymal cell and usually 
divided into two broad categories: sarcomas of the soft 
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ABSTRACT 
 
Soft tissue sarcoma (STS) is one of the most challenging tumors for medical oncologists, with a high rate of 
recurrence after initial resection. In this study, a recurrent STS-specific competitive endogenous RNA (ceRNA) 
network including seven recurrence and overall survival (OS)-associated genes (LPP-AS2, MUC1, GAB2, hsa-let-7i-
5p, hsa-let-7f-5p, hsa-miR-101-3p and hsa-miR-1226-3p) was established based on the gene expression profiling of 
259 primary sarcomas and 3 local recurrence samples from the TCGA database. The algorithm “cell type 
identification by estimating relative subsets of RNA transcripts (CIBERSORT)” was applied to estimate the fraction 
of immune cells in sarcomas. Based on 5 recurrence and OS-associated immune cells (NK cells activated, dendritic 
cells resting, mast cells resting, mast cells activated and macrophages M1), we constructed a recurrent STS-specific 
immune cells network. Both nomograms were identified to have good reliabilities (Area Under Curve (AUC) of 5-
year survival is 0.724 and 0.773, respectively). Then the co-expression analysis was performed to identify the 
potential regulation network among recurrent STS-specific immune cells and ceRNAs. Hsa-miR-1226-3p and MUC1 
were significantly correlated and dendritic cells resting was related to hsa-miR-1226-3p. Additionally, the 
expression of MUC1 and dendritic cell marker CD11c were also verified by immunohistochemistry (IHC) assay and 
multidimensional databases. In conclusion, this study illustrated the potential mechanism of hsa-miR-1226-3p 
regulating MUC1 and dendritic cells resting might play an important role in STS recurrence. These findings might 
provide potential prognostic biomarkers and therapeutic targets for recurrent STS. 
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tissues and sarcomas of the bone [2]. The extremities, 
viscera, retroperitoneum and trunk are the most frequent 
sites, accounting for 70% of all cases [3, 4]. A complete 
resection is recommended for STS, but anatomic 
constraints hinder such efforts and local recurrence rate 
is high [5, 6]. Even after radical surgeries, about 30% of 
patients would experience local recurrence (LR) within 
10 years, which is the most common cause of death [7]. 
Thus, there is a pressing need to explore the underlying 
mechanism of STS recurrence, which may provide 
potential prognostic factors and therapeutic targets for 
its treatment in the clinic. 
 
Both tumor cells and tumor-infiltrating immune cells 
participate in tumorigenesis and tumor progression [9] 
and have been confirmed to be associated with 
recurrence and overall survival (OS) [10, 11]. The 
crosstalk between the tumor cells and tumor-infiltrating 
immune cells is usually modulated by the competing 
endogenous RNA (ceRNA) networks, which are 
composed of mRNAs messenger RNAs (mRNAs), long 
non-coding RNAs (lncRNAs), and microRNAs 
(miRNAs) [12]. Increasing studies indicated that the 
ceRNA networks regulate the post-transcription of 
oncogenes and tumor suppressor genes, modulate 
interactions between protein and genes, and control the 
biological behaviors such as tumor invasion and 

metastasis [12]. However, no combined networks have 
been defined for predicting the prognosis of STS 
recurrence up to date. Therefore, a better understanding 
of the tumor-infiltrating immune cells and ceRNA 
networks is required. 
 
In the current study, we identified the differential 
expressed ceRNAs involved in recurrent STSs based on 
their gene expression profiling available from the TCGA 
(The Cancer Genome Atlas) database and used the 
algorithm “CIBERSORT” to quantify the proportions of 
immune cells. In addition, prediction nomograms based 
on recurrence and OS-associated immune cells or 
ceRNAs were constructed to predict STS recurrence. 
Moreover, we assessed the relationships between 
recurrent STS-specific immune cells and ceRNA 
networks to identify the underlying immune gene 
signature. 
 
RESULTS 
 
Identification of significantly differentially expressed 
genes 
 
Figure 1 summarizes the analysis process of this  
study. The baseline characteristics of all the patients 
available from the TCGA database are listed in

 

 
 

Figure 1. The flow chart of the analysis process. Abbreviations: TCGA: The Cancer Genome Atlas; STS: Soft tissue sarcoma; GEO: Gene 
Expression Omnibus; CCLE: Cancer Cell Line Encyclopedia; GTEx: Genotype-Tissue Expression; UCSC: University of California, Santa Cruz. 
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Supplementary Table 1. The Kaplan-Meier survival 
analysis revealed that recurrence was a significant 
predictor for poor prognosis of STSs (P = 0.001) 
(Supplementary Figure 1). 
 
A total of 14,447 lncRNAs, 2,588 miRNAs and 19,660 
mRNAs were found from the TCGA database. Among 

them, 148 differentially expressed protein-coding  
genes (143 downregulated and 5 upregulated) (Figure 
2A–2C, 2E), 21 differentially expressed lncRNAs 
(downregulated) (Figure 2A, 2D) and 4 differentially 
expressed miRNAs (downregulated) were identified 
between primary and recurrent STSs using the cutoff of 
the log (fold-change) > 1.0 or < −1.0 and FDR < 0.05. 

 

 
 

Figure 2. The differentially expressed genes between primary and recurrent STSs. (A) The heatmap and the volcano plot (B) of 178 
differentially expressed genes between 259 primary and 3 recurrent STSs; (C) The volcano plot of 148 differentially expressed protein-coding 
genes between 259 primary and 3 recurrent STSs; The volcano Plot (D) of 21 differentially lncRNAs between 259 primary and 3 recurrent 
STSs; (E) The composition of differentially expressed genes. The log(fold-change) > 1.0 or < -1.0 and FDR < 0.05. Abbreviations: ceRNAs: 
competing endogenous RNAs; STSs: soft tissue sarcomas; LncRNA: long non-coding RNA. 
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Supplementary Table 2 summarizes the top 10 
downregulated and top 10 upregulated genes in 
differential gene analysis. 
 
Construction of the ceRNA network and survival 
analysis 
 
A ceRNA network including 23 genes was established 
based on the interactions of 11 lncRNA-miRNA pairs 
and 12 miRNA-mRNA pairs (Figure 3A) (Table 1). The 
Cox regression and Kaplan-Meier method were applied 
to examine the relationship between the biomarkers in 
the recurrence-associated ceRNAs and OS. LPP-AS2  
(P = 0.039), MUC1 (P = 0.003), GAB2 (P =0.049), hsa-
let-7i-5p (P < 0.001), hsa-let-7f-5p (P = 0.025), hsa-miR-
101-3p (P = 0.028) and hsa-miR-1226-3p (P = 0.001) 
were significantly associated with survival in Kaplan-
Meier analysis (Figure 3B–3G). Seven potential 
recurrence and OS-associated biomarkers were 
identified as key molecules in the ceRNA network and 
were integrated into a new multivariable model (Table 
2). The results of the Lasso regression indicated that all 
seven genes were essential for modeling (Figure 4A, 
4B). Additionally, the ROC and the calibration curves 
indicated decent accuracy (Area Under Curve (AUC)  
of 3-year survival: 0.731; AUC of 5-year survival: 
0.724) and good discrimination (Figure 4C, 4E). Then, 
the nomogram was constructed based on the model 
(Figure 4D). 
 
Composition of immune cells in sarcomas 
 
Figure 5 illustrated the composition of immune cells 
estimated by the CIBERSORT algorithm in STSs. The 
fraction of the NK cells activated was consistently lower 
in the local recurrence tissue than in primary sarcomas, 
whereas the fractions of dendritic cells resting and the 
mast cells resting were higher in the local recurrence 
sarcoma tissue. Wilcoxon rank-sum test was then used 
and revealed that the fractions of dendritic cells resting 
(P = 0.016) and NK cells activated (P = 0.036) varied 
significantly between recurrent and primary tumors 
(Figure 5C). 
 
Integrated analysis of immune cells, genes and 
prognosis 
 
All immune cells were integrated into a Cox regression 
model. After the screening process of the Lasso 
regression, the fractions of NK cells activated (P = 
0.029), dendritic cells resting (P = 0.013), mast cells 
resting (P < 0.001), mast cells activated (P = 0.030) and 
macrophages M1 (P = 0.024) were all considered as 
independent predictors in the final Cox model (Table 3). 
The results of the Lasso regression suggested that the 
model was not overfitting (Figure 6A, 6B). In addition, 

the calibration curve and the ROC demonstrated good 
discrimination and concordance (AUC of 3-year survival: 
0.709; AUC of 5-year survival: 0.773) (Figure 6C, 6F). 
Similarly, the nomogram based on the multivariate 
analysis was constructed (Figure 6E). Lastly, immune 
cells and biomarkers significantly associated with OS 
were integrated into the nomogram (Supplementary 
Figure 2) for predicting the prognosis (AUC of 3-year 
survival: 0.789; AUC of 5-year survival: 0.822). With 
respect of the correlation analysis, significant co-
expression patterns between fractions of immune cells 
and key molecules in the ceRNA network were 
identified, showing that hsa-miR-1226-3p was 
significantly associated with dendritic cells resting (R= -
0.19, P = 0.004) (Figure 7). Additionally, according to 
the result of the Wilcoxon rank-sum test, hsa-miR-1226-
3p was significant different between the sarcoma tissues 
of patients with and without recurrence (P = 0.015) 
(Supplementary Figure 3). 
 
MUC1 and CD11c were associated with STS 
recurrence 
 
We examined the expressions of MUC1 and CD11c in 
primary and recurrent leiomyosarcoma (LMS) and 
liposarcoma (LPS) specimens (Table 4). Of the 10 
patients with recurrent LMS, the mean H-score of 
MUC1 was 2.25, which was significantly higher than 
that of patients with primary LMS (P < 0.05) (Figure 8A, 
8A’). The results of CD11c were similar (Figure 8B, 
8B’). Then we compared the H-score of MUC1 and 
CD11c in patients with primary or recurrent LPS. Both 
of them were significantly higher in patients with 
recurrent LPS (Figure 8C, 8C’, 8D, 8D’). In addition, the 
results showed that the MUC1 and CD11c protein was 
predominantly localized in the membrane and 
extracellular matrix of LMS (Supplementary Figure 4A, 
4B) and LPS cells (Supplementary Figure 4C, 4D). 
 
Multidimensional validation 
 
A dimensional validation was performed to explore the 
expressions of MUC1 and CD11c in the primary STS, 
normal soft tissue and cell lines (Table 5). First, MUC1 
(Median rank 1,052, P = 0.012) was highly expressed in 
primary STS compared to normal tissue while CD11c 
(Median rank 10,499, P = 0.952) showed no difference 
in all of the 10 comparisons (Supplementary Figure 5). 
At cellular level, MUC1 was expressed in various STS 
cell lines while the expression of CD11c was low 
(Supplementary Figure 6). Besides, an analysis of 
genomics and clinical profiles with the cBioPortal 
suggested that MUC1 and CD11c were highly expressed 
in primary STS compared to other types of malignancies 
and both were in a co-expression relationship (R = 0.28, 
P < 0.001) (Supplementary Figure 7). Moreover, we 
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Figure 3. (A) The STS-recurrence related ceRNA network; The Kaplan-Meier survival curves of LPP-AS2 (B), MUC1 (C), hsa-let-7i-5p (D), hsa-
let-7f-5p (E), hsa-miR-101-3p (F) and hsa-miR-1226-3p (G). Abbreviations: STSs: soft tissue sarcomas; ceRNAs: competing endogenous RNAs 
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Table 1. Hypergeometric testing and correlation analysis results of ceRNAs network. 

LncRNA Protein-coding RNA MiRNAs Correlation P Hypergeometric test P 
AL441992.1 MUC1 hsa-miR-1226-3p 2.81E-10 0.044178237 
AL441992.1 COPS6 hsa-let-7f-5p,hsa-let-7i-5p 8.92E-07 0.000306228 
LINC00910 GAB2 hsa-let-7g-5p,hsa-miR-125b-5p 0.002903258 0.005948459 
LINC00910 MUC1 hsa-miR-125b-5p,hsa-miR-330-5p 4.29E-07 0.014261321 
LINC00910 SNCG hsa-miR-103a-3p,hsa-miR-107 4.46E-05 0.009708465 
TYMSOS ATG4D hsa-miR-101-3p 3.68E-05 0.011207883 
LPP-AS2 RELA hsa-miR-7-5p 0.020065721 0.02784492 
ZNF710-AS1 MAPK7 hsa-miR-24-3p 0.013123574 0.001872659 

Abbreviations: ceRNAs: Competing endogenous RNAs; LncRNA: Long non-coding RNA; MiRNA: microRNA. 
* P < 0.05 
 

Table 2. Cox proportional hazards regression model 
including the key members of the ceRNA network for 
overall survival in patients with soft tissue sarcoma. 

Gene Hazard 
ratio 95%CI P value 

GAB2 0.81 (0.67 − 0.98) 0.034 * 
RELA 0.57 (0.33 − 0.98) 0.041 * 
MUC1 0.88 (0.79 − 0.97) 0.012 * 
has-let-7f-5p 0.91 (0.73 − 1.13) 0.375 
has-let-7i-5p 0.68 (0.50 − 0.92) 0.012 * 
has-miR-1226-3p 1.28 (1.03 − 1.58) 0.024 * 
LPP-AS2 0.61 (0.44 − 0.84) 0.003 ** 

Abbreviations: ceRNAs: Competing endogenous RNAs; CI: 
Confidence Interval. 
*: P < 0.05; **:P < 0.010; ***:P < 0.001. 
Note. In the variable selection process, first of all, the 
initial Cox models including all members of the ceRNA 
network were used to select potential prognostic genes. 
At the same time, the Lasso regression was performed 
based on all members of the ceRNA network. The results 
of the Lasso regression (Figure 4A, 4B) suggested that the 
eight genes were essential to modeling and ensuring not 
overfitting of the model. Eventually, the reduce Cox 
model shown in this table only including eight genes 
filtrating by the Lasso regression (The Cox model of 
immune cells was constructed in the same way). 
 

extracted the RNA-seq data of 907 normal adipose or 
muscle tissues from the GTEx database and 509 
sarcomas from the Treehouse for differential gene 
analysis. MUC1 (logFC = 4.10, P < 0.001) was 
identified in the inter-group differential expression while 
CD11c was not (Supplementary Figure 8). Additionally, 
the results from The Human Protein Atlas showed that 
the protein MUC1 and CD11c were almost not detected 
in normal adipose and smooth muscle tissue 
(Supplementary Figure 9). Finally, we also evaluated  

the prognostic value and relationship among MUC1  
and twelve markers of dendritic cell. The results 
revealed that CD49d, CD304, CD209, CD11b and  
CD86 had a co-expression pattern with MUC1 and 
CD40, CD197, CD205 were associated with OS 
(Supplementary Figure 10). 
 
DISCUSSION 
 
STSs are one of the most challenging tumors for medical 
oncologists, with a high rate of relapse after initial 
resection [5]. During tumorigenesis and recurrence, 
molecular and cellular components played important 
roles and were often regarded as potential prognostic 
factors [13]. The significant genes that are aberrantly 
expressed in tumor and tumor-infiltrating immune cells 
attract our interest, however, very few studies of STS 
focused on them before. In the present study, we found 
out the significant tumor-infiltrating immune cells and 
ceRNAs between primary and recurrent STS. Two 
prediction nomograms with high efficacy were 
constructed based on these findings and thus both 
nomograms might assist clinical oncologists in 
evaluation of prognosis and recurrence. By comparing 
the correlation between the recurrence-associated 
ceRNAs and immune cells, we inferred a potential 
mechanism of STS recurrence and that was hsa-miR-
1226-3p regulating MUC1 and dendritic cells resting. 
Then multidimensional validation of multiple databases 
confirmed the reliability of our results. 
 
The ceRNA networks link the function of protein-coding 
mRNAs with ncRNAs, such as miRNAs and lncRNAs 
[12]. Previous studies revealed that miRNAs were able 
to bind to the 3’ untranslated region (3’ UTR) of the 
target mRNAs in a complementary base-pairing manner 
and take part in post-transcriptional regulation of 
oncogenes and antioncogenes [17, 18]. The lncRNAs  
not only regulated interactions between protein and 
genes, but also modulated transcription by recruiting 
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Figure 4. The results of the multivariate Cox regression, nomogram (E) and model diagnosis process (B, C, D, F) based on the key members in 
the ceRNA network. Seven potential prognosis-related ceRNAs were integrated into a new multivariable model. The results of the Lasso 
regression suggested that all seven genes were essential for modeling (A, B). The nomogram was constructed based on the model (D). The 
ROC and the calibration curves indicated acceptable accuracy (Area Under Curve (AUC) of 3-year survival: 0.731; AUC of 5-year survival: 
0.724) and discrimination of the nomogram (C, E). 
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chromatin-modifying complexes [19, 20]. Emerging 
evidence demonstrated their potential roles in controlling 
the biological process including tumorigenesis, invasion 
and metastasis [20–22]. 

In this study, hypergeometric testing and correlation 
analysis results of the ceRNAs network revealed that 
hsa-miR-1226-3p (miRNA), MUC1 (protein-coding 
RNA) and AL441992.1 (lncRNA) were significantly

 

 
 

Figure 5. The composition (A) and heatmap (B) of immune cells estimated by CIBERSORT algorithm in sarcomas. (C) The violin plot of 
immune cells (The blue and red bar stand for recurrent tumor group and primary tumor group, respectively). Abbreviations: CIBERSORT: Cell 
type identification by estimating relative subsets of RNA transcripts. 
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Table 3. Cox proportional hazards regression model including the key immune cells for overall survival in patients 
with soft tissue sarcoma. 

Immune cell Hazard ratio 95%CI P value 
NK cells activated 9.6e−06 (3.0e−10 − 0.309) 0.029 * 
Dendritic cells resting 4.4e−06 (2.7e−10 − 0.074) 0.013 * 
Mast cells resting 1.4e−04 (1.9e−06 − 0.011) < 0.001 *** 
Mast cells activated 2.9e−16 (2.4e−30 − 0.034) 0.030 * 
Macrophages M1 7.2e−05 (1.8e−08 − 0.280) 0.024 * 

Abbreviations: CI: Confidence Interval. 
*: P < 0.05; **:P < 0.010; ***:P < 0.001. 
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Figure 6. The results of the multivariate Cox regression, Lasso regression (A, B), Kaplan–Meier survival curve of (D), nomogram (E) and model 
diagnosis process (C, F) based on prognosis related immune cells. All immune cells were integrated into an initial Cox regression model. After 
the screening process of the Lasso regression, the results suggested that the model was not overfitting (A, B). The nomogram based on the 
multivariable model (E). The calibration curve and the ROC demonstrated good discrimination and concordance of the nomogram (AUC of 3-
year survival: 0.709; AUC of 5-year survival: 0.773) (C, F). 
 

Table 4. The mean H-score of MUC1 and CD11c in 
primary/recurrent LMS and LPS. 

Biomarker Primary 
LMS 

Recurrent 
LMS 

Primary 
LPS 

Recurrent 
LPS 

MUC1 1.05 2.55 1.15 2.05 
CD11c 1.025 1.675 1.175 1.625 
P value <0.001 <0.001 0.004 0.42 

Abbreviations: LMS: leiomyosarcoma; LPS: liposarcoma. 
 

correlated. In the meanwhile, the correlation analysis 
also revealed that hsa-miR-1226-3p was significantly 
associated with dendritic cells resting (R= -0.190, P = 
0.004). Thus, we inferred that the mechanism of hsa-
miR-1226-3p regulating MUC1 and dendritic cells 
resting might play an important role in STS recurrence. 
 
miR-1226 was reported to be involved in tumorigenesis, 
angiogenesis and drug resistance in breast cancer and 
non-small cell lung cancer [23, 24]. The correlation 
between hsa-miR-1226-3p and MUC1 has also been 
proved by the previous study which revealed that miR-
1226 interacted with the MUC1 mRNA 3’ UTR and 
induced downregulation of MUC1 [25]. 
 
Generally, MUC1 is overexpressed at mucosal surfaces 
and absent in the skin epithelium and mesenchymal cells 
[26, 27]. Aberrantly glycosylated MUC1 is often 
overexpressed in most human epithelial cancers, but not 
reported in mesenchymal cell originated STS. In the 

tumorigenesis, MUC1 was reported to induce the 
expression of growth factors such as connective tissue 
growth factor (CTGF), vascular endothelial growth 
factor-A (VEGF-A) and platelet-derived growth factor A 
(PDGF-A), that promote cell adhesion, angiogenesis and 
proliferation [28, 29]. During tumor metastases, it also 
induced epithelial to mesenchymal transition (EMT) by 
modulating the expression of miRNAs that promoted 
EMT-related gene expression [30, 31]. In this study, we 
suggested that MUC1 was highly expressed in recurrent 
LMS and LPS, suggesting a potential novel biomarker to 
predict STS recurrence. Additionally, as an extensively 
O-glycosylated and moderately N- glycosylated 
transmembrane protein on epithelial cells, many 
antibody-drug conjugates (ADC) have been explored  
for MUC1, such as HuHMFG1 [32, 33]. Thus, MUC1 
can be regarded as a potential therapeutic target for 
recurrent STS. 
 
Recently, MUC1 has also been designed to be the target 
of an anticancer vaccine. The MUC1 anticancer vaccine 
was equipped with covalently linked divalent mannose 
ligands and the mannose coupling also led to increasing 
numbers of macrophages, dendritic cells (DCs), and 
CD4+ T cells [34]. MUC1 could be carried in 
extracellular microvesicles, which played a contradictory 
role in promoting both immunosuppression and  
tumor growth. The specific immune response was 
reported to positively impact DCs immunogenicity by 
reprogramming DC antigen processing machinery and 
intracellular signaling pathways [35]. 
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DCs, also known as professional antigen-presenting cells 
(APC), are specialized in providing co-stimulation and 
cytokines to regulate tumor antigen-specific T cell 
immune response activation [14]. They interact with 
other immune cells, such as NK cells and B cells, and 
activate anti-tumor responses [15]. The diversity of DC 
populations, divided by localization and activity, makes 
its function specific. The former includes Langerhans 
cells, monocyte-derived DCs (CD14+ DCs), myeloid 
DCs, plasmacytoid DCs (pDCs) [16]. The latter includes 
DCs activated and DCs resting [44]. 

In addition, both miR-1226 and MUC1 were reported to 
not only take effects in the intracellular environment but 
also be secreted to the extracellular environment which 
also provides the opportunity to regulate dendritic cells 
resting [35, 36]. 
 
In addition, correlation between hsa-let-7i-5p with 
dendritic cells resting was also significant (R = 0.200, P 
= 0.003). After a systematic literature review, we found 
no direct reports on hsa-let-7i-5p association with 
dendritic cells and tumor immunity. However, COP9 

 

 
 

Figure 7. The co-expression patterns among fractions of immune cells and key members in the ceRNA network. (A) co-
expression heatmap of all immune cells; (B) co-expression heatmap of prognostic immune cells and key members of ceRNA network; (C) has-
let-7i-5p was significantly associated with dendritic cells resting (R = 0.200, P = 0.003); (D) hsa-miR-1226-3p was significantly associated with 
dendritic cells resting (R = -0.190, P = 0.004). 
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Signalosome Subunit 6 (COPS6) regulated by hsa-let-7i-
5p had been proved by a previous study biological 
experiment [37]. COP9 Signalosome is a highly 
conserved protein complex, working as an important 
regulator in multiple signaling pathways. Especially, it 
had been reported to involve in the human 
immunodeficiency virus type 1 (HIV-1) regulating 
immune cell death [38–40]. Therefore, we speculated that 
hsa-let-7i-5p might affect dendritic cells by regulating its 
target gene COPS6, which was involved in immune 
regulation. We had such a conserved discussion because

of the lack of literature. Subsequent studies are needed to 
explore the relationship between hsa-let-7i-5p and 
dendritic cells. 
 
There are inevitably several limitations of our study that 
should be acknowledged. First, the amount of data 
released in publicly available datasets is limited, so that 
the clinicopathological parameters analyzed in this study 
are not comprehensive, which might lead to potential 
error or bias. And the sample size of the recurrent 
samples was very small, which might cause analysis bias.  

 

 
 

Figure 8. The expressions of MUC1 and CD11c proteins in primary/ recurrent leiomyosarcoma (LMS) (A, B) and liposarcoma (LPS) (C, D) 
specimens examined by immunohistochemistry (IHC) assay. The upper one is primary STS and under one is recurrent STS. 
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Table 5. Summary of multidimensional external validation results base on multiple databases. 

Database 
MUC1/MUC1 ITGAX/CD11c 

Results 
Cancer Normal Cancer Normal 

Oncomine ↑ ↓ - - 
Across ten analysis, MUC1 was highly expressed in primary 
STS compared to normal tissue while CD11c (Gene symbol: 

ITGAX) showed no difference (Supplementary Figure 5). 

CCLE ↑ NA - NA 
At the cellular level, MUC1 was expressed in various STS 
cell lines while ITGAX expression was low STS cell lines 

(Supplementary Figure 6). 

cBioPortal ↑ ↓ - - 

MUC1 and ITGAX were highly expressed in primary STS 
compared to some other types of cancer and they had a 

significant co-expression pattern in STS (Supplementary 
Figure 7). 

GTEx NA ↓ NA ↓ MUC1 and ITGAX were lowly expressed in normal adipose 
tissue and smooth muscle tissue (Supplementary Figure 8). 

UCSC 
Treehouse ↑ ↓ - - 

MUC1 was highly expressed in primary STS compared to 
normal soft tissue while ITGAX did not (Supplementary 

Figure 8). 

The Human 
Protein Atlas NA ND NA ND 

Protein MUC1 and CD11c were almost not detected in 
normal adipose tissue and smooth muscle tissue 

(Supplementary Figure 9). 

Note: “↑” was defined as a significantly upregulated gene; “↓” was defined as a significantly downregulated gene; “-” was 
defined as a a gene with no significant difference in expression; “NA” was defined as “Not available”; “ND” was defined as 
“Not detected”; 
Abbreviations: CCLE: Cancer Cell Line Encyclopedia; GTEx: Genotype-Tissue Expression; UCSC: University of California, Santa 
Cruz 
 

Second, we have not considered the heterogeneity of the 
immune microenvironment related to the location of 
immune infiltration. And the heterogeneity of the 
histological subtypes could affect the accuracy and 
generalization of the prediction models. Third, all data 
series downloaded for establishment of the prediction 
nomograms were from Western countries; thus, caution 
should be exerted when applying the conclusion of this 
study to patients from Asian countries. And to minimize 
bias, multiple databases were used to detect gene and 
protein expression levels of key biomarkers at the tissue 
and cellular levels, showing the key biomarkers were 
significantly upregulated in common sarcoma tissues and 
cell lines and their proteins were not expressed in normal 
soft tissues (Supplementary Figure 5–9). Last but not 
least, this study is only a correlation study on multiple 
dimensions rather than a biological mechanism study. 
However, notwithstanding its limitations, this study 
firstly established the nomograms to predict the survival 
of STS patients based on recurrent STS-specific tumor-
infiltrating immune cells and ceRNA networks and 
inferred that the mechanism of hsa-miR-1226-3p 
regulating MUC1 and dendritic cells resting might play 
an important role in STS recurrence. In the future, more 
data should be incorporated to improve the model. As our 
future directions, we would investigate the direct 

molecular biological mechanisms of the recurrent STS-
specific ceRNAs and the intercellular communication 
between cancer cells and dendritic cells resting. 
 
CONCLUSIONS 
 
Our study constructed two nomograms to predict survival 
and recurrence of STS patients based on tumor-
infiltrating immune cells and ceRNA networks, and 
demonstrated the utility by their high AUC values. The 
proposed prediction nomograms might provide much 
comprehensive clinical information for improving the 
personalized management of STS patients. Moreover, 
this study inferred that the mechanism of hsa-miR-1226-
3p regulating MUC1 and dendritic cells resting might 
play an important role in STS recurrence. 
 
MATERIALS AND METHODS 
 
Data collection and differential gene expression 
analysis 
 
The study was approved by the Ethics Committee of the 
First Affiliated Hospital of Zhengzhou University (No. 
2019-KY-108). RNA profiles of the primary sarcomas 
and local recurrence samples were downloaded from 
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TCGA (https://tcga-data.nci.nih.gov/tcga/) database. 
These samples were taken from patients confirmed as 
soft tissue sarcomas by histopathological diagnosis. All 
patients in this database have a uniform ID. The .Xml 
(Extensible Markup Language) files containing all the 
matadata for each sample was downloaded and merged 
by Practical Extraction and Report Language (Perl) script 
to determine the grouping of the samples in this study. 
Both HTseq-count and fragments per kilobase of exon 
per million reads mapped (FPKM) profiles of 262 
samples, comprising 259 primary sarcomas and 3 local 
recurrence samples were collected (The specimens used 
for analysis in each experiment were primary/recurrent 
STS, not primary STS/normal tissue, or primary STS  
in patients with/without recurrence). Demographic 
information and survival endpoint of each patient were 
also retrieved. 
 
After filtering non-sarcoma specific expression genes 
(No expression was detected in both experimental 
group and control group), the edgeR method was  
used to identify differentially expressed mRNAs, 
lncRNAs, and miRNAs. With a false discovery rate 
(FDR) P value < 0.05, the log(fold-change) > 1.0 or 
 < -1.0 was defined a downregulated or upregulated 
gene, respectively. 
 
Construction of the ceRNA network 
 
Before primary statistical analysis, the miRNA–mRNA 
interaction information based on experimental 
verification was download from miRTarBase (http:// 
mirtarbase.mbc.nctu.edu.tw/) [41] and while lncRNA–
miRNA interaction information was download from 
lncbase v.2 Experimental Module (http://carolina. 
imis.athena-innovation.gr/diana_tools/web/index.php?r= 
lncbasev2%2Findex-experimental) [42]. Then, miRNAs 
regulated both lncRNAs and mRNAs showing significant 
results in hypergeometric testing and correlation analysis 
were selected for construction of the ceRNA network 
using Cytoscape v.3.5.1 [43]. 
 
Survival analysis and nomograms of key members in 
the ceRNA network 
 
Kaplan–Meier survival analysis and Cox proportional 
hazards model were generated to identify the prognostic 
value of all biomarkers. All significant biomarkers were 
integrated into the Cox model and the Lasso regression 
was performed to ensure that the multifactor models were 
not overfitting. Eventually, we built a nomogram based 
on the multivariable models to predict the prognosis of 
patients with sarcomas. The calibration curves and 
receiver operating characteristic curves (ROC) were 
utilized to assess the discrimination and accuracy of the 
nomogram. 

CIBERSORT estimation 
 
In order to further explore the cytological causes of 
sarcoma-recurrence and molecular mechanism of the 
vital biomarkers in ceRNA network to some extent, the 
CIBERSORT algorithm [44] was used to estimate the 
fraction of 22 immune cell types in the primary and local 
recurrent sarcomas. Samples with a CIBERSORT output 
of P < 0.05 were considered to be eligible for further 
analysis. The Wilcoxon rank-sum test was implemented 
to find the immune cells, which had significant 
differences in the proportion between recurrent and 
primary tumors. Besides, Cox regression and Kaplan–
Meier method were also applied to assess the relationship 
between the proportion of immune cells and sarcoma 
patients’ overall survival. Pearson correlation analysis 
was done for each prognostic biomarker in the ceRNA 
network and the proportion of each survival related 
immune cell. Finally, immune cells and biomarkers that 
were significantly associated with overall survival were 
incorporated into a nomogram. 
 
Immunohistochemistry (IHC) 
 
Paraffin-embedded, formalin-fixed LMS and LPS 
specimens were used for IHC. Sections were incubated 
overnight in a humidified container at 4°C with the 
primary antibodies of MUC1 (1:100, ab109185; 
Abcam) and CD11c (1:100, ab52632, Abcam). After 
three times washing, tissue sections were incubated 
with the secondary antibody conjugated with 
streptavidin–horseradish peroxidases for 1 h at room 
temperature. The slides were stained with 3, 3-
diaminobenzidine tetrahydrochloride (DAB) and the 
nuclei were counterstained with hematoxylin. 
Immunostaining on each slide was assessed by 
experienced pathologists to examine the percentage of 
MUC1 or CD11c positive tumor cells and presented as 
histochemistry score (H-score). H-score = Σpi(i+1) 
where i is the intensity score and pi is the percent of 
the cells with that intensity. 
 
Multidimensional validation 
 
To minimize bias, multiple databases including the 
Gene Expression Omnibus (GEO) (ID: GSE21050 
[45], GSE21122 [45], GSE6481 [46]. These three data 
sets were used for multidimensional external 
validation in the online database), Oncomine [47], 
Cancer Cell Line Encyclopedia (CCLE) [48], 
cBioPortal for Cancer Genomics [49, 50] Genotype-
Tissue Expression (GTEx) [51], UCSC Treehouse 
Childhood Cancer Initiative [52], The Human Protein 
Atlas [53], CellMarker [55] were used to detect gene 
and protein expression levels of key biomarkers at the 
tissue and cellular levels. 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental
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Statistical analysis 
 
Only two-sided P value < 0.05 was thought to be statistical 
significance. All statistical analyses were enforced with R 
version 3.5.1 software (Institute for Statistics and 
Mathematics, Vienna, Austria; https://www.r-project.org) 
(Package: GDCRNATools [54], edgeR, ggplot2, rms, 
glmnet, preprocessCore, survminer, timeROC). 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. The Kaplan–Meier survival curve revealed that recurrence was a significant risk indicator for poor 
prognosis of STSs (P = 0.001). Why is there a higher survival probability in first 10 months in those cases with STS recurrence? In general, 
solid tumor recurrence refers that the tumor reappears during the follow-up of patients after the primary operation. So, what this means is 
that patients who have had a recurrence of soft tissue sarcomas have had the primary operation. By reanalysis of the data, we found that 
most of the patients with survival time less than 10 months had tumor-bearing status (survive with tumor). Therefore, we speculated that 
these patients might have no chance to perform the primary operation, leading to poor prognosis. Tumor recurrence cannot happen to a 
patient who do not have the primary operation. Hence the phenomenon. 
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Supplementary Figure 2. The results of multivariable model and the nomogram integrating immune cells and biomarkers 
significantly associated with overall survival. Key members of the ceRNA network and immune cells were integrated into one Cox 
regression model (A) After the screening process of the Lasso regression, the results suggested that the model was not overfitting (B, C). The 
calibration curve and the ROC demonstrated good discrimination and concordance of the multivariable model (AUC of 3-year survival: 0.799; 
AUC of 5-year survival: 0.824) (D, F). The nomogram was constructed based on the multivariable model (E). 
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Supplementary Figure 3. The result of the Wilcoxon rank-sum test suggesting that the hsa-miR-1226-3p expression level is 
significant differences between the primary sarcoma tissues of patients with and without recurrence (P = 0.015). 
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Supplementary Figure 4. The results of the immunohistochemistry (IHC) stain showing that MUC1 and CD11c were 
correlated with STS recurrence and predominantly localized in the membrane and extracellular matrix of leiomyosarcoma 
and liposarcoma cells. MUC1 (A) and CD11c (B) protein was predominantly localized in the membrane and extracellular matrix of LMS. 
MUC1 (C) and CD11c (D) protein was predominantly localized in the membrane and extracellular matrix of LPS. Abbreviations: LMS: 
leiomyosarcoma; LPS: liposarcoma. 
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Supplementary Figure 5. Validation of MUC1 (A, B) and CD11c (C, D) on a transcriptional level in multiple cancer types and multiple 
studies using the Oncomine database. 
 

 
 

Supplementary Figure 6. The expression levels of MUC1 and CD11c in various soft tumor cell lines in Cancer Cell Line Encyclopedia (CCLE). 
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Supplementary Figure 7. Integrative analysis of genomics and clinical profiles using the cBioPortal database. (A) Alteration 
frequency of MUC1 and CD11c; (B, C) MUC1 and CD11c were highly expressed in primary STS compared to some other types of cancer;  
(D) The co-expression between MUC1 and CD11c. (E) The Protein-Protein Interaction (PPI) network of MUC1 and CD11c. 
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Supplementary Figure 8. Differential gene analysis heatmap of (A) MUC1 and CD11c and volcano plot (B) using data from the GTEx 
database and the Treehouse database. 
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Supplementary Figure 9. Validation of MUC1 (Adipose: A–D; Smooth muscle: E–H) and CD11c (Adipose: I–L; Smooth muscle: M–P) on a 
translational level using the Human Protein Atlas database. The results of data mining of The Human Protein Atlas showed that the protein 
MUC1 and CD11c were almost not detected in normal adipose tissue and smooth muscle tissue. 
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Supplementary Figure 10. Evaluation prognostic value and relationship with MUC1 of all specific surface markers of 
dendritic cell. On the basis of detecting CD11c, we determined all surface markers of dendritic cell reported for more than 5 times in 
previous studies by CellMarker database. After removing nonspecific surface markers, CD11b, CD197, CD205, CD207, CD209, CD273, CD304, 
CD40, CD49d, CD80, CD83, CD86 were integrated into further validation. (A, B) All surface markers of dendritic cell in CellMarker database; 
(C) Heatmap of twelve markers and MUC1; (D) Co-expression heatmap of twelve markers and MUC1; (E–P) Kaplan–Meier survival curves of 
twelve markers. 
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Supplementary Tables 
 
 
Supplementary Table 1. Baseline information of 261 patients diagnosed with soft tissue sarcoma. 

Variables Total Patients (N = 261) 
Age, years  

Mean ± SD 60.87 ± 14.62 
Gender  

Female 142 (54.41%) 
Male 119 (45.59%) 

Race  
Asian 6 (2.30%) 
Black or African American 18 (6.90%) 
White 228 (87.36%) 
Unknown 9 (3.44%) 

Histological subtype  
Dedifferentiated Liposarcoma 59 (22.61%) 
Leiomyosarcoma 105 (40.23%) 
Undifferentiated Pleomorphic Sarcoma 21 (8.05%) 
Malignant Peripheral Nerve Sheath Tumors 9 (3.44%) 
Myxofibrosarcoma 25 (9.58%) 
Undifferentiated Pleomorphic Sarcoma 29 (11.11%) 
Synovial Sarcoma 10 (3.83%) 
Desmoid Tumor 2 (0.77%) 
Undifferentiated Pleomorphic Sarcoma With Giant Cells 1 (0.38%) 

Recurrence  
Yes 29 (11.11%) 
No 144 (55.17%) 
Unknown 88 (33.72%) 

Abbreviations: SD: Standard deviation. 
 

Supplementary Table 2. The list of top 10 downregulated and top 10 upregulated genes in differential gene analysis. 

Gene Type LogFC P value FDR 
CEND1 protein coding -4.28656 2.09E-07 0.000116 
CHRDL2 protein coding -4.09075 7.90E-05 0.010565 
PGR protein coding -4.0102 5.88E-05 0.008329 
S100A3 protein coding -3.96647 9.09E-11 1.88E-07 
NT5M protein coding -3.96283 2.10E-14 1.52E-10 
PODXL protein coding -3.90095 1.32E-20 1.91E-16 
ESR1 protein coding -3.60849 1.85E-05 0.003478 
CAMK2N2 protein coding -3.47569 1.73E-07 0.000104 
AC105277.1 long non coding -3.4071 2.01E-09 2.90E-06 
RHOBTB3 protein coding 3.825303 0.000402 0.035656 
PDGFRB protein coding 3.196464 0.000375 0.034536 
MTSS1 protein coding 2.728508 0.00025 0.025802 
HMGN1 protein coding 1.728704 0.000592 0.048322 
SNX14 protein coding 1.340009 8.38E-06 0.001893 
RELA protein coding -0.78947 0.000562 0.046364 
ARMC10 protein coding -0.94507 0.000287 0.028824 
PDCD7 protein coding -0.95058 0.000204 0.022307 
ZNF3 protein coding -0.96601 0.000162 0.018492 
PMPCB protein coding -0.96741 2.15E-05 0.003875 

Abbreviations: FC: Fold change; FDR: False Discovery Rate. 


