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INTRODUCTION 
 
Cellular senescence is defined as the irreversible 
arrest of cell proliferation. In the 1960s, Hayflick  
et al. found that normal human diploid fibroblasts 
entered into an irreversible non-dividing state after a 
certain number of divisions, which was referred to as 
“Hayflick limit” [1]. Since then, multiple types of 
cellular senescence have been identified including 
replicative senescence, oncogene-induced senescence,  

 

DNA damage-induced senescence, oxidative stress-
induced senescence, chemotherapy-induced senescence, 
mitochondrial dysfunction-associated senescence, 
epigenetically induced senescence, paracrine senescence, 
wound healing and embryonic development related 
senescence [2]. However, whether all of those types of 
senescence model occur in vivo still remains unknown. 
 
In general, senescent cells are characterized by the 
enlarged cell size, increased lysosomal content and 
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ABSTRACT 
 
Cellular senescence is a well-established defensive mechanism for tumor suppression, and is also proposed 
to play a crucial role in embryonic development, wound repair, aging and age-related diseases. Senescent 
cell is characterized by the marked morphological changes and active metabolism along with a distinctive 
senescence associated secretion phenotype (SASP). Cellular senescence is triggered by multiple endogenous 
and exogenous stressors, which collectively induce three types of senescence. It is believed that senescence 
represents a programmed phenomenon to facilitate β cell functional maturation and, therefore, senescence 
has been suggested to be involved in β cell regeneration, insulin secretion and diabetes development. 
Nevertheless, despite past extensive studies, the exact impact of senescence on β cell viability, regeneration 
and functionality, and its relevance to the development of diabetes are yet to be fully addressed. In this 
review, we will summarize the recent progress in β cell senescence, through which we intend to spark more 
instructive discussion and perspective with regard to the mechanisms underlying β cell senescence and their 
links to the pathogenesis of diabetes and the development of therapeutic strategies. 
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upregulated β-galactosidase activity at nearly pH 7.0 [3]. 
Cellular senescence is established and maintained by at 
least two major tumor suppressor pathways [4], the 
p53/p21 and the p16Ink4a/retinoblastoma protein (Rb) axes. 
It is believed that the p53/p21 axis initiates the senescence 
process, while the p16Ink4a activation maintains the 
senescence state [5]. In cultured cells, senescence occurs 
as a defensive mechanism to resolve cellular insults, 
leading to transient cell cycle arrest. In this case, cells can 
re-enter cell cycle once the stress is resolved. Prolonged 
cellular stress (> 4 days), however, spurs permanent 
senescence [6]. Other than ceased cell division, senescent 
cells also display widespread changes in chromatin 
structure (referred to as senescence associated 
heterochromatin foci, SAHF) and gene expression profiles 
[7], which synergistically lead to highly active cellular 
metabolism and massive secretion of cytokines (TGF-β, 
IL-1a, -1β and -6), chemokines (IL-8, CXCL1), growth 
factors (FGF, HGF) and proteases (MMP-1, -3, and -13), 
collectively defined as senescence associated secretory 
phenotypes (SASP) [3, 8]. Interestingly, senescent cells 
manifest loss of Lamin B1 expression, but the related 
mechanism and significance are yet to be explored [9]. 
SASP is a characteristic feature shared by almost all 
senescent cells, and it is mainly initiated by the NF-κB 
and p38MAPK pathways, while maintained by IL-1α  
in an autocrine manner [10]. The composition of the 
senescence-associated secretome varies depending on  
the time spent in senescence, the senescence inducer  
and the cell type [11]. Two main distinct secretomes have 
been described, and the NOTCH1 signaling plays a 
pivotal role in switching secretome composition [12]. 
During the early stage of senescence, NOTCH1 activity 
fluctuates dynamically, which triggers a TGF-β rich 
secretome to suppresses the senescence-associated pro-
inflammatory secretome by inhibiting C/EBPβ signaling. 
However, sustained senescence endows NOTCH1-driven 
TGF-β to repress NOTCH1 signaling transduction, which 
in turn contributes to the second wave of senescence 
induction, thereby changing the TGF-β rich secretome 
into a pro-inflammatory-centered one [12, 13].  
 
It is believed that senescence represents a programmed 
phenomenon that facilitates mammalian embryonic 
development and β cell functional maturation after birth 
[14, 15]. A couple of senescence hallmarks including 
p16Ink4a, p19Arf and p15Ink4b increase in pancreatic β 
cells during aging, along with decreased capability of 
regeneration [16–18]. A large body of work has focused 
on the impact of senescent β cell accumulation on the 
pathogenesis of type 1 diabetes (T1D) and progression 
of age-related type 2 diabetes (T2D) [19, 20]. These 
studies open up new perspectives to understand aging 
and diabetes development, which would promote the 
exploitation of promising therapeutic strategies. In this 
review, we summarize the recent progress in aging-, and 

stress-induced β cell senescence, and its impact on β 
cell viability, insulin secretion and regeneration, as well 
as discuss its relevance to the development of diabetes 
mellitus. 
 
CHARACTERISTICS OF β CELL 
SENESCENCE  
 
Studies in rodents and humans have revealed that 
recovery and plasticity of islet cells decrease in mice 
once they reached 1-year of age, and human β cell 
population is established by the age of 20 [21] except 
for the existence of a small population of “virgin β 
cell”, which is functionally immature [22]. Those facts 
are reminiscent of natural β cell senescence with age. 
Generally, senescent β cells exhibit larger cell size 
(~14um) than the normal (~12um), and can be featured 
by the upregulated expression of Cdkn2a/1a (encoding 
p16Ink4a and p21, respectively) and anti-apoptotic 
molecules (e.g., Bcl-2, -xl and -w) along with 
senescence associated β-galactosidase staining [19, 20]. 
Specific composition of senescence-associated 
secretome helps to distinguish β cell senescence with 
senescence in other cell types. Of note, distinctive 
features and signatures of β cell senescence exist in 
T1D and T2D disease models in multiple ways, 
indicating that β cell senescence is dynamically 
regulated under different cellular contexts.  
 
Aging and stress (e.g., hyperglycemia, viral insult, 
inflammatory response and insulin resistance) can be 
contributors to β cell senescence. Studies have 
demonstrated that aging causes massive changes of β 
cell chromatin accessibility, leading to significant 
alterations in gene expression profile [23]. Nevertheless, 
the association of senescence phenotype with β cell 
epigenetic and transcriptomic changes during aging still 
need further exploration. Indeed, single cell RNA-seq 
analysis demonstrated that aged human pancreas 
manifests enhanced transcriptional noise, somatic 
mutations and senescence signatures [24]. Emerging 
evidence shows that sources and levels of DNA damage 
increase with age along with decreased DNA repair 
capacity [25], predisposing β cells to cell cycle arrest 
and DNA damage response (DDR) associated with 
senescence. Cell replication-related telomere erosion is 
known to directly associate with lifespan limitation 
[26]. There are data supporting that short telomere 
impairs β cell function and participates in β cell 
destruction in the late stage of T2D [27]. Furthermore, 
proteomic analysis reveals that β cells manifest a 
significant discrepancy in terms of the expression of 
aging markers (e.g., IGF1R) between islets even within 
the same islets, suggesting that β cells display a 
remarkable aging heterogeneity [28]. Hyperglycemia is 
another trigger of β cell senescence. β cells maintain 
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blood glucose homeostasis by controlling appropriate 
insulin secretion according to the real-time changes of 
blood glucose levels [29]. Sustained hyperglycemia, 
however, would induce β cell senescence via multiple 
possible mechanisms, such as apoptosis signaling-
regulating kinase 1 activation [30], p38 mitogen-
activated protein kinase activation [31], and “glycolytic 
overload” (characterized by the increased metabolic 
flux through glycolysis in hyperglycemia and the 
decreased proteolysis of hexokinase) mediated 
mitochondrial dysfunction [32]. Importantly, unlike 
other cell types, β cells manifest relatively lower 
antioxidant capability and, as a result, they are more 
susceptible to oxidative stress and endoplasmic 
reticulum (ER) stress [33–35]. Excessive reactive 
oxygen species (ROS) production impairs 
mitochondrial dynamics (fission and fusion), leading to 
defective electron transport chain, bioenergetics 
imbalance, and altered mitochondria calcium 
homeostasis, which then trigger β cell senescence  
[36–38]. It is noteworthy that mitochondria-related 
senescence is featured by the lack of IL1-arm cytokines, 
due to high AMP to ATP ratio in the mitochondria 
coupled with highly activated AMPK, which in turn 
represses the initiation of mTORC1 and IL1-arm 
cytokine responses [39]. This feature, however, has not 
been validated in β cells.  
 
Increased protein synthesis load, oxidative stress, gene 
mutations, glucolipotoxicity, can cause ER tress in β 
cells. The activation of the three branches of unfolded 
protein response accelerates cellular senescence in non-
β cell types, and the ER chaperone, Bip, has a possible 
central role in senescence [38, 40]. Therefore, it is quite 
possible that ER stress actively participates in β cell 
senescence despite the unclear molecular mechanisms. 
Virus, especially enteroviruses, is one of the origins of β 
cell DNA damage [41]. Indeed, recent studies 
demonstrated that islets with infiltrated immune cells 
are characterized by the increased frequency of DDR 
and enhanced expression of senescence markers in 
newly diagnosed T1D patients and rodent T1D model 
[42], indicating that DNA damage-induced β cell 
senescence may play a critical role in the early stage of 
autoimmune diabetes. Up to now, however, the 
contribution of virus insult to β cell senescence and 
T1D progression remains to be described. Nevertheless, 
the existing data support that autoimmune response in 
T1D and chronic inflammation in T2D are suspect 
culprits of β cell senescence, possibly through ER 
stress, DNA damage and other signaling pathways. 
While systemic insulin resistance accelerates β cell 
senescence during aging, the involved molecular 
mechanisms, however, are not fully understood. 
Collectively, during the course of aging and diabetes 
progression, multiple triggers and signaling pathways 

collaborate and twist together to induce β cell 
senescence, leading to changes in β cell functions and 
systemic metabolic homeostasis in cell-autonomous and 
noncell-autonomous manners. 
 
THE EFFECT OF SENESCENCE ON β CELL 
REGENERATION  
 
β cell cycling is driven by CyclinD1/2-CDK4 activity 
and downregulated by CDK inhibitor p16Ink4a. It has 
proven that β cell expansion is an age-dependent 
process, and β cell replication is much more robust in 
young mice than that in old animals [43]. Once p16Ink4a 
is specifically expressed, pancreatic β cells show 
obvious senescence phenotype along with compromised 
cell regeneration [17]. Since p16Ink4a transcript is 
enriched in purified islets when compared with exocrine 
tissues, supporting that p16Ink4a serves as a crucial 
checkpoint in β cell senescence as well as proliferation. 
Conversely, p16Ink4a ablation enhances β cell 
proliferation, especially in the case of β cells following 
toxic insult [16]. It has been shown that two chromatin-
regulating polycomb group proteins, Bmi1 and Ezh2, 
are related to age dependent high levels of p16Ink4a 
expression in β cells, suggesting that epigenetic 
regulation could be involved in senescence-mediated 
aging and type 2 diabetes [44, 45]. Indeed, mice 
deficient in pituitary tumor transforming gene (PTTG), 
which encodes a securing protein that regulates 
chromosome separation, go through evident senescence 
and apoptosis in islet β cells at 2-month-old [46]. 
Enhanced p21 expression in β cells following PTTG 
knockout could be one of the contributors to senescent 
phenotype, because p21 deletion only partially rescued 
mice from diabetes resulted from severe β cell 
diminishment. Those discoveries support the notion that 
β cell senescence can be secondary to DNA damage 
associated gene activation, and furthermore, additional 
PTTG downstream genes may also synergize with p21 
attributing to β cell senescence and cycling arrest.  
 
To develop the strategies for β cell expansion against 
aging, a great deal of research effort has been focused 
on the regulation of β cell regeneration/senescence. 
Platelet-derived growth factor (PDGFR) signaling has 
been characterized to play a critical role in cellular 
proliferation and development. PDGFR losses its 
expression with age both in mouse and human islet β 
cells along with deceased EZH2 expression [45]. 
Conditional over-activation of PDGFRa in β cells 
enhances neonatal β cell propagation and regeneration 
in adult islets [47]. Juvenile human islets rather than 
adult islets exposed to PDGF-AA, a PDGF-A agonist, 
rejuvenate β cell proliferation. Similarly, exendin-4, an 
agonist of the glucagon like peptide 1 receptor (GLP-
1R), successfully stimulates juvenile human β cell 
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expansion but fails in adult islet β cells [48]. These 
findings are expected, because aging process causes 
overall changes of chromatin accessibility and gene 
expression profile toward the activation of metabolic 
regulator and suppression of proliferation program, 
which is a reminiscent of irreversibility of normal aging 
(Figure 1). 
 
THE INFLUENCES OF β CELL 
SENESCENCE IN INSULIN SECRETION  
 
The implication of aging in the regulation of insulin 
synthesis/secretion and glucose homeostasis had been 
recognized back to 1980s. By utilizing Fischer rat, an 
established aging animal model, Wang et al. found that 
aging has no effect on preproinsulin mRNA 
transcription, but impairs nearly half amount of 
proinsulin synthesis upon high glucose stimulation [49]. 
Undoubtedly, decreased proinsulin synthesis would lead 
to the reduction of newly formed insulin secretion. 
Given that pancreatic weight, total insulin content, islet 
size and mean insulin content per islet are unchanged, 
the impairments in the signal transduction following 
glucose stimulation during aging process could be a 
crucial culprit. Indeed, studies with time-dependent 
potentiation (TDP) of insulin release in aged rats 
confirmed that β cells lose sensitivity to secretagogues 
during aging process [50]. However, the exact 
mechanisms had not been dissected at that time. 
Actually, in a β cell specific p16Ink4a overexpression 
mouse model, ectopic p16Ink4a expression improved 
glucose stimulated insulin secretion response apart from 
cell cycle arresting [17]. Although this finding is 
consistent with previous data demonstrating that  
 

 
 

Figure 1. Summary of molecular pathways involved in β 
cell regeneration. Exendin-4 agonizes GLP-1R signaling, followed 
by the activation of NFAT and the entry of cell cycling. P38 MAPK 
signals activate BMI1 and inhibit p16Ink4a. PDGFRa transduces 
proliferative signals to EZH2, thereby attenuating p16Ink4a activity 
while enhancing p19Arf activation. PTTG partially promotes β cell 
proliferation via p21 inhibition. 

mitochondrial metabolism and insulin exocytosis relevant 
to β cell functions are improved during aging process, but 
contradicts to other findings [23, 49, 50]. The following 
possible reasons may explain the above discrepancies. On 
one hand, transgenic p16Ink4a expression in β cell may 
only simulate one facet of cellular senescence to partially 
reflect β cell senescence phenotype, but sustained 
decrease of β cell function in elderly individuals cannot 
be neglected [50]. On the other hand, insulin synthesis 
and secretion in aged subjects are likely modulated by 
multiple factors such as senescence marker protein-30 
(SMP-30), an androgen independent factor involving in 
Vitamin C synthesis that decreases during aging process 
to impair GSIS in elders [51]. Furthermore, elevated 
plasma level of deoxysphingolipid is responsible for the 
senescent characteristics and compromised GSIS both in 
INS-1 cells and primary islets [52]. Another noteworthy 
phenomenon is that senescent β cells manifest higher 
basal insulin level (2.8mM glucose), which is similar to 
the immature β cell phenotype. This puzzle may be 
partially explained by NAD(P)H fluorescence lifetime 
imaging (FLIM) implication. Aging causes β cell 
mitochondria dysfunction mainly through complex I/II 
disorder followed by reduction of KATP channel activity 
and increase of Ca2+ inflowing that occur as a 
compensatory strategy, thereby increasing insulin 
exocytosis [53]. 
 
More recently, studies indicated that β cell senescence 
can be affected by proximal pancreatic cells namely 
acinar cells and other hormonal factors. It was noted that 
the expression of arginase II in acinar cells increases 
during aging process, and enhanced TNF-α release from 
acinar cells induces β cell dysfunction and apoptosis [38]. 
Since β cell senescence can be disseminated by 
surrounding β cells, a crosstalk may exist between β cells 
and other types of pancreatic cells, thereby regulating β 
cell senescence. Indeed, thyroid hormone (T3) spurs  
β cell functional maturation through MafA induction,  
and enhances cell senescence by directly activating its 
target p16Ink4a [54] through TH receptor B (THRB)  
and TH receptor A (THRA). Arum et al. demonstrated 
that mice deficient in growth hormone receptor 
(GHR)/binding protein gene display hypoinsulinemia, 
higher sensitivity to insulin and prolonged lifespan even 
though they are smaller in size [55], while insertion of 
Igf1 gene under the control of a rat insulin promoter 
(RIP) can reverse the above phenotypes, supporting that 
IGF1R is a new aging marker [28, 55]. Consistently, 
transgenic Igf1 expression in conventional GHR 
knockout mice highlights that insulin sensitivity is 
important for longevity, and the pace of aging can 
actually be hormonally regulated [56]. (Figure 2) 
 
It would be necessary to keep in mind that several 
essential questions need to be fully addressed to dissect 
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the association between senescence and β cell function 
thoroughly. First, how does senescence regulate 
proinsulin synthesis in β cells? second, how many 
glucose responding proteins are subject to β cell 
senescence? and third, how does the enhanced basal 
insulin secretion occur and what is the relevance to 
aging or diabetes mellitus?  
 
THE RELEVANCE OF β CELL SENESCENCE 
TO DIABETES DEVELOPMENT 
 
T1D is featured by the progressive β cell destruction 
from autoimmune response. Recently, Thompson et al. 
demonstrated that a subpopulation of senescent β cells 
exists in both NOD mice and human T1D patients, and 
they actively recruit autoimmune cells, indicating a 
pivotal role of β cell senescence in T1D progression 
[20]. Specifically, in T1D-prone NOD mice, the 
autoimmune cells initiate peri-insulitis (the recruitment 
of autoreactive immune cells into the periphery of islets) 
with minor β cell destruction from 3-4 weeks to 8-10 
weeks, while the disease progresses after 10 weeks, 
which causes invasive insulitis accompanied by the 
massive β cell destruction and severe hyperglycemia 
[57]. The single β cell transcription profile comparison 
between the two stages of T1D reveals that senescent β 
cells accumulate with disease progression, exhibit DNA 
damage and stress-induced senescence phenotypes. The 
senescent cells are conspicuous due to the upregulated 
senescent markers consist of p16Ink4a, p21, Ser139-
phosphorylated histone H2A.X (γ-H2A.X), the increased 
 

 
 

Figure 2. Summary of the regulation of insulin secretion 
during the course of aging process. Thyroid hormone (T3) 
promotes β cell functional maturation via the induction of MafA 
expression along with p16Ink4a activation at the early stage of aging. 
During the progression of aging process, impaired mitochondria 
function causes KATP channel shutting down and Ca2+ influx at the 
same time, thereby enhancing insulin secretion in a short time 
frame. In contrast, during the advanced aging process, β cells 
manifest diminished expression of senescence marker protein-30 
(SMP-30) along with deoxysphingolipid accumulation, thereby 
impeding insulin secretion through unknown mechanisms. 

SASP markers including Cxcl10, IL-6, Mmp-2 and 
Flnb, as well as specific secretome (including IL-6, 
Igfbp3 and Serpine1). Notably, the SASP factors 
potently enforce the paracrine effect of senescence and 
the chemotaxis of immune cells. When translating those 
findings to human T1D cases, senescent human β cells 
display some distinctive characteristics. Firstly, in 
human β cells, p16Ink4a is more likely to be an age-
related senescence marker rather a T1D-related one. In 
contrast, p21 expression drastically increases in 
autoantibody-positive nondiabetic donors and newly 
diagnosed T1D donors, which renders p21 to be a 
human T1D-related senescence marker. Secondly, the 
senescent secretome in human T1D is featured by IL-6 
and Serpine1 expression. Lastly, heterogeneity among 
islets and individuals is obvious in terms of the 
aforementioned senescent marker expression levels. The 
senescent NOD β cells highly express Bcl-2, but the 
anti-apoptotic feature in human senescent β cells, 
however, remains undefined due to unknown 
limitations. While human T1D onset can take a couple 
of years or decades, stress-induced, instead of age-
related senescence, take the primary responsibility for 
disease progression. There is strong evidence that 
autonomous β cell DDR along with the presence of the 
hallmarks of senescence can play a causal role in 
autoimmune initiation and progression during the 
course of T1D development [42]. However, β cell DNA 
damage caused by autoimmunity does not involve in 
this process as the major senescent β cell in NOD islets 
are not surrounded by immune cells.  
 
T2D is an aging-associated disease characterized by the 
systemic insulin resistance and metabolic dysfunction in 
multiple organs and tissues, which includes two stages, 
the pre-diabetes stage and the early-stage diabetes. The 
pre-diabetes stage can sustain for many years attributing 
to β cell compensation (i.e., increased β cell mass and 
workload) till β cell compensation failure, which leads to 
the second stage featured by β cell death, decreased 
insulin levels in the circulation and prolonged 
hyperglycemia [58]. The boundary of the two stages, 
however, is difficult to define since most patients remain 
in a grey area of diagnosis, where diet changes and 
antidiabetic drugs are sufficient to maintain 
normoglycemia. The connection between β cell 
senescence and T2D has been established for several 
years [59]. To understand the effects of β cell senescence 
on T2D pathogenesis, aging and stress factors  
including hyperglycemia, hyperlipidemia and chronic 
inflammation, should be taken into account. Aged β cells 
accumulate with age, which exhibit impaired insulin 
secretion response to glucose challenges. It was noted 
that β cells in aged C57BL/6 mice display a distinctive 
transcription profile characterized by the downregulation 
of β cell identity genes (including Insulin1, MafA, 
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Nkx6.1, and Pdx1), upregulation of senescence markers 
(including Cav1, Cdkn1a, Id2, Makp2k1, Prkcd, Tbx2 
and Tbx3), SASP genes (e.g., Ccl2, Cd68, Igfbp3, Il6, 
Tnf and Serpine1) and disallowed genes that are 
supposed to be repressed in β cells, such as Ldha and 
Catalase [19, 60]. Nevertheless, those mouse-derived 
data are only partially consistent with what found in 
aged human islets [28]. It is noteworthy that insulin 
resistance can exacerbate the senescent process in aged β 
cells [19]. However, unlike high-fat-diet induced 
senescence, β cell senescence induced by acute 
administration of S961, an insulin receptor antagonist, 
can be reversed once S961 is withdrawal [61]. Despite 
the unclear mechanisms, this finding indicates that β cell 
senescence can be reversed at early stage, and therefore, 
the impact of β cell senescence on clinical T2D 
progression could be much more complicated than what 
we thought. Indeed, in humans, the proportion of 
senescent β cells (characterized by the upregulation of 
CXCL10, CCL4, IL1A and IL6) substantially increased 
in aged subjects, and further increased in subjects with 
T2D. However, only two SASP factors (CCL4 and IL6) 
are detected in human T2D patients, left the impact of β 
cell senescence on human T2D progression an 
unfinished story [62]. Nevertheless, insulin resistance 
has been consistently found to be tightly associated with 
hyperglycemia, hyperlipidemia and chronic 
inflammation both in T2D patients and animals, and 
those factors are linked to the occurrence of β cell 
senescent phenotypes and SASP activities. In the pre-
diabetes stage, insulin-resistance-related high blood 
glucose, dyslipidemia and inflammation increase insulin 
demand, impelling the β cell expansion to secret more 
insulin [14]. β cell adaptive regeneration shortens 
telomere and activates DDR, followed by cellular 
senescence. On the other hand, paracrine senescence 
accelerates senescent β cell accumulation and promotes 
SASP activities, which in turn exacerbate systemic 
insulin resistance and enhance the loss of β cell 
compensation, coupled with the progression of pre-
diabetes to the early diabetes stage. However, it would 
be difficult to define in which diabetes stage that β cell 
senescence is more important, because of the vague 
boundary of the two stages and the prolonged timeframe 
of β cell senescence.  
 
Recently, Dooley et al. identified β cell variations in 
genes Xrcc4 and Glis3 in the NOD islets, both of which 
share links to T2D susceptibility [63, 64], supporting 
genetic predisposition of β cell senescence in diabetes 
risk [65]. Furthermore, SNPs adjacent to the CDKN2a/b 
gene have been identified and attested to associate with 
T2D in large GWAS studies [66]. These discoveries 
highlight that β cell senescence related genetic defects 
may increase the susceptibility of T1D and T2D. 
Collectively, β cell senescence is a common contributor 

to T1D and aging-related T2D. It seems that DDR is a 
common trigger of β cell senescence both in T1D and 
aging-associated T2D. However, whether this pathway is 
the most essential one to drive β cell senescence and 
diabetes onset remains to be further explored. Obviously, 
distinctive origins of β cell senescence delineate different 
senescence signatures and secretomes, suggesting 
distinctive senescent mechanisms and SASP effects on 
T1D and T2D. Since cellular senescence is a dynamic 
process varying with cell type, senescence inducer and 
time of duration, those properties in β cell senescence, 
however, have not been fully described in present studies. 
 
CONCLUDING REMARKS AND FUTURE 
DIRECTIONS 
 
Cellular senescence is certainly crucial to growth and 
development at early stage of life. Specifically, 
senescence promotes β cell functional maturation 
including increased glucose uptake, mitochondrial 
oxidation capability and mitochondria number. 
However, sustained senescence is associated with aging-
related lifespan limitation and disease development. β 
cell senescence during aging impairs the expression of 
genes relevant to β cell identity and cellular functions. 
Furthermore, SASP-derived cytokines could trigger 
inflammatory response, which renders β cell status even 
worse. Although the established mouse model with 
p16Ink4a overexpression in around 35% of β cells largely 
resembles the phenotypes observed in normal aging 
mice, but some discrepancies are noted. For example, 
aged mice show impaired response to glucose 
fluctuations, whereas p16Ink4a overexpression merely 
improves high glucose stimulated insulin secretion. 
Therefore, cellular senescence is a more complicated 
entity involving multiple molecules and signaling 
pathways [9]. As such, p16Ink4a overexpressing cells just 
manifest a part of senescence phenotype, but lack of 
other upstream/downstream signals and cellular 
alterations. Particularly, aged human islets display an 
age dependent decline in the coordination of Ca2+ 
dynamics, gap junction coupling and insulin secretion 
[67], and p16Ink4a mediated improvement of GSIS does 
not seem to be durable, because deteriorated glucose 
tolerance is noted once induced p16Ink4a expression lasts 
for 5-month.  
 
Studies in a genetic senescence activation mouse model 
revealed that prolonged β cell senescence deteriorates 
cellular function followed by β cell exhaustion and β cell 
death no matter what type of cell death it is [17]. 
Furthermore, during the course of natural aging process, 
islet cells from both aged human and rat are sensitive to 
glucose induced β cell apoptosis confirmed by TUNEL 
staining [68]. Given that senescent cells are resistant to 
apoptosis, the effect of senescent cells is mostly 
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dependent on their SASP activities including paracrine 
senescence and chemotaxis, which may explain β cell 
destruction and decreased β cell mass associated 
hyperglycemia. A critical question is whether targeted 
clearance of senescent cells would attenuate diabetes 
development. To address this question, large number of 
pharmacological compounds (defined as “senolytics”) 
have been identified to specifically induce senescent cell 
death [2]. Those senolytic drugs are aimed at combating 
some chronic diseases (e.g., diabetes, neurodegenerative 
diseases) or extending lifespan, even though with 
possible unclear side effects [69–74]. In this case, the 
effect of various senolytic chemicals have been 
exploited intensively on multiple disease models 
including T1D and T2D [19, 20, 75]. Specifically, 
senolytic induction of senescent β cells by two BH3 
mimetics, ABT-737 (inhibits Bcl-2, Bcl-xl and Bcl-w) 
[76] and ABT-199 (a FDA-approved drug which inhibits 
Bcl-2 specifically) [77], effectively halts T1D 
development in NOD mice [20]. Similarly, ABT-263 
reverses T2D outcomes by improving β cell function and 
identity [19, 78]. In consideration of the pros and cons of 
these senolytic drugs on trial, next generations of potent 
senolytic compounds targeting diabetes with minor side 
effects should be developed urgently based on β cell 
senescence and SASP properties. Encouragingly, several 
approved antidiabetic drugs actually exhibit anti-
senescence effect to some extents. For example, 
metformin has now been tested in the Targeting Aging 
with Metformin trials as a good regimen against aging 
and age-related diseases [79–82]. Since calorie 
restriction improves longevity [83, 84], and metformin 
treatment just mimics dietary restriction, which highly 
upregulates AMPK activity while inhibits mTORC1 
activity and NF-κB pathway, thereby modulating 
autophagy/senescence and ameliorating cardiovascular 
diseases [85, 86]. It has been noted that chronic low dose 
metformin treatment extends lifespan by increasing the 
nuclear accumulation of nuclear factor erythroid 2-
related factor 2 (Nrf2) to facilitate an array of 
expressions for antioxidant genes [60]. Additionally, 
dipeptidyl-peptidase 4 inhibitor and rosiglitazone also 
display plausible effects on ameliorating senescence in 
non-β cell types [87], unveiling novel molecular 
mechanisms in antidiabetic therapies. 
 
At present, several questions are still remained to be 
investigated in terms of the role of β cell senescence in 
diabetes pathogenesis. First, as β cell senescence has 
been associated with both T1D and T2D, detailed 
mechanistic studies are necessary to explain how β cell 
senescence affects diabetes development (e.g., the role 
of β cell senescence in the initiation and progression of 
diabetes). Second, previous studies suggested links 
between senescence and autophagy [88, 89] and cell 
reprogramming [90–92], but whether those links can 

also apply to β cells is yet to be clarified, especially in 
diabetic context. Third, the dynamic property of β cell 
senescence and senescence associated secretome still 
needs further exploration. Lastly, extensive assessments 
for the future of senolytic therapies against diabetes are 
still necessary before its application in clinical settings. 
In conclusion, we have summarized the recent progress 
in β cell senescence, through which we intend to spark 
more instructive discussion and perspective with regard 
to the mechanisms underlying β cell senescence and 
their links to the pathogenesis of diabetes and the 
development of therapeutic strategies. We believe that a 
comprehensive understanding of β cell senescence 
would provide great potential to the prevention and 
treatment of diabetes. 
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