
www.aging-us.com 9862 AGING 

 

INTRODUCTION 
 
Ventricular enlargement occurs in normal elders, 
patients with some neurodegenerative diseases, such as 
Alzheimer disease (AD) [1] and Parkinson’s disease 
(PD) [2], and patients with some psychiatric diseases,  

 

such as schizophrenia [3]. The rate of ventricular 
enlargement was suggested to be a sensitive marker of 
AD progression [4–6]. And it was increased in the 
progression from normal cognition to dementia [7]. 
Moreover, it was increased in PD with mild cognitive 
impairment (MCI), and it was suggested as a potential 
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ABSTRACT 
 
Ventricular enlargement occurs in several neurodegenerative and psychiatric diseases. A large genome-wide 
association study (GWAS) has identified seven loci associated with ventricular volume. The rate of ventricular 
enlargement increased in the progression of disease from normal cognition to dementia. Here, we aimed to use the 
rate of ventricular enlargement as an endophenotype for the development and progression of neurodegenerative 
diseases to discover more common genetic variants. We performed a GWAS of the rate of ventricular enlargement 
using 507 nondemented non-Hispanic white participants from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) cohort. Linear regression model was used to identify the association of the rate of ventricular enlargement 
with single nucleotide polymorphisms (SNPs) in PLINK software. The associations of genome-wide significant SNPs 
with other four phenotypes were further discussed. Two SNPs (rs11620312, P = 4.04×10−8; rs79174114,  
P = 4.28×10−8) within SIAH3 gene in linkage disequilibrium (LD) reached genome-wide significance for association 
with increased rate of ventricular enlargement. Some intergenic SNPs and SNPs within NKAIN2, TBC1D2, GALNT18, 
ABCC1 and SRCIN1 genes were identified as potential candidates. SIAH3 rs11620312-C carriers were associated 
with poor cognition and brain hypometabolism longitudinally. Our findings indicated that SIAH3 gene may have 
potential influence on the pathogenesis of neurodegenerative diseases. 
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marker for PD [8]. Although ventricular enlargement 
was usually thought as a symbol of brain atrophy, a  
few studies showed that it was independently heritable 
[9, 10]. Recently, a large genome-wide association study 
(GWAS) identified seven genetic loci associated with 
ventricular volume [11], but no GWAS focused on 
genetic risk loci associated with the rate of ventricular 
enlargement. 
 
The GWAS method has been used to discover genetic 
risk factors. Traditional case-control based GWAS may 
be confounded by preclinical status before onset of 
diseases, and the studies focused on genes associated 
with disease risk rather than with other aspects of 
diseases such as progression or biomarkers [12]. 
Endophenotypes are quantitative traits strongly 
associated with diseases that also share genetic 
architecture with diseases. Endophenotype-based GWAS 
can increase statistical power and avoid the limitations of 
case-control based GWAS [13, 14]. 
 
We hypothesized that some genetic loci may be involved 
in the pathogenesis of neurodegenerative diseases. Thus, 
to test this hypothesis and based on the role of the rate of 
ventricular enlargement in neurodegenerative diseases, 
we conducted a GWAS using the rate of ventricular 
enlargement as an endophenotype in Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) cohort to 
explore more genetic risk loci. 
 
RESULTS 
 
Demographics and the rate of ventricular 
enlargement 
 
In this study, a total of 507 nondemented non-Hispanic 
white participants [cognitively normal (CN) = 211, MCI 
= 339] whose data satisfied all quality control criteria 
from the ADNI cohort were included after quality 
control procedures. The details of demographic 
information and the endophenotype have been shown in 
Table 1. 
 
GWAS results 
 
After adjusting for age, gender, apolipoprotein E 
(APOE) ε4, total intracranial volume (ICV), magnetic 
resonance imaging (MRI) scanner type (1.5T versus 3T) 
at baseline and the first three principal components 
(PCs), the effect of population stratification was well 
controlled for (genomic inflation factor λ= 1.00, 
Supplementary Figure 2). Two single nucleotide 
polymorphisms (SNPs) (rs11620312, P = 4.04×10-8; 
rs79174114, P = 4.28×10-8) on chromosome 13 were 
found to have genome-wide significant associations 
with the rate of ventricular enlargement (Figure 1A and  

Table 1. Demographics and the endophenotype for 
the GWAS samples. 

 CN MCI Total 
Sample size, n 196 311 507 
Age, mean (SD), y 74.7(5.3) 72.0(7.3) 73.0(6.7) 
F, n (%) 99 (51.0) 115 (37.0) 214 (42.2) 
APOE ε4 carrier, % 26.5 46.3 38.7 
Ventricular enlargement 
rate, mean (SD) 

4.9×10−2 
(3.1×10−2) 

6.5×10−2 
(4.9×10−2) 

5.9×10−2 
(4.4×10−2) 

Abbreviations: GWAS: genome-wide association study; 
CN: cognitively normal; MCI: mild cognitive impairment; 
SD: standard deviation; F: female. 
 
Table 2). Rs11620312 and rs79174114 within the 
SIAH3 gene are in linkage disequilibrium (LD, r2 = 
0.96, D’ = 0.99) (Figure 1B), and after controlling for 
the rs11620312 genotype, no SNPs showed strong 
association with the rate of ventricular enlargement 
(Figure 1C). we regard the rs11620312 was index SNP. 
Carriers of the minor allele (C) of rs11620312 had 
increased rates of ventricular enlargement in all subjects 
(P = 3.26×10-7), CN group (P =1.23×10-4) and MCI 
group (P = 9.08×10-4) (Figure 2). Although there is no 
statistical significance, the minor allele (C) of 
rs11620312 and the minor allele (T) of rs79174114 may 
be associated with increased trend of SIAH3 expression 
in brain tissues according to preliminary data from the 
UKBEC database (Supplementary Figure 3). Suggestive 
associations of several SNPs with the rate of ventricular 
enlargement (P < 10-5) were also detected (Figure 1A 
and Table 2), including two other SNPs in SIAH3, eight 
intergenic SNPs and six SNPs within NKAIN2, 
TBC1D2, GALNT18, ABCC1, SRCIN1 genes. 
 
Association between rs11620312 and other 
phenotypes 
 
After correcting for multiple comparisons using the 
Bonferroni procedure, the minor allele (C) of 
rs11620312 was not associated with memory (MEM) 
(PBonf = 0.29), executive functioning (EF) (PBonf = 0.32), 
18F-fluorodeoxyglucose (FDG) metabolism (PBonf = 
0.06) and hippocampus volume (PBonf = 0.26) at baseline 
(Figure 3). However, it was correlated with accelerated 
rates of decline in EF (PBonf = 0.037) and FDG (PBonf = 
0.029) within 2 years (Figure 4), suggesting that the 
minor allele (C) of rs11620312 may be associated with 
accelerated cognitive decline and brain hypometabolism 
over time. 
 
DISCUSSION 
 
We identified two novel genome-wide significant SNPs 
in LD (rs11620312 and rs79174114, r2 > 0.8) within 
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SIAH3 gene and sixteen other suggestive loci (in 
NKAIN2, TBC1D2, GALNT18, ABCC1, SRCIN1 genes 
and intergenic region). Moreover, we found the minor 
allele (C) of rs11620312 may be associated with 
accelerated cognitive decline and brain hypometabolism 
over time. Our findings suggest that SIAH3 gene, as a 
novel genetic factor, may be involved in the pathogenesis 
of neurodegenerative diseases. 
 
SIAH3 (siah E3 ubiquitin protein ligase family member 
3) gene is located on chromosome 13, encoding a 
member of the seven in absentia (Sina) protein family 
[15]. Although its function was not completely clear, 
there were some reports found that the SIAH3 gene 
played a role in high Cd placentas [16], metastatic 

prostate tumors [15] and human gingiva following 
surgical wounding [17]. A study found that SIAH3 was 
localized to mitochondria and it could inhibit PINK1 
(PTEN-induced putative kinase 1) accumulation as a 
negative regulator after mitochondrial injury [18]. 
PINK1 plays an important role in mitochondrial 
autophagic pathway (mitophagy) by accumulating on 
the surface of the damaged mitochondrial outer 
membrane, as well as subsequently recruiting and 
activating Parkin [19]. It has been confirmed that 
PINK1/Parkin mitophagy was involved in the 
pathogenesis of PD [20]. Moreover, it was associated 
with other neurodegenerative diseases related to 
mitochondrial dysfunction, such as AD and multiple 
sclerosis (MS) [21–23]. 

 

 
 

Figure 1. Manhattan plot and regional association plots. (A) Manhattan plot for association with the rate of ventricular enlargement, 
after adjusting for age, gender, APOE ε4, ICV, MRI scanner type and the first three principal components. The red line is the genome-wide 
significant threshold at P = 5×10-8; the blue line is a suggestive threshold at P = 10-5. (B) Regional association plot for rs11620312 in the SIAH3 
gene on chromosome 13. (C) Regional association plot for the SIAH3 gene after controlling for rs11620312. No SNPs showed significant 
association after controlling for rs11620312, suggesting the associations were driven by rs11620312. Abbreviation: ICV = intracranial volume; 
MRI = magnetic resonance imaging; P = P value. 



www.aging-us.com  9865 AGING 

Table 2. Genome-wide significant and suggestive SNPs associated with the rate of ventricular enlargement. 

CHR SNP MA(MAF) GENE SNP type β P 

13 rs11620312 C (0.12) SIAH3 Intron 0.023 4.04×10-8 

13 rs79174114 T (0.11) SIAH3 Intron 0.023 4.28×10-8 
1 rs1885646 A (0.15) -- Intergenic 0.017 4.16×10-6 
3 rs9821691 G (0.43) -- Intergenic 0.013 2.14×10-6 
6 rs2626129 C (0.32) NKAIN2 Intron -0.015 3.67×10-6 
9 rs10985425 G (0.05) TBC1D2 Intron 0.018 3.95×10-6 
11 rs1994399 G (0.39) GALNT18 Intron 0.012 4.69×10-6 
13 rs11618124 T (0.33) SIAH3 Intron 0.016 1.68×10-6 
13 rs1998892 C (0.37) SIAH3 Intron 0.017 3.48×10-6 
14 rs8022233 T (0.42) -- Intergenic 0.012 9.57×10-6 
14 rs12434273 C (0.40) -- Intergenic 0.012 6.06×10-6 
14 rs12894449 G (0.48) -- Intergenic 0.013 3.24×10-6 
14 rs2998298 A (0.47) -- Intergenic 0.013 3.14×10-6 
14 rs2922629 T (0.30) -- Intergenic 0.012 6.80×10-6 
14 rs67783323 G (0.15) -- Intergenic 0.018 1.67×10-6 
16 rs4781701 C (0.13) ABCC1 Intron 0.015 8.67×10-6 
16 rs12922404 T (0.12) ABCC1 Intron 0.015 8.67×10-6 
17 rs2075051 T (0.32) SRCIN1 Intron 0.012 9.32×10-6 

Note: Two significant SNPs (rs11620312 and rs79174114) were in linkage disequilibrium (r2>0.8). Abbreviation: CHR = 
chromosome; SNP = single nucleotide polymorphism; MA = minor allele; MAF = minor allele frequency; β = standardized 
effect size; P = p-value. 
 

 
 

Figure 2. The differences in the rate of ventricular enlargement between the two genotypes in total subjects and each 
diagnostic group. The minor allele (C) of rs11620312 carriers had increased rates of ventricular enlargement in all subjects (P = 3.26×10-7), 
CN group (P =1.23×10-4) and MCI group (P = 9.08×10-4). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; P = P value. 



www.aging-us.com  9866 AGING 

 
 

Figure 3. Rs11620312 associated with other phenotypes at baseline. The minor allele (C) of rs11620312 was not associated with 
MEM (A, PBonf = 0.29), EF (B, PBonf = 0.32), FDG (C, PBonf = 0.06) and hippocampus volume (D, PBonf = 0.26) at baseline. Abbreviation: MEM = 
cognitive score for memory; EF = cognitive score for executive functioning; FDG = 18F-fluorodeoxyglucose. 
 

 
 

Figure 4. Rs11620312 associated with other phenotypes longitudinally. The minor allele (C) of rs11620312 was associated with the 
increased rates of EF decline (B, PBonf = 0.037) and FDG hypometabolism (C, PBonf = 0.029), however it was not associated with the change 
rates of MEM (A, PBonf = 0.18) and hippocampus volume (D, PBonf = 1.16) over time. Abbreviation: MEM = cognitive score for memory; EF = 
cognitive score for executive functioning; FDG = 18F-fluorodeoxyglucose. 
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Mitochondrial dysfunction, reducing intracellular 
adenosine triphosphate (ATP) levels and increasing 
reactive oxygen species (ROS) production, has been 
identified as an important mechanism in multiple 
neurodegenerative diseases [24]. It can lead to abnormal 
accumulation of Aβ and tau which are involved in the 
pathogenesis and pathology of AD [25]. PINK1/Parkin 
mitophagy is a protective pathway that can eliminate the 
severely damaged mitochondria to reduce toxic 
products and provide enough energy [26]. Moreover, 
according to a recent study, decreased expression of 
PINK1 is associated with increased Aβ accumulation, 
mitochondrial dysfunction, and impairments in learning 
and memory in a mouse model of Alzheimer disease 
[23]. In our study, we found two genome-wide 
significant SNPs (rs11620312 and rs79174114) within 
the SIAH3 gene were associated with an increased rate 
of ventricular enlargement in 507 nondemented elderly 
individuals. Thus, we hypothesized that SIAH3 can 
affect the PINK1/Parkin mitophagy by inhibiting the 
accumulation of PINK1 in the damaged mitochondria, 
subsequently leading to mitochondrial dysfunction 
involved in the pathology and pathogenesis of neuro-
degenerative diseases. 
 
In addition, we found sixteen suggestive SNPs which 
may have potential associations with neurodegenerative 
diseases, including two loci (rs11618124 and 
rs1998892) in SIAH3, eight intergenic SNPs and six 
SNPs in other genes, such as NKAIN2 (rs2626129), 
TBC1D2 (rs10985425), GALNT18 (rs1994399), ABCC1 
(rs4781701, rs12922404), and SRCIN1 (rs2075051). 
NKAIN2 (Na+/K+ transporting ATPase interacting 2) 
gene, highly expressed in brain tissues, encodes one of 
transmembrane proteins that interact with β-subunits of 
Na+/K+-ATPase [27]. Although its function was not 
clear, a previous study suggested that it may have 
associations with neurologic phenotypes like severe 
psychomotor retardation associated with cerebral 
atrophy [28]. TBC1D2 (TBC1 domain family member 
2) encodes a GTPase-activating protein (GAP) for Rab7 
GTPase, leading to Rab7 inactivation as well as the 
regulation of E-cadherin degradation and cell-cell 
adhesion [29]. The biological function of GALNT18 
(polypeptide N-acetylgalactosaminyltransferase 18) 
gene is unclear. ABCC1 (ATP binding cassette 
subfamily C member 1) gene encodes a member of 
ATP-binding cassette (ABC) transporters involved in 
the multidrug resistance. A few studies found that 
ABCC1 protein may be associated with Aβ 
accumulation in the brain [30, 31]. SCRIN1 (SRC 
kinase signaling inhibitor 1) may be related with 
dendritic spine morphology and synaptic plasticity [32]. 
These genes, although not reaching the genome-wide 
significant level, may play a potential role in the 
pathogenesis of neurodegenerative diseases. 

Our study has several limitations. First, the sample size of 
this study was moderate, which limited the statistical 
power of the GWAS and may give rise to false positive 
results. Moreover, the moderate sample size limited the 
statistical power of stratified analyses for each diagnostic 
group. Second, our sample was restricted to non-Hispanic 
white participants to avoid population stratification 
across ethnicities, but the rs11620312 in SIAH3 has 
various frequencies in different races. The contradiction 
determines the racial limitation of our research and the 
necessity of replication analysis in other races. Third, 
post-GWAS analyses about SIAH3 gene, like gene 
annotation and pathway analysis, were not available and 
the function of gene needs further exploration. Finally, 
more independent replication studies with large samples 
were needed to confirm these results. 
 
In conclusion, we identified two novel loci (rs11620312 
and rs79174114) within the SIAH3 gene associated with 
an increased rate of ventricular enlargement. Our further 
study demonstrated that rs11620312 was related to  
poor cognition and brain hypometabolism over time.  
The biological function of SIAH3 in mitochondrial 
dysfunction may have relevance for the pathogenesis  
of neurodegenerative diseases, which merits further 
investigation. 
 
MATERIALS AND METHODS 
 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database 
 
Initial data used in this study were obtained from the 
ADNI database (http://adni.loni.usc.edu). ADNI database 
was launched in 2004, led by Principal Investigator 
Michael W. Weiner, MD. It’s a public, longitudinal and 
multicenter study to detect clinical, imaging, biochemical 
and genetic biomarkers of AD [33]. This database 
includes three cohorts, i.e. ADNI-1, ADNI-GO and 
ADNI-2. More details of the ADNI database were 
described in prior publications and on the website of the 
ADNI database (http://adni.loni.usc.edu/about/). 
 
Ethic 
 
This study was approved by institutional review boards 
of all contributing research institutions, and informed 
consent in writing was acquired from all subjects or 
authorized agents. 
 
Subjects 
 
The initial cohort included 550 nondemented participants 
with both data on ventricular volume at baseline and 2-
year follow-up and genetic information from ADNI 
database. All participants were restricted to non-Hispanic 

http://adni.loni.usc.edu/about/
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white participants to reduce the confounding from 
population stratification in the GWAS. This step 
excluded 36 participants. Moreover, to detect the 
confounding from cryptic relatedness and population 
substructure, we did genomic identity-by-descent (IBD) 
and multidimensional scaling (MDS) analysis using the 
PLINK software [34] (Supplementary Figure 1). Four 
participants who clustered separately from the others 
were removed, resulting in 510 valid participants. 
 
Endophenotype and quality control 
 
Measurements of ventricular volume in ADNI-1 and 
ADNI-GO/2 were performed on 1.5T and 3T MRI 
scanners, respectively, using T1-weighted sequences with 
the standard ADNI MRI protocols. More details about 
measurements of ventricular volume were described 
elsewhere [33, 35, 36] and on the ADNI website 
(http://adni.loni.usc.edu). The annualized percent change 
of ventricular volume at 2-year follow-up compared to 
baseline was used as endophenotype [37]. To reduce the 
potential for false positives, three extreme outliners (the 
rate of ventricular enlargement > mean ± four standard 
deviations) were excluded, resulting in 507 valid 
participants. 
 
Genotyping and quality control 
 
Samples of ADNI-1 and ADNI-GO/2 cohorts were 
genotyped using the Illumina Human610-Quad, and 
HumanOmniExpress microarray chips (Illumina, Inc., 
San Diego, CA), respectively [14]. Quality control 
procedures were performed using PLINK software with 
the following criteria [38, 39]: call rate for SNPs >98%, 
call rate for individuals >95%, minor allele frequencies 
>0.05, and Hardy-Weinberg equilibrium test p > 0.001. A 
total of 1,231,747 SNPs were retained after cleaning. The 
polymorphisms rs7412 and rs429358, which define the 
APOE alleles, were genotyped separately by an APOE 
genotyping kit [40]. 
 
Statistical analyses 
 
GWAS was performed using linear regression under an 
additive genetic model (i.e., dose-dependent effect of the 
minor allele) in PLINK software. Age, gender, APOE ε4 
[41], ICV and MRI scanner type (1.5T versus 3T) at 
baseline were included as covariates. Principal 
components analysis (PCA) was derived using genome-
wide complex trait analysis (GCTA) software [42], and 
the first three PCs were included as covariates. 
Conservative thresholds of P values <5×10-8 and <10-5 
were used to represent genome-wide significant and 
suggestive associations, respectively [43]. Manhattan plot 
and Quantile-Quantile (QQ) plot were drawn in R 
software (version 3.5.2), and regional association plots 

were visualized by Locus Zoom website [44]. 
Differences in the endophenotype (the rate of ventricular 
enlargement) between rs11620312-C carriers and non-
carriers in all subjects and two diagnosis groups were 
examined using multiple linear regression adjusting for 
age, gender, APOE ε4, ICV and MRI scanner type (1.5T 
versus 3T) at baseline in R software. The effect of 
genome-wide significant SNPs on gene expression was 
detected by accessing data from the UKBEC 
(http://www.braineac.org) [45]. 
 
Association between the genome-wide significant 
SNP and other phenotypes 
 
We further detected the relationship between the 
genome-wide significant SNP and other phenotypes, 
including composite cognitive scores for EF [46] and 
MEM [47], FDG metabolism and hippocampus volume 
in the GWAS cohorts. These data were also obtained 
from the ADNI database (http://adni.loni.usc.edu). 
Statistical analyses used multiple linear regression 
models for cross-sectional studies and mixed-effect 
models for longitudinal studies in R software (version 
3.5.2). Age, gender, and APOE ε4 were used as 
covariates for all phenotypes, and educational level and 
ICV were included in the models of cognitive scores and 
hippocampus, respectively. Adjusted P-values (PBonf) 
were corrected for multiple comparisons using the 
Bonferroni procedure. 
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SUPPLEMENTARY MATERIALS 
 
 
 

 
 

Supplementary Figure 1. Cryptic relatedness and population substructure were checked with genomic identity-by-descent 
(IBD) and multidimensional scaling (MDS) components. MDS plot of ADNI non-Hispanic Caucasian samples. Samples seemed to form 
loose clusters and four samples were outliers based on the second MDS component (at top of plot (137_S_4466 and 021_S_0159) and at 
bottom of plot (024_S_2239 and 024_S_4084)), suggesting potential population substructure. To check for cryptic relatedness, which can 
confound GWAS studies, pairwise identity-by-descent fraction (π) between each pair of samples were calculated using PLINK. Two related 
sample pair was identified (137_S_4466 and 021_S_0159, π = 0.50; 024_S_2239 and 024_S_4084, π = 0.42), which are probably first-degree 
relatives. No other cryptic relations were identified from the sample, at a threshold of π > 0.2. Abbreviation: GWAS = genome-wide 
association study. 
 

 
 

Supplementary Figure 2. The Quantile-Quantile plot of GWAS. Observed −log10 p-values (y-axis) were plotted against those 
expected p-values under the null hypothesis (x-axis). No substantial deviation from the red line was observed in the bulk of the distribution 
and the genomic inflation factors were λ = 1, indicating absence of population stratification or other confounding factors. Abbreviation: 
GWAS = genome-wide association study. 
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Supplementary Figure 3. Exon-specific expression level in ten brain tissues. Although there was no statistically significance, SIAH3 
gene was increased expression among the rs11620312-C carriers and rs79174114-T carriers in brain tissues according to preliminary data 
from the UKBEC database. 


