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INTRODUCTION 
 
Hepatocellular carcinoma (HCC) is one of the fatal 
malignant tumors worldwide, especially in Asia [1]. 
Despite advances in prevention, detection, diagnosis, 
and treatment of HCC in recent years, its incidence and  

 

mortality are increasing significantly every year, and the 
five-year overall survival (OS) rate is only 18% [2]. The 
development of HCC is a complex multistep process 
involving a series of molecular pathogeneses and 
multiple factors; therefore, there is an urgent need to 
identify more detailed mechanisms to improve the 
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ABSTRACT 
 
The abnormal expression of noncoding RNAs has attracted increasing interest in the field of hepatocellular 
carcinoma progression. However, the underlying molecular mechanisms mediated by noncoding RNAs in these 
processes are unclear. Here, we obtained the expression profiles of long noncoding RNAs, microRNAs, and mRNAs 
from the Gene Expression Omnibus database and identified hepatocarcinogenesis-specific differentially expressed 
transcripts. Next, we identified significant Gene Ontology and pathway terms that the differentially expressed 
transcripts involved in. Using functional analysis and target prediction, we constructed a hepatocellular 
carcinoma-associated deregulated competitive endogenous RNA network to reveal the potential mechanisms 
underlying tumor progression. By analyzing The Cancer Genome Atlas dataset, six key long noncoding RNAs 
showed significant association with overall survival as well as strong correlation with some microRNAs and 
mRNAs in the competitive endogenous RNA network. We further validated the above results and determined 
their diagnostic and prognostic value in clinical samples. Importantly, by large-scale analyses, we identified a 
cluster of long noncoding RNAs, GBAP1, MCM3AP-AS1, SLC16A1-AS1, C3P1, DIO3OS, and HNF4A-AS1 as candidate 
biomarkers for the diagnosis and prognosis of hepatocellular carcinoma, which will improve our understanding of 
competitive endogenous RNA-mediated regulatory mechanisms underlying hepatocellular carcinoma 
development and will provide novel therapeutic targets in the future. 
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outcome of patients with HCC [3]. Recent genomic 
researches have identified many oncogenes as 
indispensable factors involved in the development of 
various types of cancer, including HCC, which provide 
more advanced diagnostic approaches and new targets 
for cancer treatment [4, 5].  
 
Long non-coding RNAs (lncRNAs) comprise 
transcripts with a length of over 200 nucleotides, which 
are characterized by low expression in cancer, high 
expression in tissues, and cell-specificity [6]. Despite 
their inability to encode proteins, lncRNAs regulate the 
expression of many mRNAs by acting in cis and in 
trans. Cis-acting lncRNAs influence the expression and 
chromatin state of nearby genes via altering their 
transcription, recruiting regulatory factors, and splicing 
of the lncRNA. They also rely on DNA elements within 
the lncRNA promoter or gene locus. However, trans-
acting lncRNAs leave the site of transcription and 
execute an array of functions throughout the cell by 
influencing nuclear structure and organization, as well 
as regulating the behavior of proteins and other RNA 
molecules [7]. As a result, the dysregulation of lncRNA 
expression affects cellular homeostasis, which might 
lead to cancer initiation and progression [6, 8]. 
MicroRNAs (miRNAs) are a type of small non-coding 
RNAs composed of 21–22 nucleotides. They exert their 
biological effects by silencing genes post-trans-
criptionally via binding to miRNA response elements 
(MREs) in the target mRNA [9]. Recently, the theory of 
a competing endogenous RNA (ceRNA) regulation 
network in cancer has been proposed [10]. This 
hypothesis states that ceRNAs harbor MREs and bind to 
miRNAs in competition with their target mRNAs, 
leading to blockade of the silencing effect of miRNAs 
on their target mRNAs. Accumulating studies have 
confirmed that lncRNAs act as sponges to sequester and 
bind miRNAs in competition with mRNAs [11]. 
Therefore, lncRNA can be considered as a kind of 
ceRNA that regulates transcript expression. This theory 
has been proposed in different types of cancer. For 
example, Liang et al. constructed a lncRNA-mediated 
ceRNA network for mesenchymal ovarian cancer and 
showed that lncRNA PTAR acted as a ceRNA to 
promote epithelial-mesenchymal transition (EMT), 
invasion, and metastasis by competitively binding to 
miR-101-3p to regulate ZEB1 expression [12]. Another 
study identified transforming growth factor-beta (TGF-
β) promoted tumor invasion and metastasis by 
downregulating EPB41L4A-AS2, a novel lncRNA 
functioning as a ceRNA in head and neck squamous cell 
carcinoma [13]. In HCC, Sui et al. reported that 
lncRNA GIHCG promoted HCC cell proliferation, 
migration, and invasion in vitro and xenograft growth 
and metastasis in vivo depending on its silencing of 
miR-200b/a/429 [14]. Ren et al. proposed the TP53-

miR-215-PCAT-1-CRKL axis as an important 
regulatory pathway inhibiting tumor cell proliferation, 
migration, and invasion in HCC [15]. However, whether 
the ceRNA network mediates HCC initiation and 
progression remains unclear.  
 
The present study aimed to reveal the potential regulatory 
mechanisms involved in HCC development by 
constructing an mRNA-miRNA-lncRNA interaction 
network. We comprehensively analyzed the regulatory 
network of HCC-related genes, miRNAs, and lncRNAs 
based on the gene expression profile, including 
differential expression profiles analysis, gene ontology 
(GO) enrichment, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis, and signal 
regulation network (signal-net) construction. Based on 
these results and target transcripts prediction, we built a 
ceRNA network to indicate the key mRNA-miRNA-
lncRNA interactions. Furthermore, a protein regulation 
network was used to clarify the regulatory interactions 
among these transcripts in the ceRNA network. For 
validation, we performed Pearson correlation analysis and 
survival analysis for the mRNAs, miRNAs, and lncRNAs 
identified in the ceRNA network in HCC tissues from The 
Cancer Genome Atlas (TCGA) database and clinical 
samples, respectively. The identified ceRNA network 
might provide potential biomarkers for predicting the 
prognosis and novel therapeutic targets for the treatment 
of patients with HCC.  
 
RESULTS 
 
Differential and clustering analysis 
 
The workflow chart was shown in Supplementary Figure 
1. We first identified 11036 differentially expressed genes 
(DEGs) from three profiles, GSE29721, GSE40367, and 
GSE62232, consisting of 3949 (35.8%) upregulated and 
7087 (64.2%) downregulated genes. The top 5 DEGs in 
the HCC samples compared with normal samples from 
different profiles were shown in Table 1 according to their 
fold change (FC) values. Besides, 3826 lncRNAs were 
selected as differentially expressed lncRNAs (DELs) from 
the same three profiles, including 615 (16.1%) 
upregulated and 3211 (83.9%) downregulated lncRNAs. 
From another two profiles, GSE36915 and GSE74618, 
206 differentially expressed miRNAs (DEMs) were 
selected, including 80 (38.8%) upregulated and 126 
(61.2%) downregulated miRNAs. The top 10 DELs and 
DEMs in the HCC samples in contrast to normal samples 
from different profiles were shown in Supplementary 
Tables 1 and 2, respectively. The results of hierarchical 
cluster analyses were shown in heatmaps for the 
expression level changes of DEGs (Figure 1A), DELs 
(Figure 1B), and DEMs (Figure 1C) between HCC and 
normal tissues.  
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Table 1. The top 5 upregulated and downregulated DEGs in different expression profiles. 

Profile Gene symbol Gene ID style Fold change P-value 
GSE29721 CCL20 6364 up 30.93373 0.000163 
 HJURP 55355 up 23.79123 0.00002 
 SPINK1 6690 up 22.69303 0.000635 
 SULT1C2 6819 up 20.0141 0.0001927 
 REG3A 5068 up 18.2934 0.005302 
 MT1M 4499 down -30.4032 0.001046 
 TTC36 143941 down -28.8462 0.000253 
 THRSP 7069 down -26.6209 0.0003503 
 HAMP 57817 down -26.0083 0.001316 
 CLEC4M 10332 down -22.2482 0.000288 
GSE29721 CCL20 6364 up 106.6007 0.000019 
 SPINK1 6690 up 47.69886 0.000022 
 GABBR1 2550 up 43.14953 0.000018 
 KIF20A 10112 up 36.35204 0.000019 
 ELOVL7 79993 up 34.84073 0.00002 
 CXCL14 9547 down -132.845 0.0000185 
 CYP1A2 1544 down -101.348 0.000018 
 CNDP1 84735 down -87.8993 0.000018 
 MT1M 4499 down -62.8525 0.00002 
 MME 4311 down -60.0369 0.0000265 
GSE62232 RPS4Y1 6192 up 90.17847 <0.00001 
 AKR1B10 57016 up 34.80468 <0.00001 
 CCL20 6364 up 26.06746 0.000001 
 TOP2A 7153 up 20.6209 9.933E-05 
 SPINK1 6690 up 18.16443 0.001901 
 MT1M 4499 down -75.7478 <0.00001 
 CNDP1 84735 down -70.9896 <0.00001 
 CLEC4G 339390 down -69.8899 <0.00001 
 CXCL14 9547 down -67.7081 3.333E-06 
 CLEC4M 10332 down -67.278 <0.00001 
 

Intersection analysis 
 
Next, we selected 1016 intersecting DEGs and 116 
intersecting DELs among the three profiles to perform 
further analysis. Twenty-one DEMs were also selected 
between the two profiles GSE36915 and GSE74618. 
The intersections were displayed as Venn diagrams 
(Supplementary Figure 2A–2C).  
 
GO and pathway analysis 
 
According to the intersecting DEGs, we identified 1803 
upregulated DEGs-related GO terms and 6339 
downregulated DEGs-related GO terms using functional 
enrichment analysis. The plots of the top 25 upregulated 
and downregulated GO enrichment terms were shown 

in Figure 2A and 2B. The results demonstrated that the 
upregulated DEGs mainly participated in cell division, 
sister chromatid cohesion, mitotic spindle organization, 
DNA replication, and mitotic cell cycle; while the 
downregulated DEGs were closely associated with the 
oxidation-reduction process, xenobiotic metabolic 
process, and the epoxygenase P450 pathway.  
 
We subsequently distinguished 221 pathways among 
the upregulated DEGs and 274 pathways among the 
downregulated DEGs using KEGG pathway analysis 
based on the intersecting DEGs. The plots of the top 25 
pathways for the upregulated and downregulated DEGs 
were shown in Figure 2C and 2D. The most obviously 
upregulated pathways were the cell cycle, the p53 
signaling pathway, and DNA replication. Pathways 
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dramatically enriched in downregulated genes were 
metabolic pathways, chemical carcinogenesis, and 
retinol metabolism. Taken together, these dramatically 
changed GO terms and pathways might be involved in 
HCC initiation and progression. 
 
Signal-net analysis 
 
To clarify the interactions among different genes and 
their products, we further constructed a gene signal-net 
using 1016 intersecting DEGs based on KEGG database 
according to the network biology theory. Signal-net 
could display the relationships between different gene 

groups and identify upstream and downstream 
molecules by obtaining gene interactions in multiple 
pathways. The network we constructed included 97 
interacting DEGs, consisting of 23 upregulated genes 
and 74 downregulated genes (Supplementary Figure 3). 
According to their regulation degree, several DEGs 
were considered as the hub genes that exerted the most 
significant regulatory function in the network. For 
example, PRKAA2, which held the highest degree, had 
the strongest interactions with other genes in the 
network. The pathway information from the KEGG 
database indicated that PRKAA2 and its related genes 
were involved in the AMPK/PI3K/AKT signaling 

 

 
 

Figure 1. Cluster analysis of differentially expressed profiles. Hierarchical cluster dendrogram of DEGs (A) and DELs (B) identified in 
GES29721, GSE40367 and GSE62232 as well as DEMs (C) identified in GSE36915 and GSE74618. The rows showed DEGs, DELs, and DEMs, 
while the columns showed paired samples. The pink part represents normal samples and the blue part represents HCC samples. The left 
vertical axis shows clusters of DEGs, DELs and DEMs, while the above horizontal axis shows clusters of samples. Red represents high 
expression and green represents low expression. 
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pathways, a representative signaling pathway involved 
in the development of HCC [16]. Besides, several 
closely connected hub genes, including ITGA6, ITGA2, 
and ITGB3, are the main cellular adhesion receptors 
belonging to the integrins family and extensively 
implicated in multiple steps from cancer initiation to 
metastasis by acting as signaling molecules, mechano-
transducers, and critical components of the cell 
migration machinery [17]. Therefore, DEGs with a high 
regulation degree in this signal-net, including PRKAA2, 
PLCB1, and several genes encoding the integrins family 
members might play crucial roles in the regulation of 
HCC development. 
 
CeRNA network 
 
The above results demonstrated that some intersecting 
DEGs might play a crucial role in HCC development by 
participating in important processes, such as cell cycle, 
p53 signaling pathway, and metabolic pathways. We 

next investigated the underlying molecular mechanisms 
regulating these processes. LncRNAs have been 
reported to promote tumor progression through various 
types of gene regulatory mechanisms, such as 
epigenetic and transcriptional regulation and serving as 
ceRNAs for miRNAs [10, 11, 14, 15, 18–20]. 
Therefore, we constructed a ceRNA regulatory network 
to reveal the unknown mechanisms driving HCC 
development. 
 
Intersection datasets were acquired between the DEGs 
involved in the significant enriched GO terms and KEGG 
pathways with P < 0.05 and false discovery rate (FDR) < 
0.05, which included 393 DEGs. We predicted 213 target 
genes and 85 target lncRNAs that might be regulated by 
the 21 intersected DEMs among the 393 DEGs and the 
116 intersecting DELs, respectively. The key lncRNA-
miRNA and miRNA-mRNA pairs were shown in 
Supplementary Tables 3 and 4, respectively. According 
to the constructed association and the theory of

 

 
 

Figure 2. Top25 enrichment of GO and KEGG pathway analyses for upregulated and downregulated DEGs. The upregulated (A) 
and downregulated (B) DEGs enriched in GO categories. The upregulated (C) and downregulated (D) DEGs enriched in different pathways. 
The horizontal axis represents the enrichment score of DEGs. The vertical axis represents different GO categories and pathways. The bubble 
size indicates the number of genes in each category and pathway, and different colors correspond to different log (FDR) values. 
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ceRNAs, we chose the negatively correlated lncRNA-
miRNA and miRNA-mRNA pairs to build an mRNA-
miRNA-lncRNA network using Cytoscape v3.0 (Figure 
3). As a result, 59 lncRNAs were identified as ceRNAs 
that interacted with 17 essential miRNAs, and 
subsequently indirectly regulated 63 coding mRNAs 
involved in HCC development.  
 
Relying on the constructed relationships in the ceRNA 
network, we inferred that lncRNAs might indirectly 
participate in several significant KEGG pathways by 
serving as ceRNAs of mRNAs, such as the PI3K-AKT 
signaling pathway enriched by ITGA2, PRKAA2, and 
CDK1, the cell cycle enriched by MCM5, CDC6, and 
CHEK1, as well as ECM-receptor interactions enriched 
by ITGA6 and ITGA2. Similarly, we also inferred that 
lncRNAs participated in some significant biological 
processes, including cell division enriched by BIRC5 and 
CDCA5, as well as cell proliferation enriched by CD34 
and ITGA2. Indeed, some miRNA-mRNA and lncRNA-
miRNA pairs in this network have been verified to play a 
part in cancer development in previous studies. For 
instance, Jafarzadeh et al. provided experimental 
evidences for hsa-miR-497-5p as a negative regulator of 
SMAD3, which was a key modulator of the TGF-β 
signaling pathway during carcinogenesis [21]. Among the 
genes interacting with hsa-miR-497-5p in this network, 
BIRC5, a well-known cancer-related gene encoding 

survivin, has been proven to be upregulated by TGF-β to 
modulate the cell cycle and apoptosis in various types of 
cancer [22, 23]. Therefore, the regulatory relationship 
between hsa-miR-497-5p and BIRC5 presented in the 
ceRNA network was justifiable. Besides, for lncRNAs, 
MCM3AP-AS1 has been reported to directly bind to miR-
194-5p and act as ceRNA, which subsequently facilitated 
the expression of miR-194-5p’s target gene FOXA1 in 
HCC cells, thus promoting HCC cell proliferation, colony 
formation, and cell cycle progression [24]. Another 
lncRNA identified in this network, HAND2-AS1, has been 
proven to increase cell migration of HCC cell lines [25]. 
 
PPI (protein-protein interaction) network analysis 
 
Subsequently, we built a protein-protein interaction 
network predicting the interaction among the proteins 
encoded by the 51 DEGs in the ceRNA network 
(Supplementary Figure 4). In the network, ESR1, IGF1, 
BIRC5, and CD34 had higher degrees (17, 15, 12, and 
10, respectively) (Supplementary Table 5). The genes 
encoding these proteins have been confirmed to be 
associated with HCC progression [26–29]. Combined 
with the functional analysis results, we found that the 
interacting DEGs in the ceRNA network were mainly 
enriched in cell proliferation, cell adhesion, the PI3K-
Akt signaling pathway, the p53 signaling pathway, 
pathways in cancer, and metabolic pathways. 

 

 
 

Figure 3. The ceRNA network. (A) Network constructed by upregulated miRNAs, downregulated lncRNAs and downregulated mRNAs. (B) 
Network constructed by downregulated miRNAs, upregulated lncRNAs and upregulated mRNAs. Red diamonds represent upregulated 
miRNAs, red balls, upregulated mRNAs, and red triangles, upregulated lncRNAs. Green diamonds represent downregulated miRNAs, green 
balls, downregulated mRNAs, green triangles, downregulated lncRNAs. 
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Survival analysis and expression validation for the 
ceRNA network in TCGA dataset 
 
In the Gene Expression Omnibus (GEO) datasets, we 
identified an extensive and comprehensive lncRNA-
miRNA-mRNA regulation network in HCC 
development. To further clarify their expression and 
prognostic value, we performed Kaplan-Meier survival 
analysis for all the DEGs, DELs, and DEMs in the 

ceRNA network in patients with HCC from TCGA. The 
results showed that 6 lncRNAs (Figure 4), 23 mRNAs, 
and 4 miRNAs had a significant impact on OS 
(Supplementary Figure 5) and a consistent expression 
pattern (Supplementary Figure 6) in the GEO datasets. 
Among them, 3 lncRNAs (GBAP1, MCM3AP-AS1, and 
SLC16A1-AS1) (Figure 4A–4C, 4G–4I), 15 mRNAs 
(ACLY, BAX, BIRC5, CDC6, CDCA5, CHEK1, 
FOXM1, ITGA2, LAMC1, MCM5, MYB, PAK1, 

 

 
 

Figure 4. The expression and survival significance of the six key lncRNAs in the ceRNA network in HCC TCGA database. Kaplan-
Meier survival curves showed significant OS differences between high- and low-expression of GBAP1 (A), MCM3AP-AS1 (B), SLC16A1-AS1 (C), 
C3P1(D), HNF4A-AS1 (E) and DIO3OS (F) in TCGA dtabase. Expression levels of GBAP1 (G), MCM3AP-AS1 (H), SLC16A1-AS1 (I), C3P1(D), 
HNF4A-AS1 (E) and DIO3OS (F) in normal and HCC tissues from TCGA database. N, normal tissue; Ca, cancer tissue. 
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PRKAA2, SOX4, and TK1) (Supplementary Figures 5Aa–
5Ao, 6Aa–6Ao) and 3 miRNAs (hsa-miR-10b-5p, hsa-
miR-183-5p, and hsa-miR-222-3p) (Supplementary 
Figures 5Aa–5Ao, 6Ba–6Bc) were identified as pro-tumor 
factors because of their high expression in cancer tissues 
and their correlation with shorter OS in patients with 
HCC. In contrast, another three lncRNAs (C3P1, 
DIO3OS, and HNF4A-AS1) (Figure 4D–4F, 4J–4L), eight 
mRNAs (ABAT, ACSM2A, ASPA, CAMK4, CYP8B1, 
ESR1, IGF1, and PDE7B) (Supplementary Figure 5Ca–
5Ch, 6Ca–6Ch) and one miRNA (hsa-let-7c-5p) 
(Supplementary Figures 5D, 6D) showed low expression 
in cancer tissues and correlated with longer OS, implying 
that these transcripts might be protective factors in HCC. 
 
According to the interactions in the ceRNA network, we 
inferred that the aberrant expression of DEGs might be 
indirectly regulated by six lncRNAs (GBAP1, MCM3AP-
AS1, SLC16A1-AS1, C3P1, DIO3OS, and HNF4A-AS1). 
To further determine the association of the identified 
lncRNAs with survival time, we conducted univariate and 
multivariate Cox regression model analyses based on the 

clinical characteristics in TCGA dataset. As shown in 
Table 2, in the univariate analysis, all six lncRNAs could 
be incorporated in the COX regression model. 
Multivariate analysis demonstrated that the expression 
levels of lncRNAs C3P1, DIO3OS, and SLC16A1-AS1 
were independent prognostic factors for OS in patients 
with HCC. Thus, it was reasonable to infer that these 
lncRNAs might be crucial factors to predict the prognosis 
of patients with HCC.  
 
Correlation analysis in TCGA dataset 
 
Since the main aim of this study was identifying the 
clinical noteworthy lncRNAs and uncovering the 
regulatory role of lncRNAs as potential ceRNAs to 
mediate downstream/upstream RNAs functions/ 
associations, we selected the six lncRNAs with great 
survival significance in the ceRNA network for further 
study. To validate the regulatory role of the six 
lncRNAs as ceRNAs, we analyzed the correlation with 
their associated miRNAs and mRNAs in the ceRNA 
network based on TCGA data containing 366 patients

 

 
 

Figure 5. Pearson correlation analysis for six key lncRNAs with their associated miRNA and mRNAs in 366 HCC patients from 
TCGA. Pearson correlograms of lncRNA-miRNA paris (A), lncRNA-mRNA pairs (B) and mRNA-miRNA pairs (C) in upregulated lncRNAs 
including GBAP1, MCM3AP-AS1 and SLC16A1-AS1. lncRNA-miRNA paris (D), lncRNA-mRNA paris (E) and mRNA-miRNA paris (F) in 
downregulated lncRNAs including C3P1, HNF4A-AS1 and DIO3OS by Pearson correlation analysis. The correlation coefficient R value ranges 
from -1 to 1, the color of which changes from blue to brown. 
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with HCC. As shown in Figure 5, a considerable 
number of lncRNA-miRNA pairs showed a significant 
negative correlation for both upregulated (Figure 5A) 
and downregulated (Figure 5D) lncRNAs. Some of the 
six lncRNAs-associated miRNA-mRNA pairs also 
demonstrated a negative correlation (Figure 5B and 5E). 
Moreover, almost all six lncRNAs-associated lncRNA-
mRNA pairs, for either upregulated (Figure 5C) or 
downregulated (Figure 5F) lncRNAs, demonstrated a 
tight positive correlation in TCGA database. Together, 
these results indicated the proposed six lncRNAs, 
GBAP1, MCM3AP-AS1, SLC16A1-AS1 C3P1, DIO3OS, 
and HNF4A-AS1, had a partially negative correlation 
with their associated miRNAs, as well as a partially 
positive correlation with their associated mRNAs, 
further confirming that the six might function as 
ceRNAs to regulate the expression of mRNAs and 
miRNAs in the progression of HCC.  
 
Expression validation and survival analysis for the 
six lncRNAs in clinical samples 
 
To further verify the significance of the six lncRNAs 
mentioned in section 2.8, we analyzed their expression 
levels in tumor tissues and adjacent non-tumor tissues 

from 158 diagnosed patients with HCC using 
quantitative real-time reverse transcriptase-polymerase 
chain reaction (RT-PCR). As shown in Figure 6A–6F, 
all six lncRNAs were differentially expressed in tumor 
tissues and normal tissues. Three lncRNAs (GBAP1, 
MCM3AP-AS1, and SLC16A1-AS1) were upregulated in 
HCC tissues (Figure 6A–6C), while the other three 
lncRNAs (C3P1, HNF4A-AS1, and DIO3OS) were 
downregulated in HCC tissues (Figure 6D–6F). These 
results were consistent with the previous bioinformatic 
analysis. Furthermore, based on the clinical 
information, we analyzed the relationship between the 
expression levels of these DELs and OS, progression-
free survival (PFS) and distant metastasis-free survival 
(DmFS) in these patients, which was demonstrated 
using Kaplan-Meier curves in Figure 6G–6X. 
Consistent with the results in TCGA, the upregulated 
lncRNAs, including GBAP1, MCM3AP-AS1, and 
SLC16A1-AS1, were associated with worse OS (Figure 
6G–6I), PFS (Figure 6M–6O) and DmFS (S-U), thus 
identifying them as pro-tumor factors. Inversely, the 
downregulated lncRNAs, including C3P1, HNF4A-AS1, 
and DIO3OS, were correlated with the better OS 
(Figure 6J–6L), PFS (Figure 6P–6R) and DmFS (Figure 
6V–6X), and thus represented protective factors.

 

 
 

Figure 6. Expression and survival sifnificance for the six lncRNAs in 158 clinical samples. Expression levels of lncRNAs GBAP1 (A), 
MCM3AP-AS1 (B), SLC16A1-AS1 (C), C3P1 (D), HNF4A-AS1 (E), and DIO3OS (F) in 158 HCC tissues and adjacent normal tissues. Kaplan-Meier 
survival curves showed significant OS differences between high- and low-expression of lncRNAs including GBAP1 (G), MCM3AP-AS1 (H), 
SLC16A1-AS1 (I), C3P1(J), HNF4A-AS1 (K), and DIO3OS (L), and significant PFS differences including GBAP1 (M), MCM3AP-AS1 (N), SLC16A1-
AS1 (O), C3P1 (P), HNF4A-AS1 (Q) and DIO3OS (R), as well as significant DmFS differences including GBAP1 (S), MCM3AP-AS1 (T), SLC16A1-
AS1 (U), C3P1 (V), HNF4A-AS1 (W) and DIO3OS (X). N =158, Ca = 158; N, normal tissue; Ca, cancer tissue. 
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Table 2. Univariate and multivariate analysis of OS in 371 HCC patients from TCGA. 

Variable 
Univariate cox Multivariate cox 

P-value HR（95%CI） P-value HR（95%CI） 
Age     
≥50 or<50 0.649857 1.11(0.72-1.70)   
Gender     
Male or female 0.259970 1.23(0.86-1.75)   
HBsAg     
Positive or negative 0.000018 2.36(1.59-3.49) 0.000310 2.18(1.43-3.33) 
Liver cirrhosis     
Yes or no 0.002210 0.54(0.37-0.80) 0.030828 0.64(0.42-0.96) 
TNM stage     
III/IV or I/II 0.000011 2.23(1.56-3.19) 0.002199 1.80(1.24-2.62) 
AFP     
≥400ng/ml or<400ng/ml 0.328566 0.79(0.50-1.26)   
Histological differentiation     
Poor or well 0.538730 1.12(0.78-1.61)   
Vascular invasion     
Yes or no 0.866489 1.03(0.70-1.52)   
C3P1 expression     
High or low 0.023555 0.67(0.47- 0.95) 0.017161 0.64(0.45-0.92) 
HNF4A-AS1 expression     
High or low 0.048667 0.70(0.50-0.10) 0.123098  
DIO3OS expression     
High or low 0.037804 0.69(0.49-0.98) 0.027333 0.67(0.47-0.96) 
MCM3AP-AS1 expression     
High or low 0.007812 1.61(1.13-2.28) 0.384940  
GBAP1 expression     
High or low 0.003447 1.68(1.19-2.38) 0.068636 1.40(0.97-2.01) 
SLC16A1-AS1 expression     
High or low 0.003193 1.69(1.19-2.39) 0.011557 1.59(1.11-2.29) 

 

Importantly, combined with the clinical characteristics, 
we constructed univariate and multivariate Cox 
proportional hazards regression models for OS, PFS, and 
DmFS. As shown in Table 3, multivariate Cox’s 
regression analysis revealed that DIO3OS, MCM3AP-
AS1, and SLC16A1-AS1 expression levels were 
independent prognostic factors for OS. C3P1, MCM3AP-
AS1, and SLC16A1-AS1 expression levels were 
independent prognostic factors for PFS, and HNF4A-AS1, 
MCM3AP-AS1, GBAP1, and SLC16A1-AS1 expression 
levels were independent prognostic factors for DmFS. 
These data indicated that the proposed six lncRNAs were 
clinical noteworthy biomarkers for predicting the 
prognosis and metastasis for patients with HCC.  
 
Correlation validation for the six lncRNAs in clinical 
samples 
 
To further understand the links of the six lncRNAs with 
miRNAs or mRNAs in the ceRNA network, we selected 

lncRNAs associated miRNAs, as well as specific 
mRNAs with survival significance in TCGA dataset of 
HCC from the ceRNA network. And their expression 
levels were assessed by RT-PCR in 158 clinical 
samples. By correlation analysis based on RT-PCR 
results, a significantly negative correlation was found 
between a majority of lncRNA-miRNA pairs for both 
upregulated (Figure 7A) and downregulated (Figure 7D) 
lncRNAs. In accordance with TCGA dataset, most of 
the lncRNAs-associated miRNA-mRNA pairs 
demonstrated a negative correlation in clinical samples 
(Figure 7B and 7E), and the positive correlation in a 
great part of lncRNA-mRNA pairs was also observed 
(Figure 7C and 7F). Furthermore, we analyzed the 
expression pattern of the proposed ceRNA network in 
samples from different stages (early = TNM I or II; late 
= III) based on the results of RT-PCR, including the six 
lncRNAs and associated miRNAs and specific mRNAs. 
As shown in Figure 7G, we found the upregulated 
lncRNA GBAP1, MCM3AP-AS1 and SLC16A1-AS1 



www.aging-us.com 10432 AGING 

Table 3. Univariate and multivariate analysis of OS and PFS in 158 HCC patients. 

Variable 

Univariate cox Multivariate cox 

Overall survival 
Progression free 

survival 
Distant metastasis-

freesurvival 
Overall survival 

Progression free 
survival 

Distant metastasis-
free survival 

P-value 
HR 

(95%CI) 
P-value 

HR 
(95%CI) 

P-value 
HR 

(95%CI) 
P-

value 
HR 

(95%CI) 
P-value 

HR 
(95%CI) 

P-
value 

HR 
(95%CI) 

Age             

≥50 or<50 0.8201 
1.05 

(0.67-1.66) 
0.1448 

1.34 
(0.91-1.97) 

0.6109 
1.16 

(0.65-2.06) 
      

Gender             

Male or female 0.6688 
1.13 

(0.64-1.99) 
0.9348 

1.02 
(0.64-1.62) 

0.7827 
0.91 

(0.46-1.79) 
      

HBsAg             

Positive or negative 0.6781 
1.17 

(0.56-2.43) 
0.3082 

1.39 
(0.74-2.59) 

0.7134 
0.83 

(0.30-2.30) 
      

Liver cirrhosis             

Yes or no 0.9817 
1.01 

(0.64-1.58) 
0.3427 

0.83 
(0.56-1.23) 

0.2657 
0.72 

(0.40-1.29) 
      

Tumor size             

≥5cm or<5cm 0.2149 
0.75 

(0.47-1.19) 
0.1353 

0.74 
(0.49-1.10) 

0.0723 
0.57 

(0.31-1.05) 
    0.0422 

2.08 
(1.03-4.23) 

TNM stage             

III or I/II 0.0306 
1.66 

(1.05-2.64) 
0.1796 

1.32 
(0.88-1.97) 

<0.0001 
9.06 

(4.59-17.90) 
    0.0009 

3.92 
(1.75-8.80) 

Tumor 
encapsulation 

            

Yes or no 0.0021 
0.47 

(0.29-0.76) 
0.3202 

0.82 
(0.55-1.22) 

0.0584 
0.55 

(0.30-1.02) 
      

Tumor number             

Multiple or single 0.0009 
2.20 

(1.38-3.52) 
0.0115 

1.66 
(1.12-2.46) 

0.1019 
1.63 

(0.91-2.93) 
0.0113 

1.90 
(1.16-3.11) 

0.0495 
1.49 

(1.00-2.23) 
  

AFP             
≥400ng/ml or 
<400ng/ml 0.3263 

1.25 
(0.80-1.97) 

0.6073 
1.11 

(0.75-1.63) 
0.0152 

2.09 
(1.15-3.79) 

      

Histological 
differentiation 

            

Poor or well 0.0923 
1.77 

(0.91-3.45) 
0.1932 

1.43 
(0.83-2.49) 

0.1072 
2.15 

(0.85-5.44) 
      

Vascular invasion             

Yes or no 0.0785 
1.69 

(0.94-3.01) 
0.0033 

2.09 
(1.28-3.42) 

<0.0001 
5.97 

(3.26-10.95) 
    0.0100 

2.42 
(1.24-4.75) 

C3P1 expression             

High or low <0.0001 
0.32 

(0.20-0.52) 
<0.0001 

0.43 
(0.29-0.65) 

<0.0001 
0.20 

(0.10-0.40) 
0.1021 - 0.0374 

0.61 
(0.38-0.97) 

0.5810 - 

HNF4A-AS1 
expression 

            

High or low <0.0001 
0.36 

(0.23-0.58) 
0.0002 

0.47 
(0.32-0.69) 

<0.0001 
0.08 

(0.04-0.18) 
0.4931 - 0.9147 - 0.0052 

0.30 
(0.13-0.70) 

DIO3OS expression             

High or low <0.0001 
0.16 

(0.09-0.28) 
<0.0001 

0.34 
(0.22-0.52) 

<0.0001 
0.17 

(0.08-0.35) 
0.0042 

2.14 
(1.27-3.61) 

0.0865 
0.64 

(0.38-1.07) 
0.3061 - 
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MCM3AP-AS1 
expression 

            

High or low <0.0001 
3.75 

(2.27-6.17) 
<0.0001 

2.38 
(1.59-3.55) 

<0.0001 
3.54 

(1.88-6.64) 
0.0042 

2.14 
(1.27-3.61) 

0.0092 
1.74 

(1.15-2.65) 
0.0092 

2.77 
(1.29-5.98) 

GBAP1 expression             

High or low <0.0001 
5.31 

(3.14-8.99) 
<0.0001 

2.67 
(1.77-4.02) 

<0.0001 
23.38 

(8.74-62.56) 
0.0625 - 0.4362 - 0.0005 

6.83 
(2.32-20.12) 

SLC16A1-AS1 
expression 

            

High or low <0.0001 
3.75 

(2.27-6.17) 
<0.0001 

2.38 
(1.59-3.55) 

<0.0001 
3.54 

(1.88-6.64) 
0.0001 

2.79 
(1.65-4.70) 

0.0053 
1.82 

(1.19-2.78) 
0.0156 

2.36 
(1.18-4.73) 

were highly expressed in late-stage samples compared 
with early-stage samples. Inverse and similar expression 
patterns were observed in their associated miRNAs and 
mRNAs, respectively (Figure 7G). In contrast, the 
downregulated lncRNA C3P1, DIO3OS, and HNF4A-
AS1 were low expressed in late-stage samples compared 
to early-stage samples (Figure 7H). Inverse and similar 
expression patterns were also observed in their 
associated miRNAs and mRNAs, respectively (Figure 
7H). Taken together, these data further verified that the 
six lncRNAs might play an important role as ceRNAs in 
regulating the expression of miRNAs and mRNAs. 
Moreover, upregulation of GBAP1, MCM3AP-AS1, and 
SLC16A1-AS1 and downregulation of C3P1, DIO3OS, 
and HNF4A-AS1 might be involved in regulating the 
progression of HCC from early to late stage.  
 
Receiver operating characteristic (ROC) curves 
analysis for the key lncRNAs in clinical samples 
 
To assess the discriminatory ability of the six key 
lncRNAs in HCC, ROC curve analyses were conducted in 
158 patients with HCC and the areas under the curve 
(AUCs) were calculated. As shown in Figure 8A–8F, in 
the assessment of OS, the AUCs of five lncRNAs 
(GBAP1, MCM3AP-AS1, SLC16A1-AS1, C3P1, and 
DIO3OS) were more than 0.75, and the AUCs of HNF4A-
AS1 was 0.737. In the assessment of PFS, the AUCs of all 
the six lncRNAs were greater than 0.75 (Figure 8G–8L). 
Additionally, five lncRNAs (GBAP1, MCM3AP-AS1, 
SLC16A1-AS1, HNF4A-AS1 and DIO3OS) had a good 
performance in diagnosing DmFS with AUCs above 0.75, 
and the AUCs of C3P1 was 0.712 (Figure 8M–8R). These 
results suggested that the six lncRNAs had good 
sensitivity and specificity to predict survival and distant 
metastasis in patients with HCC. 
 
DISCUSSION 
 
In recent decades, the diagnosis and treatment of HCC 
have improved dramatically. Although patients with HCC 
have benefited from multiple options that improve their 

survival, regardless of the cancer stage at diagnosis, the 
survival time of patients with HCC remains limited [30]. 
Apart from traditional surgical resection, ablation, and 
systematic chemotherapy, the targeted molecular therapy 
has become a promising therapeutic option for patients 
with advanced-stage disease or patients who transitioned 
into it after other therapies failed [1, 2]. However, the 
efficacy of this improved therapy is still limited to certain 
patients. Thus, there is an urgent need to discover more 
molecules that drive HCC tumorigenesis and progression 
to develop new and effective therapeutic targets for HCC. 
 
Non-coding RNAs have raised considerable research 
interest due to their regulation of the transcription of 
protein-coding genes to accelerate cancer progression. 
As typical non-coding RNAs, lncRNAs and miRNAs 
have been extensively implicated in the oncogenesis of 
a variety of cancers [31], including HCC [14, 15]. In the 
present study, we firstly analyzed five expression 
profiles to identify differentially expressed genes, 
lncRNAs, and miRNAs between HCC samples and 
normal samples based on data from the GEO database. 
For the identified DEGs, GO functional enrichment 
analysis showed that the upregulated DEGs were most 
significantly associated with cell division, a process that 
allows cells to proliferate persistently, while the down-
regulated DEGs were mainly involved in the oxidation-
reduction process. Consistently, it has been reported 
that the oxidant production, such as H2O2, is elevated in 
the tumor microenvironment because of the imbalance 
between oxidation and reduction. Some oxidants can 
trigger cell growth and immune cell dysfunction in 
different kinds of cancer types, including HCC [32–34]. 
KEGG pathway analysis demonstrated that the 
upregulated DEGs were most strongly implicated in the 
cell cycle, and downregulated DEGs mainly par-
ticipated in metabolic pathways. Abnormalities of these 
pathways were considered as two essential hallmarks of 
cancer [35]. The signal-net analysis demonstrated how 
these DEGs influenced each other, which suggested that 
some hub genes exerted central regulatory functions, 
such as PRKAA2, ITGB3, PLCB1, and ITGA2, 
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providing further scientific clues to study and treat 
HCC. Consistent with our results, Zhang et al. 
confirmed that the upregulated expression of ITGB3 
mediated the expression of MMP2 by activating the 
FAK/PI3K/AKT signaling pathway, contributing to the 
enhancement of metastatic potential of residual cancer 
in the HCCLM3 model after insufficient radiofrequency 
ablation [36]. Similarly, ITGB3 and PLCB1 were also 
confirmed to facilitate HCC progression by enhancing 
the adhesion and proliferation of tumor cells. However, 
contradictory results were observed in some other 

cancer types, such as gastric and prostate cancer, 
which indicated that PRKAA2 was a protective gene in 
cancer development by upregulating the expression of 
hypoxia-inducible factor-1α and hepatocyte nuclear 
factor 4α [37, 38]. More experimental evidence is 
required to verify the role of PRKAA2 in the develop-
ment of HCC. 
 
MiRNAs mediate the expression of transcripts by 
binding to MREs of their target mRNAs. CeRNAs are a 
group of non-coding transcripts that maintain the 

 

 
 

Figure 7. Correlation validation for the six lncRNAs with their associated miRNA and mRNAs in 158 clinical samples of HCC. 
RT-PCR was performed to detect the expression of the six lncRNAs associated miRNA and mRNAs in 158 clinical samples. Pearson correlation 
analysis for six key lncRNAs with their associated miRNA and mRNAs was performed based on RT-PCR results. Pearson correlograms of 
lncRNA-miRNA paris (A), lncRNA-mRNA pairs (B) and mRNA-miRNA pairs (C) in upregulated lncRNAs including GBAP1, MCM3AP-AS1 and 
SLC16A1-AS1. lncRNA-miRNA paris (D), lncRNA-mRNA paris (E) and mRNA-miRNA paris (F) in downregulated lncRNAs including C3P1, HNF4A-
AS1 and DIO3OS by Pearson correlation analysis. The correlation coefficient R value ranges from -1 to 1, the color of which changes from blue 
to yellow. 158 clinical samples were diveded into early and late groups according to TMN stage (early = TNM I or II; late = III), the expression 
of the six lncRNAs associated miRNA and mRNAs was shown as heatmaps. (G) Expression of the upregulated lncRNA GBAP1, MCM3AP-AS1 
and SLC16A1-AS1 and their ssociated miRNA and mRNAs. (H) Expression of th edownregulated lncRNA C3P1, DIO3OS, and HNF4A-AS1 and 
their ssociated miRNA and mRNAs. Log2(P) value was shown as color ranging from blue to red. 
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balance between miRNAs and their target genes [10]. 
These targets include pseudogenes, protein-coding 
genes, and lncRNAs. The ceRNA hypothesis proposes 
that these transcripts can act as bona fide miRNA 
competitors owing to the presence of MREs or high-
sequence homology. Therefore, ceRNAs actively 
compete with their ancestral protein-coding genes for 
the same pool of miRNAs. The consequence of 
competition for miRNAs is a decrease in their activity 
to its targets. Therefore, except for the conventional 
miRNA-RNA regulation, a reversed RNA-miRNA 
regulation relationship also exists, in which coding and 
noncoding RNA targets can exert crosstalk through 
their ability to compete for miRNA binding [10, 39, 40]. 
In this study, we constructed an mRNA-miRNA-
lncRNA interaction network (ceRNA network) to show 
the interactive regulation relationships among the 
DEGs, DELs, and DEMs. 
 
In this network, lncRNAs functioned as ceRNAs to 
sequester miRNAs and regulate mRNA transcripts 
containing shared MREs. The correlation analysis 
demonstrated a significant negative correlation in a 
majority of lncRNA-miRNA and miRNA-mRNA 
pairs, in line with the theoretical silencing effect 
between miRNAs and its target transcripts. Hence, the 

constructed mRNA-miRNA-lncRNA interaction 
network was a ceRNA crosstalk network. It reminded 
us of the potential regulatory mechanisms for 
transcripts involved in HCC development. Indeed, 
accumulating evidence pointed to the function of 
ceRNA network in regulating tumor progression. 
LncRNA PVT1 significantly promoted autophagy and 
subsequent proliferation of tumor cells through acting 
as a ceRNA to target ATG3 by sponging microRNA-
365 in HCC [41]. Also, lncRNA FAL1 was found to 
promote the proliferation and migration of HCC cells 
by acting as a ceRNA of miR-1236 [42]. Similarly, 
ceRNA networks also serve as important regulatory 
mechanisms to accelerate cancer progression in  
other cancer types. For example, lncRNA PTAR 
promoted EMT and invasion- metastasis in serous 
ovarian cancer by competitively binding to miR-101-
3p to regulate ZEB1 expression [12]. LncRNA-
KRTAP5-AS1 and lncRNA-TUBB2A could act as 
ceRNAs to affect the function of Claudin-4, which 
reinforces proliferation, invasion, and EMT in gastric 
cancer [43]. 
 
We also validated our results in TCGA data and clinical 
samples. Using survival analysis, COX regression 
analysis, and ROC analysis, we demonstrated that a 

 

 
 

Figure 8. ROC curves for the six key lncRNAs in 158 clinical samples. ROC curves of lncRNA GBAP1, MCM3AP-AS1, SLC16A1-AS1, 
C3P1, HNF4A-AS1 and DIO3OS for OS (A–F), PFS (G–L), and DmFS (M–R) respectively. The AUCs under binomial exact confidence interval was 
calculated to generate the ROC curve. 
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proportion of DELs, DEMs, and DEGs in the ceRNA 
network had a significant impact on the OS of patients 
with HCC, presenting promising clinical and 
translational significance. Among them, BAX, BIRC5, 
ITGA2, and MYB were identified as significantly 
correlated with the survival of patients with HCC, 
which was in line with the results of previous studies 
[28, 44–46], while PRKAA2, PTGIS, PDE7B, 
CYP8B1, CHEK1, CAMK4, ASPA, and ACSM2A were 
identified to predict the prognosis of patients with 
HCC for the first time. Also, we found six lncRNAs 
and five miRNAs that might be valuable predictive 
factors for the survival of patients with HCC in both 
TCGA and clinical samples. LncRNA MCM3AP-AS1 
has shown the same result in the survival analysis in 
another group containing 80 HCC patients, which was 
also verified to facilitate the proliferation and 
suppress the apoptosis of HCC cells by acting as 
ceRNA of miR-194-5p targeting FOXA1 [37]. 
Notably, the other five lncRNAs (C3P1, DIO3OS, 
GBAP1, SLC16A1-AS1, and HNF4A-AS1) and all five 
miRNAs were identified to be related to the prognosis 
of patients with HCC for the first time. Also, the 
results of correlation validation of the six lncRNAs 
with their associated miRNAs and mRNAs in TCGA 
were mostly consistent with the results in the 
constructed ceRNA network. This indicated that the 
network was reliable and that the six identified 
lncRNAs might play a role in the mechanisms of HCC 
progression. Therefore, they might have promising 
prognostic and therapeutic values in patients with 
HCC. However, there are also a few limitations of our 
study. For example, we demonstrated their relation-
ship in the ceRNA network at the RNA level but in-
depth work will be needed to verify their function 
using experimental data. Moreover, the data used 
were obtained from the GEO database, rather than 
directly from patients with HCC. Therefore, we need 
to perform a series of verification studies in a large-
scale cohort of patients and at multiple centers to 
confirm these results. 
 
In conclusion, the present study performed large-scale 
analyses and highlighted the complex crosstalk involving 
lncRNA-miRNA-mRNA networks and the important 
roles of lncRNAs as ceRNAs in HCC development. We 
identified a cluster of lncRNAs (GBAP1, MCM3AP-AS1, 
SLC16A1-AS1, C3P1, DIO3OS, and HNF4A-AS1) as 
potential ceRNAs that regulate HCC carcinogenesis and 
progression, defining them as specific biomarkers to 
diagnose HCC and predict the prognosis and metastasis of 
patients with HCC. These findings will improve our 
understanding of the ceRNAs’ regulatory mechanisms in 
HCC development and contribute to the identification of 
potential targets for the clinical diagnosis and treatment of 
patients with HCC. 

MATERIALS AND METHODS 
 
Patients and samples 
 
Tissue samples, including HCC tumor tissues and 
adjacent non-cancerous tissues (n = 158), were obtained 
from patients who had resection of primary HCC in the 
Cancer Center of Sun Yat-sen University between 2005 
and 2008. None of these patients had received pre-
operative chemotherapy or radiotherapy. After 
resection, matched fresh tissues were immersed 
immediately in RNAlater® (Ambion, Austin, TX, 
USA), kept overnight at 4 °C, and then stored at −80 °C 
until RNA isolation before qRT-PCR detection. Follow-
up was performed in our outpatient department and 
involved clinical and laboratory examinations every 
three months for the first two years, every six months 
during the third to fifth years, and annually for an 
additional five years or until death, whichever occurred 
first. Follow-up periods for survivors ranged from 2 to 
87 months, with a median follow-up of 41 months. OS 
and PFS were used as measures of prognosis. Written 
informed consent was obtained from each patient, and 
the Ethics Committee of Sun Yat-Sen University 
Cancer Center approved the study protocol. 
 
GEO gene expression datasets 
 
HCC gene expression data were obtained from the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/), including 
GSE29721, GSE40367, and GSE62232. The three 
profiles included a total of 120 samples, consisting of 
98 cancerous and 22 normal samples. The mRNA 
expression profiles were obtained using an Affymetrix 
Human Genome U133 Plus 2.0 Array. According to the 
annotation file, we chose the probe sets and BLAST 
searched them in the NCBI RefSeq database to identify 
the probe sets of noncoding RNAs with a length of over 
200 bp. We then used these probe sets to acquire the 
expression data of lncRNAs from the three profiles. The 
miRNA expression data were also obtained from the 
GEO databases. Two profiles, GSE36915 and 
GSE74618, were selected that contained 286 cancerous 
and 31 normal samples. 
 
Differential and clustering analysis 
 
Based on the expression data from the datasets, a 
random variance model (RVM) t-test was applied to 
filter the DEGs, DELs, and DEMs among cancerous and 
normal samples. After significance analysis and FDR 
analysis, we selected the DEGs, and DELs from 
GSE29721, GSE40367, and GSE62232 according to the 
P-value threshold. P < 0.05 and FC > 2 was considered 
as significant difference. DEMs were selected using a 
threshold of P-value < 0.05, FDR < 0.05, and FC > 1.5. 

http://www.ncbi.nlm.nih.gov/geo/


www.aging-us.com 10437 AGING 

Hierarchical cluster analysis was performed and a cluster 
dendrogram was constructed to demonstrate distinct 
characterizations of screened DEGs, DELs, and DEMs 
between the cancerous and normal tissues. Furthermore, 
we selected the intersecting DEGs, DELs, and DEMs 
among the different profiles. 

GO and KEGG pathway analysis 

Gene functional enrichment analysis was used to predict 
the biological functions of the intersected DEGs 
according to the GO database with P < 0.05 and FDR 
<0.05. The potentially involved signaling pathways 
were identified using the KEGG pathways analysis 
program (http://www.genome.jp/kegg/tool/map_ 
pathway1.html). 

Two-side Fisher’s exact test and a χ2 test were used to 
classify the GO categories, and the FDR [47] was 
calculated to correct the P-value: The smaller the FDR, 
the smaller the error in judging the P-value. The FDR 
was defined as: 

FDR 1 / ,kN T= −   (1) 

where Nk referred to the number of Fisher’s test P-values 
less than the test P-values. We computed P-values for the 
GO categories of all the DEGs. Within the significant 
categories, the enrichment, Re, was calculated as:  

( )Re / /( / ),f fn n N N=  (2) 

where “nf” was the number of flagged genes within the 
particular category, “n” was the total number of genes 
within the same category, “Nf” was the number of 
flagged genes in the entire microarray, and “N” was the 
total number of genes in the microarray [48]. For 
KEGG pathway analysis, we again used Fisher’s exact 
test and χ2 test to select the significant pathways, and 
the threshold of significance was defined P-value <0.05 
and FDR < 0.05. The Re value was calculated using 
equation (2) [49–51]. 

Signal-net analysis of intersecting DEGs 

Based on the KEGG database analysis, a gene-gene 
interaction network of DEGs was constructed to 
demonstrate the regulatory relationships among the 
DEGs identified in the intersection analysis among 
different expression profiles of mRNAs. The networks 
were stored and presented as graphs, where nodes were 
mainly genes (or proteins or compounds) and edges 
represented the type relationships between the nodes, 
e.g. activation or phosphorylation. We investigated the

nature of networks using tools implemented in the R 
software. 

The important nodes were identified computationally. 
To this end, we used the connectivity (also known as 
degree), which was defined as the sum of connection 
strengths with the other network genes: 

Ki ui
u i

a
≠

= ∑  (3) 

In the gene networks, the connectivity measured how a 
gene correlated with all other network genes. For a gene 
in the network, the number of source genes of a gene 
was called the indegree of the gene and the number of 
target genes of a gene was its outdegree. The character 
of a gene was described using betweenness centrality 
measures reflecting the importance of a node in a graph 
relative to other nodes. For a graph G: (V, E) with n 
vertices, the relative betweenness centrality ( )BC v′  is 
defined by: 
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where stσ  is the number of shortest paths from s to t, 
and ( )stσ v  is the number of shortest paths from s to t 
that pass through a vertex v [52–56]. 

Target transcripts of DEMs prediction and ceRNA 
network construction 

Based on the functional DEGs identified in the GO and 
KEGG pathway analysis, we constructed the 
intersection datasets between the DEGs involved in the 
significant enriched GO terms and pathways with P < 
0.05 and FDR < 0.05. Ultimately, 393 DEGs were 
selected, comprising 78 upregulated DEGs and 315 
downregulated DEGs. Combining the intersecting DELs 
and DEMs, we predicted the targeted sponge lncRNAs 
using the miRanda tool (http://www.microrna.org/ 
microrna/home.do), and the target mRNAs using 
Targetscan (http://www.targetscan.org/) and miRWalk 
(http://129.206.7.150/). For each pair of miRNA-mRNA 
or mirRNA-lncRNA, we conducted Pearson correlation 
analysis and chose the significantly correlated pairs 
[57]. In particular, we summarized the intersecting 
targeted mRNAs discerned using miRanda and 
miRWalk. 

Then, we chose the miRNAs that negatively regulated the 
expression levels of lncRNAs and mRNAs to construct a 
ceRNA network according to the normalized signal 
intensity of the expression of specific mRNAs and 
lncRNAs. 

http://www.genome.jp/kegg/tool/map_pathway1.html
http://www.genome.jp/kegg/tool/map_pathway1.html
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://www.targetscan.org/
http://129.206.7.150/
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Protein regulation network analysis 
 
The STRING online database tool (https://string-
db.org/cgi/input.pl) was used to construct a PPI network 
of the DEGs identified in the ceRNA network. The 
interacting pairs with a confidence score greater than 
0.4 were considered as significant and were retained. 
The proteins encoded by the hub genes were screened 
according to the degree of the nodes. The degree 
represents the number of interaction partners and was 
calculated using Perl code. 
 
Survival analysis 
 
We screened the HCC RNA-Seq TCGA datasets 
containing survival information and selected 370 patients 
with HCC as a dataset to analyze the relationship between 
the expression level of lncRNAs and mRNAs and OS. 
Another dataset that contained 371 patients with HCC 
was selected to analyze the relationship between the 
expression level of miRNAs and OS. In the clinical 
samples, we also investigated the correlation of lncRNAs 
with OS and PFS for 158 patients with HCC. According 
to the expression level of mRNAs, lncRNAs, and 
miRNAs in TCGA or our clinical samples, we classified 
them into two groups: High expression and low 
expression. Survival curves were displayed using Kaplan–
Meier plots. The Wilcoxon log-rank test was used to 
analyze the survival difference between the high and low 
groups. All survival analyses in TCGA were conducted 
using the R package, Survival. 
 
Correlation analysis 
 
To verify the correlation of expression among the 
miRNAs, lncRNAs, and mRNAs identified in the ceRNA 
network, we chose the lncRNAs that had significance for 
the prognosis of patients with HCC and their associated-
mRNAs and miRNAs. Pearson correlation analyses were 
performed among them based on the RNA-Seq data of 
366 patients with HCC searched in TCGA database 
(https://cancergenome.nih. gov/). The correlogram was 
constructed using the R package, Corrplot. 
 
RNA extraction and qRT-PCR  
 
Total RNA was isolated from tissues using the TRIzol 
reagent (Invitrogen Corporation, Waltham, MA, USA) 
according to the manufacturer’s instructions. The 
concentration and purity of the RNA were evaluated using 
a NanoDrop 2000 instrument (Thermo Scientific, 
Waltham, MA, USA). For mRNA, the first-strand cDNA 
was synthesized from total RNA using a GoScript 
Reverse Transcription System (Promega, Madison, WI, 
USA). GAPDH was used as an endogenous control for 
normalization. For miRNAs, the first-strand cDNA was 

synthesized from total RNA using a riboSCRIPTTM 
Reverse Transcription Kit (RIBOBIO, GuangzZhou, 
China). U6 was used as an endogenous control for 
normalization. QPCR was performed using GoTaq qPCR 
Master Mix (Promega). 
 
ROC curve analysis  
 
ROC analyses were performed using the pROC package 
in the R language, based on data from 158 clinical 
samples. The diagnostic ability of the prediction model 
was evaluated by calculating the area under a ROC 
curve. The ROC curve was used for classifier 
evaluation and was drawn by plotting sensitivity against 
the false-positive rate. The AUC under a binomial exact 
confidence interval was calculated to generate the ROC 
curve. 
 
Statistical analysis 
 
Data are shown as the mean ± s.d. and analyzed using 
Student’s t-test. A paired t-test was used for paired 
samples. Statistical analyses were performed using 
GraphPad Prism 7 and SPSS software (GraphPad 
Software, La Jolla, CA, USA). A value of P<0.05 was 
considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 

 
 
 

 
 

Supplementary Figure 1. Bioinformatics analysis flowchart. 
 

 
 

Supplementary Figure 2. Venn diagram analysis of the intersected DEGs, DELs and DEMs among different expression 
profiles. (A) The 1016 intersected DEGs obtained from GSE29721, GSE40367 and GSE62232. (B) The 116 intersected DELs obtained from 
GSE29721, GSE40367 and GSE62232. (C) The 21 intersected DEMs obtained from GSE36915 and GSE74618. Diff, Different. 
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Supplementary Figure 3. Signal network of differentially expressed mRNAs genes. Red cycle nodes represent upregulated genes, 
and green cycle nodes represent downregulated genes. Edges represent interactions between genes (arrowheads represent targets). 
Interaction types: a, activation; b, binding/association; c, compound; exp, expression; ind, indirect effect; inh, inhibition; +p, phosphorylation; 
-p, dephosphorylation. 
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Supplementary Figure 4. PPI network contrasted by the differentially expressed genes identified in the ceRNA network. Red 
dots represent up-regulated genes and green dots represent down-regulated genes. The degree of the dots represents the ability to interact 
with other genes. 
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Supplementary Figure 5. Survival significance of the DEGs and DEMs in ceRNA network in HCC TCGA database. The Kaplan-
Meier survival curves showed the significant correlation of DEGs and DEMs with OS time in HCC patients. The upregulated DEGs suggesting 
shorter OS were ACLY, BAX, BIRC5, CDC6, CDCA5, CHEK1, FOXM1, ITGA2, LAMC1, MCM5, MYB, PAK1, PRKAA2, SOX4, TK1 (Aa–Ao). The 
upregulated DEMs suggesting shorter OS were hsa-miR-10b-5p, hsa-miR-183-5p, and hsa-miR-222-3p (Ba–Bc). The upregulated DEGs 
suggesting longer OS were ABAT, ACSM2A, ASPA, CAMK4, CYP8B1, ESR1, IGF1, and PDE7B (Ca–Ch). The upregulated DEMs suggesting longer 
OS were hsa-let-7c-5p (D). 
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Supplementary Figure 6. The expression level in HCC TCGA database of the DEGs and DEMs in the ceRNA network. 
Upregulated DEGs in HCC tissues were ACLY, BAX, BIRC5, CDC6, CDCA5, CHEK1, FOXM1, ITGA2, LAMC1, MCM5, MYB, PAK1, PRKAA2, SOX4, 
TK1 (Aa–Ao). Upregulated DEMs in HCC tissues were hsa-miR-10b-5p, hsa-miR-183-5p, and hsa-miR-222-3p (Ba–Bc). Downregulated DEGs in 
HCC tissues were ABAT, ACSM2A, ASPA, CAMK4, CYP8B1, ESR1, IGF1, and PDE7B (Ca–Ch). Downregulated DEMs in HCC tissues were hsa-let-
7c-5p (D). 
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Supplementary Tables 
 

Supplementary Table 1. The top 10 upregulated and downregulated DELs in different expression profiles. 

Profile lncRNA style Fold Change P-value FDR 
GSE29721 NONHSAT207339.1 up 13.563082 0.000629 0.158919 
 NR_027687.1 up 10.552491 0.000232 0.097955 
 NONHSAT142613.2 up 7.639081 0.00386 0.314951 
 ENST00000389897.3 up 7.171353 0.000096 0.060247 
 NONHSAT035498.2 up 6.544641 0.012906 0.433058 
 LINC00348 up 6.469905 0.006573 0.385467 
 NONHSAT165875.1 up 6.469905 0.006573 0.385467 
 LINC01186 up 6.409546 0.00174 0.216378 
 NONHSAT223306.1 up 6.409546 0.00174 0.216378 
 SLC16A1-AS1 up 6.250394 0.001614 0.216378 
 XR_430125.2 down -30.4032 0.00042 0.062794 
 LINC00844 down -28.8462 0.002705 0.062794 
 NONHSAT013506.2 down -26.6209 0.002705 0.062794 
 LINC01093 down -26.0083 0.000273 0.062794 
 NONHSAT099579.2 down -22.2482 0.000273 0.062794 
 A2MP1 down -9.702393 0.000356 0.062794 
 NONHSAT161826.1 down -9.702393 0.000356 0.062794 
 LOC105373764 down -9.685478 0.00005 0.062794 
 NONHSAT183166.1 down -9.685478 0.00005 0.062794 
 C3P1 down -9.527459 0.001042 0.062794 
GSE40367 NONHSAT150376.1 up 10.09334 0.002556 0.103234 
 NONHSAT073632.2 up 9.626051 0.000564 0.05498 
 ENST00000624682.1 up 8.135566 0.000031 0.003617 
 ENST00000602609.1 up 6.688906 0.000346 0.02906 
 NONHSAT093645.2 up 6.679915 0.009827 0.306808 
 ENST00000602609.1 up 6.688906 0.000346 0.02906 
 NONHSAT093645.2 up 6.679915 0.009827 0.306808 
 OVOS2 up 6.635638 0.000953 0.075262 
 NMRAL2P up 6.128219 0.001682 0.103234 
 NR_033752.2 up 6.128219 0.001682 0.103234 
 NONHSAT024268.2 down -15.590468 0.00014 0.004823 
 NONHSAT121724.2 down -13.397352 0.000076 0.004823 
 XR_926922.1 down -9.912165 0.000151 0.004823 
 MAGI2-AS3 down -9.341953333 0.000204667 0.007230667 
 ENST00000562300.5 down -9.189726 0.000515 0.014854 
 LOC105370832 down -9.189726 0.000515 0.014854 
 LOC157273 down -9.082558 0.000457 0.014854 
 NONHSAT215396.1 down -9.082558 0.000457 0.014854 
 ENST00000417354.2 down -8.714519 0.000317 0.011311 
 FAM3D-AS1 down -8.685381 0.000166 0.004823 
GSE62232 NONHSAT214730.1 up 2.000594 0.000705 0.001847 
 ENST00000588226.5 up 2.01129 0.000159 0.000548 
 PARD6G-AS1 up 2.01129 0.000159 0.000548 
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 NR_001578.1 up 2.014546 0.002505 0.005106 
 TDH up 2.014546 0.002505 0.005106 
 NONHSAT177356.1 up 2.016526 0.00104 0.002528 
 LOC105371453 up 2.018036 0.000004 0.000026 
 XR_917739.1 up 2.018036 0.000004 0.000026 
 NONHSAT066299.2 up 2.03482 0.010096 0.015225 
 LOC105375172 up 2.035126 0.032603 0.036968 
 NONHSAT101639.2 down -2.000372 0.000026 0.000122 
 PART1 down -2.000372 0.000026 0.000122 
 LINC-PINT down -2.001105 0.039153 0.042336 
 NONHSAT213991.1 down -2.001105 0.039153 0.042336 
 NR_110825.1 down -2.001473 0.002129 0.004477 
 NONHSAT092521.2 down -2.0025 0.000014 0.000072 
 LOC439933 down -2.003334 0.038805 0.042034 
 NONHSAT150653.1 down -2.003633 0.000053 0.000222 
 ENST00000578662.1 down -2.00697 0.041058 0.043781 
 LOC101927539 down -2.00697 0.041058 0.043781 
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Supplementary Table 2. The top 10 upregulated and downregulated DEMs in different expression profiles. 

Profile miRNA style Fold Change P-value FDR 
GSE36915 hsa-miR-551b-3p up 2.732694 0.000198 0.000553 
 hsa-miR-96-5p up 2.589663 0.000087 0.000269 
 hsa-miR-10b-5p up 2.469124 0.015412 0.014288 
 hsa-miR-224-5p up 2.435419 0.010374 0.010986 
 hsa-miR-182-5p up 2.327596 0.005243 0.006487 
 hsa-miR-452-3p up 2.301487 0.000233 0.000636 
 hsa-miR-135a-5p up 2.250943 0.009832 0.010825 
 hsa-miR-515-5p up 2.211741 0.001409 0.002642 
 hsa-miR-520h up 2.163997 0.002988 0.004427 
 hsa-miR-501-5p up 1.98213 0.003605 0.00509 
 hsa-miR-203a-3p down -3.338125 0.000001 0.000005 
 hsa-miR-375 down -3.151798 0.00187 0.003151 
 hsa-miR-1-3p down -2.831155 0.000031 0.000118 
 hsa-miR-483-3p down -2.735831 0.000022 0.000092 
 hsa-miR-144-3p down -2.731645 0.000047 0.00016 
 hsa-miR-10a-5p down -2.715267 0.000311 0.00079 
 hsa-miR-429 down -2.536476 0.002207 0.003531 
 hsa-miR-542-3p down -2.536104 0.000013 0.000062 
 hsa-miR-30a-3p down -2.524737 0.000117 0.00035 
 hsa-miR-200a-3p down -2.484562 0.000003 0.00002 
GSE74618 hsa-miR-21-5p up 4.65618 0.000011 0.000181 
 hsa-miR-34a-5p up 4.629343 0.000376 0.003044 
 hsa-miR-155-5p up 3.04827 0.00063 0.004483 
 hsa-miR-155-5p up 3.04827 0.00063 0.004483 
 hsa-miR-532-5p up 2.823342 0.000956 0.005882 
 hsa-miR-4322 up 2.560282 0.00006 0.00075 
 hsa-miR-502-3p up 2.26894 0.000063 0.000762 
 hsa-miR-1202 up 2.185917 0.001181 0.007133 
 hsa-miR-1307-3p up 2.185861 0.000303 0.002566 
 hsa-miR-501-3p up 2.140183 0.00004 0.000546 
 hsa-miR-375 down -4.040495 0.001517 0.008667 
 hsa-miR-486-5p down -3.431948 0.000095 0.001033 
 hsa-miR-378a-5p down -3.396752 0.000018 0.000272 
 hsa-miR-497-5p down -2.592723 0.000066 0.000779 
 hsa-miR-125b-2-3p down -2.469376 0.000417 0.003297 
 hsa-miR-30a-3p down -2.173553 0.00001 0.00017 
 hsa-miR-505-3p down -2.106977 0.000289 0.002497 
 hsa-miR-122-3p down -2.074589 0.012504 0.043968 
 hsa-miR-424-3p down -1.988536 0.001084 0.006604 
 hsa-miR-192-3p down -1.956065 0.000069 0.000793 
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Supplementary Table 3. miRNAs and targeted intersected mRNAs in HCC. 

miRNA Gene symbol 

hsa-let-7c-5p ACOX1, AGXT2, ALDH6A1, C7,CYP8B1, DCN, DMD, EPHA7, ESR2, ETNK2, FXN, 
IDS，IGF1, LIMK2, MASP1, PPP2R2A ,SGCD, SLC10A1, TK1, VSIG4 

hsa-miR-10a-5p ACOX1, ADCY1, ALDH6A1, CAMK2B, ITGA2, MAT1A, PRKAA2, SGCD, TACR1 

hsa-miR-10b-5p ABCG2, BMPR1B, HGF, PDE11A, PDGFRA, PRKAA2, SGCD 
hsa-miR-130a-3p CAMK4，ESR1，FXN，GNAO1，LAMC1，PDGFRA，TRIM71 
hsa-miR-182-5p ACADSB，CAMK4，COL4A1，CYP1A2，DCN，ESR1，GNAO1，PDE11A，SLC4A4 

hsa-miR-183-5p 
ABAT，ABCC9，ACSM2A，AR，ARRB1，CAMK4，CYP2B6，DBT，FXN，GNAO1，I

GF1，SLC4A4，STMN1 
hsa-miR-195-5p AR，BIRC5，CHEK1，GLS2，MASP1，MME，MYB，SEMA6D，SLC4A4 

hsa-miR-199a-5p 
AADAT，ABCG2，ADH4，AR，CBS，CHEK1，EPHA7，HOGA1，PCK1，PDE11A，PT

GIS，SLC8A1 
hsa-miR-203a-3p FHL1，IDS，LAMC1，PLA2R1，PLCB1，PPP1R3B，SGCD 

hsa-miR-214-3p 
ACLY，ACOX1，ADCY1，APOA5，AR，BAAT，BAX，BCKDHB，CAMK2B，CDCA5
，CYP2C19，CYP8B1，FOXM1，GNAO1，GPT2，IGF1，KMO，LMNA，MASP1，MAS

P2，NGFR，PDE4A，PRKAA2，SEMA6D，SGCD，SOCS2，TACR1 
hsa-miR-216a-5p ACADSB，ADCY1，BCAT1，CYP8B1，DBT，ESR2，KCNE1，LEPR，PTGIS，SGCD 

hsa-miR-222-3p 
ACOX1，CAMK4，CD4，COL4A1，DBT，FXN，IGF1，KCNE1，PDE7B，PLA2G16，P

RKAA2，SEMA6D，TACR1，TRIM71 
hsa-miR-224-5p AR，ARRB1，AVPR1A，DBT，ESR1，GLS2，PLCB1，PRKAA2，PTGIS 

hsa-miR-30a-3p 
ADCY1，AR，ARRB1，CAMK4，CD34，ESR1，HPGD，KCNE1，PDE11A，PRKAA2，

SGCD，SLC1A1，ST6GAL2，TRIM71，USP25 

hsa-miR-375 
ADCY10，ADH1B，ADH4，AR，CYP2A6，LEPR，NCAM1，PDE2A，PLCB1，PRLR，S

LC8A1，SMAD6，SPAM1，TACR1，TK1 

hsa-miR-452-5p 
ACACB，ASPA，CAMK4，IDS，IL20RA，NPY1R，PPP1R3B，PRKAA2，SEMA6D，SG

CD，SLC4A4，SLC8A1 
hsa-miR-455-5p BAAT，CAMK4，HMGCL，HOGA1，KMO，MASP1，PAK1，VSIG4 

hsa-miR-486-5p ASS1，INMT，KMO，LPCAT1，SOX4 

hsa-miR-497-5p 
ADCY1，ALDH6A1，BIRC5，CAMK4，CDC6，ESR2，ITGA2，KCNK5，LAMC1，MAS

P1，MCM5，MME，MYB，SGCD，TRIM71 
hsa-miR-505-3p ABAT，ACOX1，ACVR1C，ADCY1 

hsa-miR-99a-5p 
ACAA2，ADCY1，AR，CYP1A1，DAPK2，DBT，ESR2，FHL1，GHR，KCNMA1，LEP

R，MASP1，PDE11A，PTGS2，SLC16A10，SLC4A4，TF，TNXB，TRIM71 
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Supplementary Table 4. miRNAs and targeted intersected lncRNAs in HCC. 

lncRNA miRNA 

MCM3AP-AS1 
hsa-miR-455-5p，hsa-miR-214-3p，hsa-miR-497-5p，hsa-miR-497-5p，hsa-miR-199a-

5p，hsa-miR-30a-3p，hsa-miR-182-5p，hsa-miR-195-5p 

GBAP1 
hsa-miR-486-5p，hsa-miR-497-5p，hsa-miR-199a-5p，hsa-miR-182-5p，hsa-miR-224-

5p，hsa-miR-195-5p，hsa-miR-30a-3p 

SLC16A1-AS1 
hsa-let-7c-5p，hsa-miR-497-5p，hsa-miR-183-5p，hsa-miR-130a-3p，hsa-miR-222-3p，hsa-

miR-455-5p，hsa-miR-486-5p，hsa-miR-505-3p 

NONHSAT172507.1 
hsa-miR-10a-5p，hsa-miR-214-3p，hsa-miR-10b-5p，hsa-miR-505-3p，hsa-miR-199a-

5p，hsa-miR-182-5p，hsa-miR-195-5p，hsa-miR-222-3p，hsa-miR-10a-5p，hsa-miR-455-5p 

NONHSAT191112.1 
hsa-miR-455-5p，hsa-miR-214-3p，hsa-miR-497-5p，hsa-miR-30a-3p，hsa-miR-182-

5p，hsa-miR-195-5p 

PCBP1-AS1 

hsa-miR-455-5p，hsa-let-7c-5p，hsa-miR-497-5p，hsa-miR-199a-5p，hsa-miR-183-5p，hsa-
miR-224-5p，hsa-let-7c-5p，hsa-miR-497-5p，hsa-miR-214-3p，hsa-miR-216a-5p，hsa-

miR-203a-3p，hsa-miR-497-5p，hsa-miR-30a-3p，hsa-miR-10b-5p，hsa-miR-182-5p，hsa-
miR-224-5p，hsa-miR-505-3p，hsa-miR-195-5p，hsa-miR-10a-5p，hsa-miR-216a-5p，hsa-

miR-30a-3p 

LINC01128 
hsa-miR-214-3p，hsa-miR-224-5p，hsa-miR-183-5p，hsa-miR-99a-5p，hsa-miR-199a-

5p，hsa-miR-497-5p，hsa-miR-216a-5p，hsa-miR-10b-5p，hsa-miR-505-3p，hsa-miR-195-
5p，hsa-miR-30a-3p，hsa-miR-203a-3p，hsa-miR-497-5p，hsa-miR-10a-5p 

HAND2-AS1 hsa-miR-216a-5p，hsa-miR-222-3p，hsa-miR-183-5p，hsa-let-7c-5p，hsa-miR-452-5p，hsa-
miR-455-5p 

MAGI2-AS3 
hsa-let-7c-5p，hsa-miR-10a-5p，hsa-let-7c-5p，hsa-miR-30a-3p，hsa-miR-10b-5p，hsa-let-
7c-5p，hsa-miR-183-5p，hsa-miR-195-5p，hsa-miR-222-3p，hsa-miR-455-5p，hsa-miR-

452-5p，hsa-miR-130a-3p，hsa-miR-203a-3p 
C3P1 hsa-miR-216a-5p, hsa-miR-224-5p, hsa-miR-224-5p 
NONHSAT035498.2 hsa-let-7c-5p，hsa-miR-182-5p，hsa-miR-486-5p，hsa-miR-199a-5p，hsa-miR-452-5p 
GAS5 hsa-let-7c-5p，hsa-miR-455-5p，hsa-miR-30a-3p，hsa-miR-452-5p 
CYTOR hsa-let-7c-5p，hsa-miR-455-5p，hsa-miR-182-5p，hsa-miR-497-5p 

DIO3OS hsa-miR-455-5p, hsa-miR-214-3p, hsa-let-7c-5p, hsa-miR-214-3p, 
 hsa-miR-216a-5p, hsa-miR-224-5p,  

HNF4A-AS1 hsa-miR-182-5p，hsa-miR-224-5p，hsa-miR-195-5p，hsa-miR-222-3p 

NONHSAT202693.1 
hsa-miR-452-5p，hsa-miR-224-5p，hsa-let-7c-5p，hsa-miR-10a-5p，hsa-miR-10b-5p，hsa-

miR-30a-3p，hsa-miR-214-3p 
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Supplementary Table 5. Top 20 degree of genes in PPI network. 

Gene symbol Biotype style Degree 

ESR1 mRNA down 17 

IGF1 mRNA down 15 

BIRC5 mRNA up 12 

CD34 mRNA up 10 

FOXM1 mRNA up 9 

ITGA2 mRNA up 9 

AR mRNA down 9 

ACLY mRNA up 9 

ACACB mRNA down 9 

DCN mRNA down 8 

CYP2B6 mRNA down 8 

ABCG2 mRNA down 7 

CDC6 mRNA up 7 

BAX mRNA up 7 

CHEK1 mRNA up 6 

TK1 mRNA up 6 

PDGFRA mRNA down 6 

MCM5 mRNA up 6 

DBT mRNA down 5 
HGF mRNA down 5 
 
 


