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INTRODUCTION 
 
Acute myeloid leukemia (AML) is one of the most 
prevalent and aggressive blood cancers in adults, 
accounting for about 1% of all cancers [1–3]. In the 
United States, an estimated 21,450 new cases and 
10,920 deaths are projected to occur in 2019 [4]. 
AML is characterized by accumulation of immature 
myeloid hematopoietic cells, especially in the bone 
marrow. Peripheral blood involvement is also 
frequent, and may lead to malignant infiltration into 
the skin, lymph nodes, spleen, liver, and central  

 

nervous system [5]. The main therapeutic strategy for 
AML, i.e. intensive induction chemotherapy and 
postremission therapy, has remained basically 
unchanged for the last 30 years, without substantial 
improvement in patient survival [6, 7]. Although 
remarkable remissions can be initially attained 
through chemotherapy in most AML patients, 
complete disease elimination remains rare. Promising 
approaches have been proposed, such as chimeric 
antigen receptor (CAR) T-cell therapy targeting CD33 
combined with allogeneic hematopoietic cell 
transplantation [8, 9]. However, 75% of patients are 
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ABSTRACT 
 
The tumor microenvironment (TME) has a strong influence on the progression, therapeutic response, and 
clinical outcome of acute myeloid leukemia (AML), one of the most common hematopoietic malignancies in 
adults. In this study, we identified TME-related genes associated with AML prognosis. Gene expression profiles 
from AML patients were downloaded from TCGA database, and immune and stromal scores were calculated 
using the ESTIMATE algorithm. Immune scores were correlated with clinical features such as FAB subtypes and 
patient’s age. After categorizing AML cases into high and low score groups, an association between several 
differentially expressed genes (DEGs) and overall survival was identified. Functional enrichment analysis of the 
DEGs showed that they were primarily enriched in the immune response, inflammatory response, and cytokine 
activity, and were involved in signaling processes related to hematopoietic cell lineage, B cell receptor, and 
chemokine pathways. Two significant modules, dominated respectively by CCR5 and ITGAM nodes, were 
identified from the PPI network, and 20 hub genes were extracted. A total of 112 DEGs correlated with poor 
overall survival of AML patients, and 11 of those genes were validated in a separate TARGET-AML cohort. By 
identifying TME-associated genes, our findings may lead to improved prognoses and therapies for AML. 
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still at risk of disease relapse and succumb to the 
disease within 5 years from diagnosis [10].  
 
AML prognosis is currently determined by increasing 
age, white blood cell counts at diagnosis, cytogenetic 
abnormalities, and AML-specific molecular genetic 
lesions [11, 12]. Although extensive research has helped 
to elucidate the genomic landscape of AML and to 
better understand its development, translation of this 
knowledge into improved therapies has just begun. 
Therefore, identification of potential biomarkers would 
aid in diagnosis, treatment, and prognosis of AML 
patients. 
 
Much attention has been devoted in recent years to the 
role of the tumor microenvironment (TME) in cancer 
development [13]. Consequently, alterations in TME 
components have been defined in virtually all cancer 
types for each step of the multi-stage process of malignant 
progression, helping to understand cancer progression and 
to identify potential therapeutic targets [2]. For instance, 
diverse TME elements, including soluble factors, 
suppressive immune cells, and altered components of the 
extracellular matrix were shown to function together to 
restrain tumor immunotherapy, induce chemoresistance, 
and promote progression of breast cancer [14]. Likewise, 
breakthrough discoveries leading to current PD-1/PD-L1-
targeted immunotherapies were the result of investigations 
assessing tumor-stromal interactions and specific 
alterations in the TME [15]. The tumor microenvironment 
has been revealed as a crucial determinant of the diagnosis 
and therapeutic response of cancer patients [2, 16–18]. 
The high complexity of the TME is reflected by multiple 
interactions between tumor, stromal, immune, and 
mesenchymal cells, through a number of soluble factors 
and alterations in extracellular matrix components [19]. 
As the two major non-tumor cell populations in the TME, 
stromal cells and infiltrating immune cells have been 
associated with tumor diagnosis and prognosis. For 
instance, analysis of RNA-seq gene expression data 
showed that immune infiltration by T and B cells, 
including increased abundance of CD8+ T cells and B-
cell receptor diversity, is associated with improved overall 
survival in Merkel cell carcinoma [20]. Indeed, the TME 
is considered a consensus field for identifying novel 
tumor biomarkers [21, 22]. Since the interplay between 
leukemic blasts and the bone marrow microenvironment 
has shown to affect chemotherapy resistance in AML, 
targeting the TME interactions in AML has been the focus 
of several preclinical studies and early phase clinical trials 
[23, 24]. Examples include inhibitors of CXCR4 [25, 26], 
VLA-4 [27, 28] and E-selectin [29], which are being 
evaluated in clinical trials.  
 
Algorithms that evaluate and rank immune and stromal 
populations within the TME, such as the Estimate of 

STromal and Immune cells in MAlignant Tumor tissues 
using Expression data (ESTIMATE) [30], have been 
developed to assess the infiltration of non-tumor cells 
by analyzing specific gene expression signatures [31]. 
Although this algorithm has been successfully applied 
to characterize several solid tumors, such as breast 
cancer [32], clear cell renal cell carcinoma [33], and 
colon cancer [34], it has not been used to define 
immune and stromal scores in AML samples. 
 
In the present study, gene expression profiles and 
clinical information of AML cohorts were downloaded 
from TCGA, and the ESTIMATE algorithm was then 
used to calculate immune and stromal scores for these 
AML cases. Following classification into high- and 
low-score groups, we identified a subset of TME-
associated genes that predict outcome in patients with 
AML. The correlation between the expression of these 
genes and AML prognosis was independently validated 
in a TARGET AML cohort from UCSC Xena database. 
These findings may contribute to better understand the 
role of the TME in AML and might lead to improved 
prognosis and therapies for this disease. 
 
RESULTS  
 
Correlation between immune and stromal scores and 
AML clinical parameters 
 
Gene expression profiles and associated clinical data of 
173 AML patients were retrieved from TCGA database. 
Among patients, 80 (46.2%) were female and 93 
(53.8%) were male. Pathological diagnosis identified 16 
cases of FAB M0 (undifferentiated subtype), 42 FAB 
M1 cases, 39 FAB M2 cases, 16 FAB M3 cases, 35 FAB 
M4 cases, and 19 cases of FAB M5 (Table 1). Immune 
scores and stromal scores for these patients were 
calculated using the ESTIMATE algorithm. Immune 
scores ranged from 1329.53 to 3971.97, whereas stromal 
scores varied from -1888.81 to 435.75. The relationship 
between immune and stromal scores and clinical 
parameters was analyzed. On average, immune scores of 
FAB M4 cases ranked the highest among all 6 FAB 
morphological subtypes, while immune scores from 
FAB M3 patients ranked the lowest (p < 0.001; Figure 
1A). Similarly, FAB M4 cases had the highest stromal 
scores, whereas FAB M0 and M1 subtypes had the 
lowest (p < 0.0001; Figure 1B). No significant 
correlations between immune or stromal scores and 
patients’ gender or history of neoadjuvant treatment 
were observed using two-tailed Student’s t-tests, while 
immune scores showed a positive association with both 
cytogenetic risk category and age (Supplementary Figure 
1). These findings suggest that the analysis of immune 
and stromal scores may aid in the diagnosis and 
characterization of specific AML subtypes. 



www.aging-us.com 10559 AGING 

Table 1. The clinical data of patients with AML based on the immune scores and stromal scores.  

Characteristic Immune score(range) Stromal score(range) Cases 
Age    
<60 (1368.53-3758.87) (-1888.81--202.78) 90 
≥60 (1329.53-3971.97) (-1753.86-435.75) 83 
Gender    
Female (1329.53-3971.97) (-1888.81-435.75) 80 
Male (1475.85-3758.87) (-1660.43- -207.13) 93 
Neoadjuvant treatment    
Yes (1329.53-3971.97) (-1888.81-435.75) 45 
No (1475.85-3758.87) (-1735.4- -207.13) 128 
FAB subtype    
M0 (1606.38-3481.5) (-1534.51- -705.43) 16 
M1 (1329.53-3432.53) (-1888.81- -297.73) 42 
M2 (1637.44- 3352.15) (-1735.4- -235.75) 39 
M3 (1475.85-2707.91) (-1571.73-1734.11) 16 
M4 (1823.93-3758.87) (-1249.43-  -352.55) 35 
M5 (2388.6-3971.97) (-1693.75-435.75) 18 
M6 (2698.17-3116.63) (-754.82- -494.19) 2 
M7 (1970.08-2489.15) (-1094.44- -207.18) 3 
Unkown (1625.8-2150.49) (-1462.53- -1398.47) 2 
Cytogenetics_risk_category    
Favorable (1475.85-3758.87) (-1571.73- -425.53) 32 
Normal (1329.53-3971.97) (-1753.86-435.75) 103 
Poor (1625.8-3481.5) (-1888.81- -235.75) 36 
NA (1839.34-2510.82) (-1735.4- -1470.38) 2 
Survival status    
Alive (1329.53-3758.87) (-1888.81- -202.78) 70 
Dead (1579.75-3971.97) (-1735.4- 435.75) 103 

*AML: Acute Myeloid Leukaemia; FAB: French-American-British. 
 

To assess the correlation between immune and stromal 
scores and overall survival, AML patients were divided 
into corresponding high- and low-score groups. We 
found that cases with a low immune score had 
significantly longer overall survival than those with a 
high immune score (p = 0.018; Figure 1C). Meanwhile, 
patients with low stromal scores showed longer overall 
survival than patients with high stromal scores, but this 
difference was not significant (p = 0.5904; Figure 1D). 
In addition, patients without history of chemotherapy 
had a better outcome than those treated with 
chemotherapy (Supplementary Figure 2B), while a 
favorable cytogenetic risk index predicted significantly 
improved prognosis (Supplementary Figure 2D). These 
observations suggest that patients with low immune and 
stromal scores have a more favorable outcome. 
 
Identification of differentially expressed genes  
 
To correlate gene expression profiles with immune 
and stromal scores, gene expression data from the 173 
AML patients was analyzed after separation into high- 

and low-score groups based on median scores. A 
distinct gene expression pattern was revealed between 
the respective high- and low-score groups for both 
immune and stromal scores (Figure 2), indicating that 
gene expression profiles might be used to delineate 
group differences. On comparison based on immune 
scores, 488 genes were upregulated while 61 genes 
were downregulated (|log FC| > 1.5, q-value < 0.05) 
(Figure 3A). In turn, 412 genes were upregulated and 
15 genes were downregulated upon comparison 
between the high and low stromal score groups (|log 
FC| > 1.5, q-value < 0.05) (Figure 3B). In addition, 
commonly shared DEGs were analyzed in the high 
and low groups based on immune and stromal scores. 
A total of 352 genes were upregulated (Figure 4A) 
while 9 genes were downregulated (Figure 4B). The 
proportion of commonly upregulated and 
downregulated genes found upon comparison of high 
vs. low stromal score groups was similar. These 361 
genes were selected as DEGs for subsequent analysis 
to explore their relevance in association with the 
AML microenvironment. 
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Functional enrichment analysis of DEGs 
 
To investigate the potential function of the DEGs 
identified above, GO term and KEGG pathway 
enrichment analyses were performed using the 
clusterProfiler package. Significance (false discovery 
rate < 0.05) was achieved for a total of 531 GO terms of 
biological process, 64 GO terms of molecular function, 
and 61 GO terms of cellular component. The top 30 GO 
biological process terms indicated that the DEGs were 
primarily enriched in ‘regulation of immune response 
process’, ‘activity of neutrophils and leukocytes’, 
‘cytokine secretion’, ‘inflammatory response’, and 
‘regulation of tumor necrosis’ (Figure 5A). Molecular 
functions ascribed to these DEGs included mainly 
‘peptide binding’, ‘cytokine binding’, ‘immunoglobulin 
binding’, ‘lipopeptide binding’, and several sub-terms 
of ‘cargo receptor activity’ (Figure 5B). Primary terms 
within cellular component included ‘secretory granule 

membrane’ and ‘secretory granule lumen’, and ‘vesicle 
lumen’ (Figure 5C). Additionally, on KEGG analysis 
the DEGs were mainly enriched in ‘infection’, 
‘hematopoietic cell lineage’, ‘B cell receptor signaling’ 
and ‘chemokine signaling’ pathways (Figure 5D). These 
analyses suggest a vital role for these DEGs in AML 
development, and merit further investigation to define 
their true biological contribution.  
 
Protein-protein interaction network  
 
To analyze potential connectivity patterns between the 
transcripts of our DEG set, a protein-protein interaction 
(PPI) network was constructed using the STRING 
database. The network revealed two significant modules 
(Figure 6). We called these modules CCR5 (chemokine 
receptor 5) and ITGAM (integrin alpha M), in reference to 
the highest-degree genes within each module. The CCR5 
module (Figure 6A) was defined by 270 edges involving

 

 
 

Figure 1. Immune scores and stromal scores are associated with AML FAB subtypes and overall survival. (A) Distribution of 
immune scores within AML FAB subtypes. Significant associations were detected between AML FAB subtypes and immune scores (n = 173, p 
< 0.0001). (B) Distribution of stromal scores within AML FAB subtypes. Significant associations were found between AML FAB subtypes and 
stromal scores (n = 173, p < 0.0001). (C) Kaplan-Meier survival analysis of high vs. low immune score groups (log-rank test, p = 0.018). (D) 
Kaplan-Meier survival analysis of high vs. low stromal score groups (log-rank test, p = 0.5904). 
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Figure 2. Heatmap of differentially expressed genes in the high and low immune/stromal score groups. (A) Immune scores (high 
score, left; low score, right. |log FC| > 1.5, q-value < 0.05). (B) Stromal scores (high score, left; low score, right. |log FC| > 1.5, q-value < 0.05). 

 

 
 

Figure 3. Differentially expressed genes between high vs. low immune and stromal AML scores. (A) Immune scores (|log FC|  
> 1.5, q-value < 0.05). (B) Stromal scores (|log FC| > 1.5, q-value < 0.05). 
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Figure 4. Common differentially expressed genes detected for immune and stromal scores. (A) Commonly upregulated DEGs. (B) 
Commonly downregulated DEGs. 

 

 
 

Figure 5. GO term and KEGG pathway enrichment analysis of the top 30 DEGs. (A) Biological process (BP). (B) Molecular function 
(MF). (C) Cellular component (CC). (D) KEGG pathway analysis. 
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33 nodes. CCR5, CCR1, FCGR2B, CCR2, CD68, CD163, 
and IL10 were the top 20% degree ranked nodes. 
Meanwhile, in the ITGAM module (Figure 6B), ITGAM, 
TLR8, LILRB2, MNDA, HCK, FPR1, CD86, and 
FCGR3A were the nodes with highest connectivity. After 
loading the entire PPI network on Cytoscape, the top 20 
high-degree hub genes were identified using the 
cytoHubba plugin (Supplementary Table 1). These 
included all the top proteins identified in the CCR5 and 
ITGAM modules. Of note, most of these key nodes 
consisted of proteins/genes involved in immune regulation. 
 
Association between individual DEGs and overall 
AML survival  
 
To explore the prognostic utility of individual DEGs on 
overall AML survival, Kaplan-Meier (K-M) survival 
curves were generated by the survival package in R. In 
total, 112 genes (a full list is shown in Supplementary 
Table 2), including 9 hub genes, were significantly 

correlated with poor overall survival using log-rank test 
(p < 0.05). K-M curves were plotted for several selected 
genes (Figure 7). GO analysis of these potential 
prognostic genes also showed strong association with 
the immune response, cytokine activity, chemotaxis, 
and leukocyte activation (Figure 8A–8C). Pathway 
analysis indicated that these genes were mainly 
involved in ‘cytokine-cytokine receptor interaction’, ‘B 
cell receptor signaling’, ‘chemokine signaling’, 
‘hematopoietic cell lineage’, and ‘antigen processing 
and presentation’ (Figure 8D).  
 
Validation in the TARGET-AML cohort 
 
To verify whether the genes identified from TCGA 
AML patients are also of prognostic significance in an 
independent AML cohort, we downloaded and analyzed 
gene expression data of 187 TARGET AML patients 
from UCSC Xena database. Among 112 prognostic 
genes, a total of 11 genes were validated based on

 

 
 

Figure 6. Main modules identified through protein-protein interaction network analysis. (A) CCR5 module. (B) ITGAM module. 
The color of a node in each module reflects its connectivity degree score. 
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Figure 7. Correlation of the expression of individual DEGs with overall survival of AML patients from TCGA database. (A–K) 
Kaplan-Meier survival curves for selected DEGs following comparison of high vs. low gene expression groups according to the median value of 
each gene (log-rank test, p < 0.05). 
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significant association with poor overall survival 
(Figure 9). Except for IRX5, the expression of all these 
validated genes showed a positive correlation with 
CXCR4 expression (Supplementary Figure 3), while 
ITGAM and SLC8A1 were negatively correlated with 
E-selectin and VLA-4 (Supplementary Figure 4). 
Similarly, a negative correlation between MYOTA and 
OTOA expression and E-selectin and VLA-4 expression 
was observed.  
 
DISCUSSION  
 
The TME plays an essential role in the development, 
progression, and relapse of AML. Therefore, targeting 
the TME has become an effective tool to improve 
patient outcomes [2]. The main purpose of this study 
was to identify on the TCGA database TME genes that 
contribute to overall survival in AML patients. 
Following the general analysis workflow diagrammed 
in Figure 10, analysis of 173 AML cases identified 549 

DEGs between high and low immune score patients, 
while 427 DEGs distinguished cases with high vs low 
AML stromal scores. We also detected an association 
between immune scores and diverse AML clinical 
parameters, including cytogenetic risk categories, older 
age, morphological FAB subtypes, and patient 
outcomes. Thus, we show that prognosis is worse for 
patients with a high immune score, while longer overall 
survival is predicted for cases with lower cytogenetic 
risk, no history of chemotherapy, FAB M3 subtype, or 
patients with age greater older than 60 years. These 
results were consistent with previous studies [34]. 
Further classification of cases revealed 361 common 
DEGs between high vs low immune/stromal score 
patients. GO analysis of these DEGs revealed 
significant enrichment in immune-related processes 
known to contribute to disease progression and drug 
resistance in several tumors [34, 35], including lung 
cancer [36], breast cancer [37] and bladder cancer  
[38]. Accordingly, KEGG analysis suggested the 

 

 
 

Figure 8. Significantly enriched GO terms and KEGG pathways of prognosis-predictive DEGs from AML samples. (A) Biological 
process (BP). (B) Molecular function (MF). (C) Cellular component (CC). (D) KEGG pathway analysis. 
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Figure 9. Correlation of DEG expression with overall survival in the TARGET-AML dataset. (A–K) Kaplan-Meier survival curves 
validating the correlation between 11 DEGs and overall survival in the TARGET-AML dataset (log-rank test p < 0.05; n = 187). 
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involvement of DEGs in several signaling pathways 
including ‘chemokine signaling pathway’ [39] and 
‘intestinal immune network for IgA production’ [40], 
which may influence TME dynamics and development 
of AML. On the other hand, signal transduction 
pathways involving ‘cytokine-cytokine receptor 
interaction’ contribute to the progression of 
glioblastoma [41] and osteosarcoma [42], and modulate 
the microenvironment of hematopoietic tumors.  
 
Hematopoietic stem cells on the endosteal surface of the 
bone marrow interact with a variety of cellular and 
extracellular components, such as osteoblasts, 
macrophages, and collagen and laminin fibers, and may 
act as progenitors for cancer-associated adipocytes and 
fibroblasts [43]. Importantly, these cells can also 
condition and reshape the TME, facilitating cancer cell 
proliferation, survival, chemotherapy resistance, and 
metastasis [43]. The interaction between hematopoietic 
cells and niche components plays a critical role in 
AML’s development, progression, survival, response to 
treatment, and relapse [23, 24, 44]. Previous studies 
showed that co-culture of AML blasts with bone 

marrow stromal cells stimulated blasts’ survival and 
inhibited chemotherapy-induced apoptosis, highlighting 
the critical role of the microenvironment with 
implications for chemotherapy and other treatment 
strategies for AML patients [45, 46].  
 
We constructed a PPI network based on the 361 DEGs 
commonly shared between high vs low immune/stromal 
score patients, and identified two significant modules 
with genes primarily enriched in ‘immune/inflammatory 
response’, ‘chemokine binding’, and ‘myeloid 
leukocyte activation’. CCR5 and ITGAM were the top 
interrelated nodes in these two modules, and their 
expression predicted poor prognosis in our study. 
ITGAM (also known as CD11b) is a differentiation 
marker for cells of the myeloid-monocytic lineage [47]. 
Upregulation of ITGAM and CD86 following LSD1 
inhibition was correlated with myeloid differentiation, 
inhibition of human monocytic leukemia cell 
proliferation [48], and sensitization of AML cells to all-
trans-retinoic acid [49]. Meanwhile, CCR5 regulates 
proliferation and plays a key role in the extramedullary 
homing of infiltrating leukemia cells [3].  

 

 
 

Figure 10. Study workflow. 
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Correlation analysis of individual DEGs identified 112 
genes, including 9/20 top hub genes in the PPI 
network, in association with poor overall AML 
survival. Functional enrichment analysis confirmed the 
involvement of these hub genes in immune-related 
processes. A separate cohort (TARGET-AML) of 187 
AML cases from UCSC Xena database was used to 
validate the survival analysis. Results showed that 11 
DEGs from our TCGA AML cohort were also 
significantly linked to poor overall survival in the 
TARGET-AML cohort. Most of the validated genes, 
such as IL15 [50], ITGAM [51], PDK4 [52, 53], and 
IRX5 [54], have been implicated in AML progression 
and/or as survival predictors in several types of 
cancers. The remaining genes, i.e. BLNK [55], 
MYO7A [56], VNN2 [57], OTOA [58], SLC8A1 [59] 
and DTX4 [60], might also serve as potential 
biomarkers for AML. CXCR4 and adhesion molecules 
such as E-selectin and VLA-4 have been targeted to 
develop clinical therapies. We found that all the 
validated genes, except for IRX5, are positively 
correlated with CXCR4 expression, whereas SLC8A1 
and ITGAM showed a negative correlation with E-
selectin and VLA4 expression. CXCR4 is expressed 
on the surface of AML blasts, and increased 
expression predicts poor survival and high relapse rate 
[61]. Accordingly, AML progression can be facilitated 
by interaction of CXCL12 and CXCR4 to activate the 
MEK/ERK and PI3K/AKT pathways [25]. The 
VCAM-1/VLA-4 pathway modulates interactions 
between hematopoietic stem cells within the bone 
marrow and with fibronectin or stromal cells to 
activate the PI3K/AKT/Bcl-2 signaling pathway, 
inducing resistance to chemotherapy [62]. Although 
experimental verification is warranted, the association 
of these genes suggested that they may promote the 
development of AML in a specific manner.  
 
IL15 and ITGAM, two hub genes from the main PPI 
modules, are of particular interest. As a proinflammatory 
cytokine, IL15 has a variety of functions in the immune 
system and in the generation of multiple lymphocyte 
subsets [63], affecting the proliferation and differentiation 
of natural killer, T, and B cells [64], and CD8+ T memory 
cells [65]. In patients with colorectal carcinoma, absence 
of IL-15 expression correlated with decreased immune 
activation assessed by T and B cell abundance, and 
predicted worse prognosis [66]. There is evidence that 
IL15 can promote the pathogenesis of leukemia [67] and 
control the proliferation and survival of leukemic 
progenitors [68]. IL15 can induce survival and 
proliferation of growth factor-dependent AML cells 
through interaction with IL2 receptor beta/gamma [69], 
and its upregulation may be a predictor of disease relapse 
in pediatric AML patients [70]. Moreover, single 
nucleotide polymorphisms in the IL15 gene have been 

associated with risk of developing adult acute 
lymphoblastic leukemia [71]. These studies highlight the 
potential relevance of IL15 targeting in therapies for 
hematopoietic cancers.  
 
ITGAM [72] was the highest interconnected node from 
the MCODE modules. ITGAM is a cell surface 
receptor selectively expressed on leukocytes with 
multifaceted functions in the activation, chemotaxis, 
cytotoxicity, phagocytosis, and interaction of leukemic 
cells with the TME [73, 74]. ITGAM is considered a 
marker for myeloid-derived suppressor cells 
responsible for tumor escape from host immunity and 
treatment refractoriness [75, 76]. Resistance to 
chemotherapy is a major obstacle in AML therapy. 
High ITGAM/CD56 co-expression combined with low 
Smac/DIABLO expression were proposed to be an 
important predictor of chemoresistance in AML 
patients [77]. The prognostic value of ITGAM in AML 
patients has been extensively assessed, and a 
correlation between high ITGAM expression and poor 
prognosis in AML has been established [51, 78]. 
Accordingly, ITGAM expression predicted worse 
overall survival in the present study. 
 
CONCLUSIONS 
 
In summary, our study used the ESTIMATE algorithm 
to define a set of TME-related DEGs based on immune 
and stromal scores from TCGA AML data. Correlation 
analysis of the expression of these genes with patients’ 
overall survival was performed and results 
independently validated in the TARGET-AML cohort. 
Further studies on the DEGs identified here should help 
clarify the mechanisms by which gene expression 
within the TME influences the prognosis and 
progression of AML, and guide the development of 
more effective therapies.  
 
MATERIALS AND METHODS 
 
Gene expression datasets 
 
Gene expression profiles of 173 AML patients were 
downloaded from TCGA database (https://portal. 
gdc.cancer.gov/). Clinical data, including gender, age, 
French-American-British (FAB) classification [79], 
history of neoadjuvant treatment, survival, and 
outcome, were also downloaded. Immune scores and 
stromal scores were calculated by the ESTIMATE 
algorithm. For validation of TCGA data, gene 
expression profiles of 187 TARGET-AML patients 
were obtained from the UCSC Xena database 
(https://xenabrowser.net/datapages/). Clinical follow-up 
information was also downloaded. 
 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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Identification of differentially expressed genes  
 
Differentially expressed genes (DEGs) were identified 
between high and low score groups stratified by the 
median value of immune scores and stromal scores 
using limma package [80]. Genes with |log FC |> 1.5 
and adjusted p-value (q value) < 0.05 were selected as 
DEGs.  
 
Heatmap and clustering analysis 
 
Heatmap and clustering were performed using the 
online tool ClustVis (https://biit.cs.ut.ee/clustvis/) [81]. 
 
Enrichment analysis of DEGs 
 
Functional enrichment analysis of DEGs was conducted 
by clusterProfiler [81] R package to identify GO 
categories, including biological processes (BP), 
molecular functions (MF), and cellular components 
(CC). Pathway enrichment analysis based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
was also performed using this package. P < 0.05 was 
considered statistically significant. 
 
Protein network construction and identification and 
analysis of hub genes  
 
To explore potential relationships among DEGs, a 
protein-protein interaction (PPI) network was retrieved 
from the STRING database [82] and reconstructed 
using Cytoscape software [83]. The Molecular Complex 
Detection (MCODE) [84] plugin in Cytoscape was used 
to identify densely connected modules in the PPI 
network with the default parameters “Degree Cutoff = 
2”, “Node Score Cutoff = 0.2”, “K-Core = 2” and 
“Max.Depth = 100”. Individual networks with 15 or 
more nodes were considered as significant modules. 
The top 20 hub genes were identified based on degree 
ranking using the cytoHubba plugin [85] in Cytoscape 
software.  
 
Overall survival analysis  
 
The survival R package was used to analyze the 
relationship between the expression of DEGs (including 
hub genes) and patients’ overall survival using the log-
rank test. In addition, Pearson’s correlations between 
expression data of the validated genes and CXCR4, 
VLA-4, and E-selectin expression were also obtained.  
P < 0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures  

 
 
 

 
 

Supplementary Figure 1. Association of immune and stromal scores with clinical features of AML patients. (A) Distribution of 
immune scores based on gender (two-tailed t-test, p = 0.8437). (B) Distribution of stromal scores based on gender (two-tailed t-test, p = 
0.7315). (C) Distribution of immune scores based on history of chemotherapy (two-tailed t-test, p = 0.9914). (D) Distribution of stromal scores 
based on history of chemotherapy (two-tailed t-test, p = 0.4792). (E) Distribution of immune scores based on cytogenetic risk categories (two-
tailed t-test, p = 0.043). (F) Distribution of stromal scores based on cytogenetic risk categories (two-tailed t-test, p = 0.8649). (G) Distribution 
of immune scores based on patient’s age (two-tailed t-test, p = 0.0147). (H) Distribution of stromal scores based on patient’s age (two-tailed 
t-test, p = 0.1576). 
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Supplementary Figure 2. Overall survival of AML patients according to clinical features. (A) FAB morphological subtypes (log rank 
test, p = 0.1034). (B) History of chemotherapy (log rank test, p = 0.042). (C) Patient’s gender (log rank test, p = 0.8221). (D) Cytogenetic risk 
categories (log rank test, p = 0.0051). (E) Patient’s age (log rank test, p < 0.0001).  
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Supplementary Figure 3. Pearson’s correlation between the 11 validated genes and CXCR4 expression (p < 0.05). 
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Supplementary Figure 4. Pearson’s correlation between the 11 validated genes and E-selectin and VLA-4 expression  
(p < 0.05). 
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Supplementary Tables  
 
 
Supplementary Table 1. Top 20 hub genes analyzed from the protein-protein interaction network of the DEGs 
(ranked by the degree score of each node). 

Gene Degree MCODE_Cluster MCODE_Score Betweenness Closeness 

C1QB 16 Cluster 1 13.18965517 11.16473526 0.666666667 
CCR1 26 Cluster 1 15.26515152 51.87278832 0.842105263 
CCR5 27 Cluster 1 13.57957958 56.81499611 0.864864865 
CD14 19 Cluster 2 10.96969697 41.98415551 0.650793651 
CD163 23 Cluster 1 13.39772727 22.6970807 0.780487805 
CD68 24 Cluster 1 15.96969697 23.39919525 0.8 
CD86 23 Cluster 2 11.93236715 56.52134607 0.672131148 
CYBB 21 Cluster 1 13.39772727 38.88020313 0.744186047 
FCER1G 17 Cluster 1 14.98418972 30.85424298 0.680851064 
FCGR2A 19 Cluster 2 11.3820598 34.36167962 0.650793651 
FCGR2B 26 Cluster 1 13.82051282 46.86588412 0.842105263 
FCGR3A 23 Cluster 2 11.83170732 26.6072905 0.694915254 
HCK 25 Cluster 2 12.52462121 44.00774923 0.719298246 
IL10 23 Cluster 1 13.47593583 27.72947608 0.780487805 
IRF8 15 Cluster 2 11.58064516 8.442863115 0.602941176 
ITGAM 35 Cluster 2 11.33526851 328.0639929 0.872340426 
LILRB2 29 Cluster 2 12.65714286 68.60339587 0.773584906 
MNDA 27 Cluster 2 12.75913978 55.64109135 0.745454545 
TLR7 15 Cluster 2 11.3562753 27.78341616 0.611940299 
TLR8 32 Cluster 2 10.23796933 119.978408 0.82 

Note: Genes that marked yellow predicted poor overall survival in acute myeloid leukemia patients. 
 
 
Please browse Full Text version to see the data of Supplementary Table 2 
 
Supplementary Table 2. DEGs whose expression predicted poor overall survival in AML patients (log rank test, p < 
0.05). 

 

 


