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INTRODUCTION 
 
Colon cancer, which is the fourth most common cancer 
worldwide and the fifth leading cause of cancer-related 
death [1], is especially prevalent among middle-aged 
and elderly people [2]. In recent years, colon cancer 
morbidity and mortality rates have increased due to 
changes in diet and environment. An estimated two-
thirds of colon adenocarcinoma patients have advanced 
stage disease upon diagnosis [3]. Colon cancer is highly 
heterogeneous, and differences in sensitivity to chemo-
therapy among clinical subtypes result in a variety of 
prognostic outcomes. 
 
Colon adenocarcinoma usually originates from 
epithelial dysplasia in the colonic mucosa followed by 
malignant infiltration and growth [4]. Studies have 
demonstrated that epigenetic changes are closely 
associated with the onset, development, and malignant  

 

transformation of colon adenocarcinoma [5]. Epigenetic 
mechanisms that regulate gene activity have received 
much attention in post-genomic era research [6, 7]. One 
such mechanism, DNA methylation, occurs early and 
frequently during the complex process of oncogenesis. 
DNA methylation changes accumulate as the disease 
progresses and are now considered telltale signs of 
malignant colon adenocarcinoma [8]. Identification of 
specific epigenetic biomarkers in samples from colon 
adenocarcinoma patients might aid in the development 
of personalized treatment plans. Such biomarkers could 
play a key role in prognostic evaluation, staging, relapse 
prediction, and timely initiation of appropriate 
therapeutic drugs and interventions. 
 
DNA methylation refers to the transfer of the methyl 
group of S-adenosylmethionine (SAM) to the number 
five carbon atom of cytosine to form 5-methylcytosine 
(5-mC). This process is catalyzed by DNA 
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ABSTRACT 
 
Tumor heterogeneity makes early diagnosis and effective treatment of colon adenocarcinoma difficult. As an 
important regulator of gene expression, DNA methylation can influence tumor heterogeneity. In this study, we 
explored the prognostic value of subtypes based on DNA methylation status in 424 colon adenocarcinoma 
samples from the Cancer Genome Atlas database. Differences in DNA methylation levels were associated with 
differences in T, N, and M category, age, stage, and prognosis. Seven subgroups were identified based on 
consensus clustering using 356 CpG sites that significantly influenced survival. Finally, a prognostic model was 
constructed and used to classify samples in a testing dataset into seven DNA methylation subgroups based on 
the classification results of a training dataset. These specific classifications based on DNA methylation may help 
account for heterogeneity within previously established molecular subgroups of colon adenocarcinoma and 
could potentially aid in the development of more effective personalized treatments. 
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methyltransferase (DNMT) and mostly occurs in CpG 
structures. Unmethylated CpGs will cluster to form 
CpG islands at the core sequence and transcription start 
site (TSS) in the structural gene promoter [9]. 
Chromosomal instability (CIN) and microsatellite 
instability (MSI) are both involved in the development 
of colon adenocarcinoma [10, 11]. Ubiquitous 
hypomethylation can activate proto-oncogenes and lead 
to CIN, and hypermethylation of CpG islands in 
specific regions may inhibit the expression of tumor 
suppressor genes (TSG), DNA repair genes, house-
keeping genes, and cell cycle control genes [12]. 
Currently, methylation of several promoter sequences, 
including MGMT, MLH1, APC1A, SHOX2, RASSF1A, 
and PHD1, has been associated with the onset and 
development of colon adenocarcinoma [13–16]. 
Nevertheless, specific methylation sequences in the 
promoter regions of these genes have not yet been 
identified. In addition, the clinical significance of 
methylation of these genes in relation to tumor 
classification, survival time, and prognosis has not yet 
been examined in large groups of colon adeno-
carcinoma patients. In this study, we therefore 
developed a prognostic prediction model that integrates 
multiple DNA methylation biomarkers based on high-
throughput omics data to improve clinical prognostic 
evaluation and personalized treatments.  
 
RESULTS 
 
Identification of potential prognostic methylation 
sites associated with OS in training dataset patients 
 
After patient data were preprocessed as described in 
Materials and Methods, 22,830 methylation sites were 
identified. We then divided the patients into training 
(Supplementary Table 2, clinical information in 

Supplementary Table 3) and testing datasets 
(Supplementary Table 4, clinical information in 
Supplementary Table 5). Of the 22,830 methylation 
sites, 864 CpG sites were identified as potential DNA 
methylation biomarkers for overall survival in colon 
adenocarcinoma (COAD) patients using univariate Cox 
regression analysis (Supplementary Table 6, P<0.05). 
Univariate Cox proportional-hazards regression analysis 
revealed that T category (primary tumor), N category 
(regional lymph nodes), M category (distant metastasis), 
stage, and age were significantly associated with overall 
survival (respective log-rank P values: 6.499e-07, 
1.572e-06, 1.769e-07, 8.524e-07, and 0.04611). A 
subsequent multivariate Cox regression analysis of the 
864 methylation sites with T category, N category, M 
category, stage, and age as covariates identified 356 
independent prognosis-associated CpG sites. These 356 
sites were considered potential prognostic methylation 
sites (Supplementary Table 7). 
 
Consensus clustering to identify distinct DNA 
methylation prognosis subgroups and intercluster 
prognosis analysis 
 
Consensus clustering of the 356 potential prognostic 
methylation sites was used to identify distinct DNA 
methylation molecular subgroups of COAD for 
prognostic purposes. Numbers of clusters were 
determined according to the following criteria: relatively 
high consistency within the cluster, relatively low 
coefficient of variation (Figure 1C), and no appreciable 
increase in the area under the CDF curve. We calculated 
average cluster consensus and the coefficient of variation 
among clusters depending on category number. The area 
under the Cumulative Distribution Function (CDF) curve 
began to stabilize after 5 categories (Figure 1A and 1B). 
To improve the prognostic value of the COAD 

 

 
 

Figure 1. Criteria for selecting number of categories. (A) Consensus among clusters for each category number k. (B) Delta area curves 
for consensus clustering indicating the relative change in area under the cumulative distribution function (CDF) curve for each category 
number k compared to k-1. The horizontal axis represents the category number k and the vertical axis represents the relative change in area 
under CDF curve. (C) The average cluster consensus and coefficient of variation among clusters for each category number k. The blue line 
represents the average cluster consensus and the red line represents the coefficient of variation among clusters. 
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classifications, we choose larger cluster numbers when 
possible. A consensus matrix was also a used as described 
in Materials and Methods to help determine the optimal 
number of clusters. The consensus matrix shown in  
Figure 2A represents the consensus for k=7 and displays a 
well-defined 7-block structure. A heatmap corresponding 
to the dendrogram in Figure 2A with T category, N 
category, M category, stage, age, and DNA methylation 
subgroup as the annotations is shown in Figure 2B. 
 
Kaplan-Meier survival analysis revealed significant 
differences in prognosis among the 7 clusters (P<0.05). 
As shown in Figure 3A, Clusters 3 and 4 had the best 
prognoses, while Cluster 7 had the worst. We then 
analyzed intracluster proportions for the 7 clusters 
according to T category, N category, M category, stage, 
and age as shown in Figure 3B–3F, respectively. 
Tendencies for associations between characteristics and 
specific clusters were as follows: Clusters 3 and 5 with 
advanced stage; Clusters 4, 5, and 7 with lower T grade; 
Clusters 4 and 7 with lower N grade; Clusters 3, 4, and 
5 with higher M grade; Cluster 7 with older age (Figure 
3F). These results indicate that each clinical parameter 
was associated with a different intra-cluster proportion. 
 
Identifying different characteristics based on DNA 
methylation clustering and screening of cluster-
specific methylation sites 
 
Genome annotations for the 356 CpG sites described 
above were used to identify a total of 415 corresponding 

promotor genes. We then conducted functional 
enrichment analysis of these 415 genes and identified 18 
significantly enriched pathways (P<0.05) as shown in 
Figure 4A and Supplementary Table 8. The three most 
significantly enriched pathways were human papillo-
mavirus infection, p53 signaling, and a breast cancer 
pathway. Crosstalk analysis was then performed on the 18 
pathways using the Enrichment Map Cytoscape plugin 
[17]; Jaccard Indexes and Overlap Coefficients were 
calculated to analyze pairwise relationships among 
pathways. As shown in Figure 4B, close relationships 
were identified among the 18 pathways and between those 
pathways and cell cycle and p53 signaling pathways when 
the Jaccard Index was >0.375. 
 
We then explored the expression of the methylated 
genes identified in the subgroups. Expression values 
were available for 376 of the 415 genes in the 266 
training expression dataset samples. The gene 
expression heatmap is shown in Figure 4C, and the raw 
data is shown in Supplementary Table 9. Gene expres-
sion patterns differed among the subgroups, suggesting 
that DNA methylation levels were generally reflective 
of expression for these genes. 
 
Next, we screened for cluster-specific methylation sites 
by including the methylation sites as characteristics of 
the clusters. First, differences among the 7 clusters were 
analyzed for every methylation site as described in 
Materials and Methods; the results are shown in 
Supplementary Table 10. Ultimately, 36 cluster-specific 

 

 
 

Figure 2. Consensus matrix for DNA methylation classification with the corresponding heat map. (A) Color-coded heatmap 
corresponding to the consensus matrix for k=7 obtained by applying consensus clustering. Color gradients represent consensus values from 
0–1; white corresponds to 0 and dark blue to 1. (B) A heatmap corresponding to the dendrogram in (A) was generated using the heatmap 
function with DNA methylation classification, TNM stage, clinicopathological stage, and histological type as the annotations. 
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methylation sites shown in Supplementary Table 11 and 
the heatmap in Figure 5A were identified. Cluster 4 had 
the largest number of specific sites, all of which were 
hypomethylated, and the methylation level was the 
lowest among all the clusters (Figure 6). Genome 
annotations of the 36 specific sites were used to identify 
their corresponding genes (Supplementary Table 12). 
Analysis using clusterProfiler indicated that these genes 
were enriched in 14 pathways as shown in Figure 5B 
(Supplementary Table 13). These 14 pathways were 
only enriched in Clusters 2, 4, and 7; apoptosis, 
secretion, and other pathways were enriched in Cluster 
2, the aldosterone-regulated sodium reabsorption 
pathway was enriched in Cluster 4, and multiple 
metabolic pathways were enriched in Cluster 7. These 
results indicated each cluster had unique gene 
expression and pathway characteristics. 
 
Constructing and evaluating the COAD prognosis 
prediction model 
 
We selected Cluster 4 as the seed cluster because it 
included a large number of samples, was associated with 
good prognosis, and had the largest number of specific 
methylation sites. Cluster 4 had 18 specific methylation 

sites, all of which were hypomethylated. Methylation level 
profiles for these 18 specific sites were obtained for all 
samples, which were then re-clustered using hierarchical 
cluster analysis. The samples were divided   
into hypermethylation and hypomethylation groups as 
shown in Figure 7A. Prognosis analysis revealed 
significant differences between the two groups (Figure 
7B). Specifically, prognoses were worse in the hyper-
methylation group, indicating that these  
specific methylation sites might serve as prognostic 
markers. 
 
Next, we constructed a Cox Proportional Hazard Model 
based on methylation level profiles for the 18 specific 
sites combined with prognosis information using the 
formula provided in Materials and Methods. The results 
of ROC analyses performed using risk scores calculated 
for each sample are shown in Figure 8A. The area under 
curve (AUC) was 0.81, indicating that the model 
functioned well. The samples were then ordered by risk 
score to determine whether methylation level varied 
systematically with risk score (Figure 8B). Methylation 
levels for the 18 specific sites significantly increased as 
risk scores increased. Moreover, the 50 samples with 
the lowest risk scores also had significantly lower. 

 

 
 

Figure 3. Comparison of prognosis, TNM stage, grade, and age between the DNA methylation clusters. (A) Survival curves for 
each DNA methylation subtype in the training set. The horizontal axis represents survival time (days), and the vertical axis represents the 
probability of survival. The number of samples in each cluster is shown in parentheses in the legend. The log-rank test was used to assess 
the statistical significance of differences between subtypes. Stage score (B), topography score (C), lymphocyte infiltration (D), metastasis 
(E), and age (F) distributions for each DNA methylation subtype in the training set. The horizontal axis represents the DNA methylation 
clusters. 
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methylation levels than the other samples, which was 
consistent with the cluster analysis. 
 
A risk score cut-off value of 1.336303 (Figure 8B) was 
used to divide the samples into high and low risk 
groups. Hypomethylation was associated with low-
risk patients, while hypermethylation was associated 
with high-risk patients. Furthermore, prognoses 
differed significantly between the two groups as 
shown in Figure 8C. 
 
Finally, the prognostic model was used to predict 
outcomes in testing dataset patients. Methylation level 
profiles for the 18 CpG sites were obtained for testing 
dataset samples and risk scores were calculated using 
the prognostic model. Sorting the samples by risk 
score produced the heatmap shown in Figure 9A, 
which indicated that risk scores increased as 

methylation levels increased. Testing dataset samples 
were then divided into high-risk and low-risk groups 
using the cut-off score of 1.336303. Prognoses again 
differed significantly between the two groups (Figure 
9B, P=0.0321). These results were consistent with 
those obtained from the training dataset, 
demonstrating the predictive accuracy and stability of 
our model.  
 
DISCUSSION 
 
Colon adenocarcinoma is one of the most common 
gastrointestinal tract carcinomas and its incidence is 
increasing year over year, at least in part due to 
changes in dietary behaviors [18]. In most cases, 
colon adenocarcinoma is diagnosed in advanced 
stages and is therefore associated with unfavorable 
prognoses and poor 5-year survival rates,

 

 
 

Figure 4. Gene annotations of 356 methylated sites. (A) KEGG function enrichment analysis of annotated genes for the 356 CpG sites. 
(B) Crosstalk analysis of the enriched KEGG pathways using Enrichment Map Cytoscape plugin. (C) Cluster analysis heat map for annotated 
genes associated with the 376 CpG sites. 
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especially in patients with distant metastases [19, 20]. 
Although 5-year survival rates for colon adeno-
carcinoma have improved in recent years due to 
advancements in surgical treatments, radiotherapies, 
and chemotherapies, they remain unsatisfactory. In 
order to improve the management of colon 

adenocarcinoma, it is important to identify novel 
clinical biomarkers that can improve prognostic 
evaluation, molecular subtyping, staging, recurrence 
prediction, and the success of early interventions and 
medication. More recently, epigenetic changes, 
including universal hypomethylation, hyper- 

 

 
 

Figure 5. Specific hyper/hypo-methylation CpG sites for each DNA methylation cluster. (A) Specific CpG sites are shown for each 
DNA methylation prognosis subtype. Red and blue bars represent hyper- and hypomethylation CpG sites, respectively. (B) KEGG pathway 
enrichment analysis of specific CpG sites. 

 

 
 

Figure 6. Box plot of CpG methylation levels of the 7 Clusters. Cluster 4 has the lowest CpG methylation level. 
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methylation of key TSGs, and histone modifications 
have been observed in all stages of colon 
adenocarcinoma. Abnormally methylated genes can 
likely serve as non-invasive biomarkers for early 
detection, diagnosis, treatment selection, response 
evaluation, and potential use of new therapies. Several 
studies have reported that ubiquitous hypo- and 

hypermethylation of CpG islands (CGIs) in specific 
promoter regions play key roles in the onset and 
development of colon adenocarcinoma. Ubiquitous 
hypomethylation can activate proto-oncogenes at the 
initial stages of oncogenesis and induce CIN and MSI. 
These events are also associated with external factors 
such as environment and nutrition [18, 21]. 

 

 
 

Figure 7. Methylation sites may predict prognosis in colon adenocarcinoma. (A) Reclustered samples with hierarchical analysis 
separated into hypomethylation and hypermethylation groups. (B) Analysis of prognostic differences between hypomethylation and 
hypermethylation groups. 

 

 
 

Figure 8. Construction of the prognosis prediction model for training set colon adenocarcinoma patients. (A) ROC curves 
of prognostic predictors in colon adenocarcinoma patients. (B) The horizontal axis represents the samples, and the vertical axis 
represents risk scores (top), overall survival (middle), and methylation site (bottom). (C) Analysis of prognostic differences after 
classification in the training set. 
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Hypermethylation of CGIs also play an important role 
in the development of colon adenocarcinoma. In 
addition, hypermethylation of tumor-inhibiting factor, 
adhesion molecule, and angiogenesis inhibitor genes, 
as well as other important bioactivators, reduces or 
silences their expression, thereby promoting tumor 
progression and distant metastases. 
 
Several promoter sequence-specific methylations 
associated with the onset and development of colon 
adenocarcinoma have recently been discovered. Some 
studies have demonstrated that epigenetic changes occur 
long before genetic changes in colon adenocarcinoma. 
Abnormal DNA methylation occurs very early in 
oncogenic processes during the development of 
precancerous lesions in histologically normal colonic 
mucosal tissues [22–24]. Therefore, identification of 
epigenetic changes alone or in combination with 
detection of other standard biomarkers can be 
performed during early diagnosis of colon adeno-
carcinoma. Methylation of the ESR1, MGMT, 
HPP1/TPEF, HLTF, and NGFR genes [25–28] is 
associated with the onset of colon adenocarcinoma and 
occurs during the early stages of oncogenesis. 
Furthermore, markers indicative of hypermethylation of 
certain genes can be detected in blood, urine, and stool 
samples. Recent studies have also demonstrated that 
methylation patterns can be used for disease staging and 
prognostic evaluation. For example, methylation of 
APC1A, CHD1, DKK3, and MYOD is associated with 
prognosis in colon adenocarcinoma patients [15]. 
 
Although methylation may serve as an important 
biomarker in colon adenocarcinoma, the specific 
methylation sequences in the promoter regions of the 

affected genes remain unknown. Additionally, the clinical 
and statistical significance of methylation of these genes 
in relation to tumor classification, survival time, and 
prognosis need to be confirmed in larger groups of COAD 
patients. We attempted to address these issues in this 
study by developing a classification method that 
integrated several DNA methylation biomarkers for 
prognostic evaluation of therapeutic efficacy and to help 
guide treatment selection. The model can facilitate 
identification of new biomarkers, targets for precision 
medicine, and disease molecular subtype classification in 
COAD patients. The model may also help in prognostic 
prediction, clinical diagnosis, and management of patients 
with different epigenetic subtypes of COAD. 
 
However, there are some limitations in the study. First, 
the prognosis prediction model needs further validation 
in our own independent tissue samples. Second, in 
practice, construction of a prognostic prediction model 
is far more complicated and need platform or other 
tools. While our study aimed to investigate the 
possibility to construct a prognostic prediction model, 
so it was rudiment, and needs improved. Third, it’s a 
very difficult work in judging optimal k in consensus. 
In conclusion, based on the TCGA database and a 
series of bioinformatics approaches, we have identified 
prognosis-specific methylation sites and constructed a 
prognostic prediction model for colon adenocarcinoma 
patients. This model can facilitate identification of 
new biomarkers, targets for precision medicine, and 
disease molecular subtype classification in colon 
adenocarcinoma patients. Thus, the model may aid in 
prognostic prediction, clinical diagnosis, and 
management of patients with different epigenetic 
subtypes of colon adenocarcinoma. 

 

 
 

Figure 9. Stability of the prognosis prediction model in testing set colon adenocarcinoma patients. (A) The horizontal axis 
represents the samples, and the vertical axis represents methylation site. (B) Analysis of prognostic differences after classification in the 
testing set. 
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MATERIALS AND METHODS 
 
Data selection and pre-processing  
 
RNA-sequencing data from 519 primary colon 
adenocarcinoma samples were downloaded from the 
TCGA data portal (https://cancergenome.nih.gov/, 
2018-08-13). Clinical information for these samples, 
including follow-up data for 459 patients, is shown in 
Supplementary Table 1. Methylation data from Illumina 
Infinium HumanMethylation450 and 27 BeadChip 
arrays performed on samples from 337 and 203 patients, 
respectively, were downloaded from the UCSC Cancer 
Browser. 
 
Only data from samples with clinical follow-up times of 
more than 30 days were included in this study. The 
methylation level of each site was represented by the β-
value, which ranges from 0 (unmethylated) to 1 (fully 
methylated). CpG sites for which data was missing in 
more than 70% of the samples were excluded from 
analysis. Cross-reactive genome CpG sites as defined in 
“Discovery of cross-reactive probes and polymorphic 
CpG in the Illumina Infinium HumanMethylation450 
microarray” were also excluded. Remaining sites with for 
which data were not available (NAs) were imputed using 
the k-nearest neighbors (KNN) imputation procedure. The 
ComBat algorithm in the sva R package [29] was used to 
remove batch effects by integrating all DNA methylation 
array data and incorporating batch and patient 
information. Unstable genomic sites, including CpGs in 
sex chromosomes and single nucleotide polymorphisms, 
were removed. Because DNA methylation in promoter 
regions strongly influences gene expression, we 
specifically examined CpGs in promotor regions. 
Promoter regions were defined as 2 kb upstream to 0.5 kb 
downstream of transcription start sites. Finally, we 
selected samples for which gene expression profiles were 
available. In total, 424 samples and 22,830 methylation 
sites were included in subsequent analyses. 
 
The samples were divided into 2 cohorts: a training set 
(data from HumanMethylation 450 BeadChip) and a 
testing set (data from HumanMethylation 27 
BeadChip). Methylation site profiles and clinical 
information for the training set (age, TNM staging, 
grade, gender, and survival time) are shown in 
Supplementary Tables 2 and 3, respectively. Testing set 
methylation site profiles and clinical information are 
shown in Supplementary Tables 4 and 5, respectively.  
 
Determining classification features using COX 
proportional risk regression models 
 
Because COAD molecular subtype seemed to influence 
prognosis in the samples used in this study, CpG sites 

that significantly influenced survival were used as 
classification features. First, univariate COX 
proportional risk regression models were constructed 
using methylation level for each CpG site, T category, 
N category, M category, age, stage, gender, and survival 
data. The significant CpGs obtained from univariate 
COX proportional risk regression models were then 
introduced into multivariate COX proportional risk 
regression models using T category, N category, M 
category, age, and stage, which were also significant in 
the univariate models, as covariates. Finally, CpG sites 
that were significant in both univariate and multivariate 
Cox regression analyses were selected as characteristic 
CpG sites (Supplementary Table 7). 
 
Identification of molecular subtypes associated with 
prognosis using consensus clustering 
 
Consensus clustering was performed using the 
ConsensusClusterPlus package in R [30] to identify 
COAD subgroups based on the most variable CpG sites. 
The algorithm began by subsampling a proportion of 
items and features from the data matrix where each 
subsample was partitioned into up to k groups by k-
means. This process was repeated for a user-specified 
number of repetitions; these multiple clustering 
algorithm runs were used to establish consensus values 
and to assess the stability of the identified clusters. 
Pairwise consensus values, defined as the proportion of 
clustering runs in which two items are grouped together, 
were calculated and stored in a consensus matrix for 
each k. Then, for each k, a final agglomerative 
hierarchical consensus clustering using a distance of 1-
consensus values was completed and pruned to k 
groups. This algorithm determined “consensus” 
clustering by measuring the stability of clustering 
results from the application of a given clustering 
method to random subsets of data. In each iteration, 
80% of the tumors were sampled, and the k-means 
algorithm with the Euclidean squared distance metric 
was used. These results were compiled over 100 
iterations. After executing ConsensusClusterPlus, we 
obtained the cluster consensus and item-consensus 
results. Graphical output results included heatmaps of 
the consensus matrices, which displayed the clustering 
results, consensus cumulative distribution function 
(CDF) plots, and delta area plots, and which allowed us 
to determine an approximate number of clusters. 
Numbers of clusters were determined according to the 
following criteria: relatively high consistency within the 
cluster, relatively low coefficient of variation, and no 
appreciable increase in the area under the CDF curve. 
The coefficient of variation was calculated according to 
the following formula: CV = (SD/MN)*100%, in which 
SD represents the standard deviation and MN represents 

https://cancergenome.nih.gov/
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the average number of samples. The category number 
was defined as the area under the CDF curve and 
showed no significant change. In order to generate more 
detailed classification categories for COAD, larger 
numbers of categories were favored.  
 
The heatmap corresponding to the consensus clustering 
was generated by the pheatmap R package. Consensus 
values from 0 (white) to 1 (dark blue) are depicted using 
a color gradient; the matrix is arranged so that items 
belonging to the same cluster are adjacent to each other. 
In this arrangement, a matrix corresponding to a perfect 
consensus will show a color-coded heatmap charac-
terized by blue blocks along the diagonal on a white 
background. The color-coded heatmap corresponding to 
the consensus matrix obtained by applying consensus 
clustering to these cases is shown in Figure 2A and 
represents the consensus for k = 7, which displays a 
well-defined 7-block structure. 
 
Survival and clinical characteristics analyses 
 
Kaplan–Meier plots were used to illustrate overall 
survival among COAD subgroups defined by DNA 
methylation profiles. The log-rank test was used to 
evaluate the significance of differences among the 
clusters. Survival analyses were performed using the 
survival package in R. Associations between both 
clinical and biological characteristics and DNA 
methylation clustering were analyzed using the chi-
squared test. All tests were two-sided; P<0.05 was 
considered statistically significant for all tests. 
 
Functional enrichment analysis and genome 
annotation 
 
We used the clusterProfiler package in R [31] combined 
with KEGG to perform gene enrichment analysis of the 
Gene Ontology, Biological Pathways, and Regulatory 
motifs in DNA and Protein gene groups. 
 
Construction and testing of the prognostic prediction 
model 
 
The coxph function of the survival package in R was 
used to construct a Cox Proportional Hazard Model 
based on the combination of methylation profiles for 18 
CpG sites and prognostic information. The formula used 
for this model was: Risk Score=0.12*cg02196655 
+1.35*cg03763616+0.73*cg03944089+0.73*cg0611 78 
55+0.76*cg07173760-3.96*cg07293947-0.76*cg07509 
155+0.58*cg09244244+0.4*cg10451565+0.28*cg1258
2008+1.99*cg13796218+3.6*cg20247048+1.34*cg214
81775+0.42*cg23829949-0.28*cg23964386+0.96*cg 
24127989-0.45*cg24674703+0.84*cg24938727.  

Abbreviations 
 
TSG: tumor suppressor genes; SAM: S-adenosyl-
methionine; 5-mC: 5-methylcytosine; DNMT: DNA 
methyltransferase; TSS: transcription start site; MSI: 
microsatellite instability; CDF: Cumulative Distribution 
Function; AUC: area under curve; FDR: false discovery 
rate; ROC curve: receiver operating characteristic curve; 
FC: fold change; KNN: K-nearest neighbor; COAD: 
colon adenocarcinoma; T category: primary tumor; N 
category: regional lymph nodes; M category: distant 
metastasis. 
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SUPPLEMENTARY MATERIALS  
 
Please browse Full Text version to see the data of Supplementary Tables: 
 
Supplementary Table 1. The clinical information and follow-up data of 459 patients. 

Supplementary Table 2. Training dataset. 

Supplementary Table 3. The clinical information of training dataset. 

Supplementary Table 4. Testing dataset. 

Supplementary Table 5. The clinical information of testing dataset. 

Supplementary Table 6. Univariate Cox regression analysis of the training dataset (864 CpG sites were identified, 
P<0.05). 

Supplementary Table 7. Multivariate Cox regression analysis of the 864 methylation sites (356 CpG sites were 
identified, P<0.05). 

Supplementary Table 8. Functional enrichment analysis and the identified 18 enriched pathways. 

Supplementary Table 9. The available expression profile of 376 sites in 266 training set samples. 

Supplementary Table 9. The available expression profile of 376 sites in 266 training set samples. 

Supplementary Table 10. Calculating differences of each methylation sites among 7 clusters. 

Supplementary Table 11. The 36 cluster-specific methylation sites. 

Supplementary Table 12. Genome annotations of the 36 cluster-specific methylation sites. 

Supplementary Table 13. Functional enrichment analysis and the enriched 14 pathways. 

 

 

 
 
 
 
 
 
 
 
 
 


