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INTRODUCTION 
 
Age related changes to blood DNA methylation (DNAm) 
have been extensively reported [1–4] and serve as the 
foundation for epigenetic clocks [5–7]. These clocks 
were designed to predict the rate of aging and may reflect 
underlying aging processes [8], including transcriptional 
regulation and cellular differentiation [9, 10]. Compared 
to other molecular markers of aging, those developed 
using DNAm appear particularly robust [11]. To date, at 
least three epigenetic clocks have been constructed. 
These clocks comprise hundreds of CpGs and are 
reported to be associated with the incidence of chronic 
diseases and mortality [12–20], as well as specific 
cancers [21–24], including breast cancer [25]. 

 

While epigenetic clocks were designed to predict the 
biological consequences of aging, other combinations of 
CpGs have been identified to predict mortality [26, 27]. 
GrimAgeAccel, a new DNAm-based mortality pre-
dictor, was recently reported to be associated with time-
to-death [26]. Using genome-wide DNAm data from the 
Framingham Heart Study (FHS; N= 2,356 individuals), 
GrimAgeAccel was constructed as a composite bio-
marker using a multistep approach: in the first step, 
various DNAm-predictors were separately developed 
for smoking pack-years and for a number of mortality-
associated plasma proteins; then, these DNAm-
predictors were used, along with self-reported sex and 
age, in an elastic net Cox regression trained on all-cause 
mortality to derive ‘DNAm GrimAge;’ finally, using a 
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P=0.08). Stratification of invasive cancers by menopause status at diagnoses revealed the association was 
predominantly observed for postmenopausal breast cancer (HR: 1.10, 95% CI: 1.01, 1.20, P=0.04). Although the MS 
was unrelated to breast cancer risk, we find evidence that GrimAgeAccel may be weakly associated with invasive 
breast cancer, particularly for women diagnosed after menopause. 
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linear model, GrimAgeAccel was defined as the raw 
residuals from regressing DNAm GrimAge on 
chronological age. GrimAgeAccel was validated as an 
epigenetic mortality predictor across five, racially-
diverse cohorts (N= 6,935) [26].  
 
GrimAgeAccel was previously reported to be associated 
with all-cancer incidence [26]. Using DNAm data from 
the FHS ( 446 participants, 40 cancer cases) and the 
Women’s Health Initiative (WHI; 4,079 participants, 
730 cancer cases), GrimAgeAccel was associated with 
cancer incidence in the WHI but not the FHS [26]. 
Information on the types of cancer represented were not 
presented, however, the most common cancer for the 
WHI demographic is postmenopausal breast cancer [21, 
28]. 
 
The ‘mortality score’ (MS), a separate DNAm-based 
predictor, was also designed to predict all-cause mortality 
[27]. Using 58 validated, mortality-associated CpGs 
identified in the ESTHER cohort (N= 1,954), the MS was 
constructed by selecting an informative set of these CpGs 
using LASSO Cox regression trained on all-cause 
mortality. The MS was then validated across the 
ESTHER (N= 1,000) and KORA (N= 1,727) cohorts. 
Although the MS was originally developed as an ordinal 
score based on the proportion of aberrantly methylated 
CpGs, a continuous version was calculated as a linear 
combination of CpGs where the regression coefficients 
served as weights [27]. An independent study from the 
Normative Aging Study (N= 534) suggested the 
continuous version of the MS was a stronger predictor of 
all-cause mortality [29].  
 
Although GrimAgeAccel and the MS were designed to 
predict all-cause mortality, they may be useful in 
predicting cancer incidence. In additional to being 
strongly associated with all-cancer incidence, 
GrimAgeAccel may also predict menopause timing [26]; 
the MS is associated with cancer mortality [27], and may 
also be a marker of cancer incidence. To date, however, 
neither GrimAgeAccel nor the MS has been examined in 
relation to incidence of specific cancers. Using a large, 
nationwide, prospective cohort established to study breast 
cancer, we find evidence that GrimAgeAccel, but not the 
MS, may be weakly related to invasive breast cancer 
incidence, particularly for women diagnosed after 
menopause.  
 
RESULTS 
 
At enrollment, our case-cohort population of non-
Hispanic white women (N= 2,773) had an average age 
of 56.6 years (standard deviation [SD]= 8.8 years); 70% 
of whom reported being postmenopausal. The women 
who developed breast cancer tended to be older at 

enrollment, drank more alcohol, were less physically 
active, had later ages at menopause, and were more 
likely to report postmenopausal hormone use (Table 1). 
Distributions of the continuous characteristics by cancer 
status at follow-up are displayed in Supplementary 
Figure 1. For all participants, mean follow-up was 6.0 
years (SD=3.2 years) and among the cases, mean time-
to-diagnosis was 3.9 years (SD=2.2 years). Most breast 
cancers were diagnosed as invasive (79%) and the 
invasive tumors were predominately estrogen receptor 
(ER)-positive (86%). Because the MS was positively 
correlated with chronological age (ρ= 0.28, P< 0.001), 
an age-adjusted MS was derived by regressing the MS 
on chronological age and predicting the residuals. The 
calculated residuals represent a MS that is independent 
of chronological age; as expected, this score and 
GrimAgeAccel were not correlated with chronological 
age (age-adjusted MS: ρ= -0.00, P= 0.99; 
GrimAgeAccel: ρ= -0.01, P= 0.61) (Supplementary 
Figure 2). However, GrimAgeAccel and the age-
adjusted MS were positively correlated with each other 
(ρ= 0.58, P< 0.001) (Figure 1). 
 
For all breast cancers (invasive breast cancer and ductal 
carcinoma in situ [DCIS] combined), in unadjusted 
models, neither of the epigenetic mortality predictors 
were associated with breast cancer incidence (per 1-SD 
increase: GrimAgeAccel hazard ratio [HR]: 1.06, 95% 
confidence interval [CI]: 0.98, 1.14, P= 0.17; age-
adjusted MS HR: 0.99, 95% CI: 0.92, 1.07, P= 0.85) 
(Figure 2A). In analyses stratified by invasive cancer or 
DCIS, a one-SD increase in GrimAgeAccel was weakly, 
positively associated with invasive breast cancer 
incidence (HR: 1.08, 95% CI: 0.99, 1.17, P=0.08) (Figure 
2B). However, after accounting for breast cancer risk 
factors, the association was attenuated (adjusted HR: 
1.04, 95% CI: 0.95, 1.14, P=0.41) (Supplementary Table 
1). The age-adjusted MS was not associated with 
invasive breast cancer incidence (HR: 0.98, 95% CI: 
0.91, 1.06, P=0.65) and neither the GrimAgeAccel nor 
age-adjusted MS metrics were associated with DCIS 
(GrimAgeAccel HR: 0.99, 95% CI: 0.86, 1.13, P=0.85; 
age-adjusted MS HR: 1.03, 95% CI: 0.91, 1.17, P=0.61) 
(Figure 2C).  
 
When associations were estimated for invasive breast 
cancers stratified by menopausal status at diagnosis or 
tumor ER status, in unadjusted models, a one-SD 
increase in GrimAgeAccel, but not the age-adjusted 
MS, was associated with higher postmenopausal 
invasive breast cancer incidence (GrimAgeAccel HR: 
1.10, 95% CI: 1.01, 1.20, P=0.04; age-adjusted MS HR: 
0.99, 95% CI: 0.91, 1.08, P=0.82) (Figure 3A). 
Accounting for breast cancer risk factors attenuated the 
GrimAgeAccel association (Supplementary Table 2). 
Neither of the epigenetic mortality predictors were 
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Table 1. Participant characteristics at study enrollment. 

Characteristic* Cancer status at follow-up 
Non-event Event 

Total, N (%) 1,204 (100) 1,569 (100) 
Age, mean (SD), yrs. 55.1 (9) 57.7 (9) 
Alcohol, mean (SD), drinks/wk. 2.9 (4) 3.3 (5) 
Physical activity, mean (SD), METs/wk. 52.4 (32) 49.6 (30) 
Parity, mean (SD), total births 2.0 (1) 1.9 (1) 
Age first birth, mean (SD), yrs.1 24.7 (5) 25.0 (5) 
Menarche age, mean (SD), yrs. 12.6 (2) 12.6 (1) 
Menopause age, mean (SD), yrs.2 49.6 (6) 50.7 (5) 
GrimAgeAccel, mean (SD), yrs. -0.1 (3) 0.0 (3) 
Age-adjusted Mortality Score, mean (SD) units 0.0 (0.4) -0.0 (0.4) 
BMI, kg/m2, N (%)  
   Underweight/normal (≤ 24.9)  482 (40) 591 (38) 
   Overweight (25-30) 384 (32) 515 (33) 
   Obese (30+) 336 (28) 463 (29) 
   Missing 2 0 
Smoking status, N (%)   
   Never 637 (53) 809 (52) 
   Former 475 (39) 649 (41) 
   Current 92 (8) 111 (7) 
Oral Contraception use, N (%)   
   Never 181 (15) 272 (17) 
   Ever 1,022 (85) 1,296 (83) 
   Missing 1 1 
Menopause status, N (%)   
   Premenopausal 408 (34) 418 (27) 
   Postmenopausal 795 (66) 1,151 (73) 
   Missing 1 0 
Postmenopausal hormone use2, N (%)   
   Never 291 (37) 372 (32) 
   Ever 502 (63) 775 (68) 
   Missing 2 4 
Stage at diagnosis, N (%)   
   DCIS (0) ------ 338 (21)  
   Invasive (1-4) ------ 1,231 (79) 
Estrogen receptor status (invasive tumors), N (%)   
   Positive ------ 1,043 (86) 
   Negative ------ 168 (14) 
   Missing  20 

1Among parous women (n= 2,256) 
2Among postmenopausal women (n= 1,946; 25 reported postmenopausal status but not age at menopause) 
*Missing characteristics: alcohol intake, 6; physical activity, 22; parity, 2; age at first birth, 5; menarche age, 3. 
Abbreviations: standard deviation, SD; metabolic equivalent task, MET; body mass index, BMI; ductal carcinoma in situ, DCIS. 
 

associated with premenopausal invasive breast cancer 
(Figure 3B). A weak, positive association was observed 
in unadjusted models for GrimAgeAccel and invasive 
ER-positive tumors (HR: 1.08, 95% CI: 0.99, 1.17, 
P=0.09) (Figure 3C); model adjustment for breast 
cancer risk factors again shifted the association towards 
the null (HR: 1.04, 95% CI: 0.95, 1.14, P=0.40). No 
meaningful associations were observed for either 

epigenetic mortality predictor and invasive ER-negative 
tumors (Figure 3D). 
 
As a post-hoc analysis to further interrogate the 
GrimAgeAccel metric, the separate DNAm-predictors 
that comprise DNAm GrimAge were tested with breast 
cancer overall and stratified by invasive cancers and 
DCIS. These components are DNAm-based predictors of 
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circulating plasma protein concentrations, rather than 
directly measured concentrations. In unadjusted models, 
five DNAm GrimAge components were associated with 
breast cancer (Table 2). Specifically, DNAm-predictors 
of adrenomedullin (per one-SD increase: HR: 1.25, 95% 
CI: 1.13, 1.39, P<0.001); cystatin C (HR: 1.71, 95% CI: 
1.50, 1.95, P<0.001); growth differentiation factor-1 
(HR: 1.48, 95% CI: 1.29, 1.69, P<0.001); leptin (HR: 
1.13, 95% CI: 1.05, 1.23, P=0.002); and tissue inhibitor 
metalloproteinase 1 (HR: 1.69, 95% CI: 1.45, 1.96, 
P<0.001). After adjustment for breast cancer risk factors, 
associations remained for the DNAm-predictors of 
cystatin C (HR: 1.37 95% CI: 1.16, 1.62, P<0.001) and 

leptin (HR: 1.12 95% CI: 1.03, 1.21, P=0.01). Similar 
patterns were observed for invasive breast cancer, 
although associations with DCIS tended to be weaker.  
 
DISCUSSION 
 
Using a nationwide, prospective cohort designed to 
identify novel breast cancer risk factors, we found a 
weak association between GrimAgeAccel and invasive 
breast cancer. Further stratification of invasive breast 
cancers by tumor ER status and menopause status at 
diagnosis revealed somewhat enhanced associations 
between GrimAgeAccel and incidence of ER-positive

 

 
 

Figure 1. Pearson correlation and fit line for the two epigenetic mortality predictors. 
 

 
 

Figure 2. Epigenetic mortality predictors associations with breast cancer incidence for (A) invasive breast cancer and ductal carcinoma in situ 
(DCIS) combined and for (B) invasive breast cancer and (C) DCIS, separately. 
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and postmenopausal breast cancers. Although our 
findings suggest that this epigenetic mortality predictor 
may be a weak marker for these specific breast cancer 
subtypes, in post-hoc analyses, we found that some of 
the individual components of DNAm GrimAge 
appeared to have stronger associations with breast 
cancer. These components are DNAm-based predictions 
of circulating plasma proteins and are not based on 
direct measurements in study subjects. Despite the 
moderate correlation with GrimAgeAccel, the MS was 
not related to breast cancer incidence.  
 
Although GrimAgeAccel and the MS were both designed 
to predict all-cause mortality, we only observed breast 
cancer associations with GrimAgeAccel. Differences in 
the design of these two mortality predictors may explain 
the different associations: unlike the MS, DNAm 
GrimAge did not directly select mortality-associated 
CpGs. Instead, DNAm GrimAge is based on CpGs that 
are predictive of mortality-associated risk factors, 
specifically, smoking pack-years and various plasma 
proteins [26]. Interestingly, the DNAm-predictors of 
leptin and cystatin C that are components of DNAm 

GrimAge were strongly associated with breast cancer 
incidence, even after adjustment for breast cancer risk 
factors. These DNAm predictors were developed in the 
FHS using elastic net regularization to select sets of 
CpGs that correlate with the plasma protein level. 
Although research on cystatin C and breast cancer is 
limited, prospective studies suggest leptin might be a 
marker of breast cancer risk [30, 31]. Thus, the 
association between GrimAgeAccel and breast cancer 
may be partly due to the inclusion of CpGs that correlate 
with plasma concentrations of these proteins.  
 
Both epigenetic mortality predictors include CpGs 
previously reported to be associated with past smoking 
behaviors [26, 27], a strong risk factor for mortality 
[32]. GrimAgeAccel includes 1,030 CpGs, of which 
172 (17%) are associated with self-reported pack-years 
[26]. Similarly, of the ten CpGs included in the MS, 
40% have associations with smoking history [27, 33]. 
Smoking history is an important predictor of all-cause 
mortality but has little influence on breast cancer 
incidence [34]. Although the inclusion of smoking-
related CpGs may enhance associations with smoking-

 

 
 

Figure 3. Associations for the two epigenetic mortality predictors and invasive breast cancer incidence for (A) postmenopausal breast 
cancer, (B) premenopausal breast cancer, (C) estrogen receptor positive tumors and (D) estrogen receptor negative tumors.  
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Table 2. DNAm GrimAge components and breast cancer risk overall and stratified by stage at diagnosis. 

GrimAge 
component 

All breast cancer 
(DCIS and invasive 

combined) 
 Invasive breast cancer  Ductal carcinoma in situ 

HR (95% CI) P-value  HR (95% CI) P-value  HR (95% CI) P-value 
Adrenomedullin         
   Model 1 1.25 (1.13, 1.39) < 0.001  1.30 (1.16, 1.45) < 0.001  1.10 (0.93, 1.30) 0.27 
   Model 2 1.05 (0.93, 1.18) 0.41  1.09 (0.96, 1.23) 0.20  0.93 (0.77, 1.13) 0.49 
Beta-2-
microglobulin         

   Model 1 1.11 (0.99, 1.24) 0.08  1.09 (0.96, 1.23) 0.17  1.19 (0.98, 1.45) 0.08 
   Model 2 0.91 (0.79, 1.04) 0.15  0.87 (0.76, 1.01) 0.07  1.02 (0.81, 1.29) 0.87 
Cystatin C         
   Model 1 1.71 (1.50, 1.95) < 0.001  1.73 (1.51, 1.99) < 0.001  1.62 (1.32, 1.99) < 0.001 
   Model 2 1.37 (1.16, 1.62) < 0.001  1.38 (1.16, 1.65) < 0.001  1.32 (1.00, 1.75) 0.05 
GDF-15         
   Model 1 1.48 (1.29, 1.69) < 0.001  1.50 (1.30, 1.73) < 0.001  1.42 (1.12, 1.80) 0.003 
   Model 2 1.05 (0.87, 1.26) 0.61  1.06 (0.88, 1.28) 0.55  1.01 (0.72, 1.40) 0.97 
Leptin         
   Model 1 1.13 (1.05, 1.23) 0.002  1.18 (1.08, 1.28) < 0.001  0.99 (0.87, 1.12) 0.84 
   Model 2 1.12 (1.03, 1.21) 0.009  1.15 (1.06, 1.26) 0.002  1.00 (0.87, 1.14) 0.97 
PAI-1         
   Model 1 1.06 (0.98, 1.15) 0.17  1.09 (1.00, 1.19) 0.04  0.94 (0.82, 1.07) 0.36 
   Model 2 0.97 (0.88, 1.07) 0.57  0.99 (0.90, 1.10) 0.89  0.90 (0.76, 1.06) 0.22 
TIMP-1         
   Model 1 1.69 (1.45, 1.96) < 0.001  1.67 (1.42, 1.95) < 0.001  1.75 (1.36, 2.26) < 0.001 
   Model 2 0.95 (0.74, 1.23) 0.72  0.91 (0.70, 1.20) 0.51  1.12 (0.73, 1.72) 0.61 
Smoking pack-years         
   Model 1 1.06 (0.98, 1.14) 0.17  1.06 (0.98, 1.15) 0.15  1.04 (0.91, 1.18) 0.60 
   Model 2 1.02 (0.93, 1.11) 0.68  1.02 (0.93, 1.12) 0.64  1.00 (0.87, 1.15) 0.99 

Abbreviations: growth differentiation factor, GDF; plasminogen activator inhibitor, PAI; tissue inhibitor metalloproteinase, 
TIMP. 
Model 1: Crude, unadjusted. (Events/at risk: overall, 1,569/2,773; Invasive, 1,231/2,449; DCIS, 338/1,618) 
Model 2: Adjusted age at enrollment plus baseline status of body mass index (BMI), menopause, a BMI-menopause 
interaction term, physical activity, alcohol intake, parity, age at first birth (among parous), age at menarche, breastfeeding 
duration, and hormone therapy and oral contraception duration (Events/at risk: overall, 1,550/2,727; Invasive, 1,216/2,407; 
DCIS, 334/1,586) 
Abbreviations: hazard ratio, HR; confidence interval, CI; ductal carcinoma in situ, DCIS. 
 

related cancers [35], such CpGs likely offer little benefit 
in predicting cancer where smoking does not play a 
role. In this study, we did not observe associations 
between the DNAm-predictor of smoking pack-years 
and breast cancer, providing additional support that 
CpGs related to smoking history may not be informative 
for predicting breast cancer.  
 
While we focused on unadjusted association estimates 
for the epigenetic mortality predictors, we found that 
adjustment for breast cancer risk factors attenuated 
associations. Although unadjusted analysis is 

appropriate given that we were primarily interested in 
assessing predictive utility of the epigenetic mortality 
predictors, the attenuation of the associations suggests 
the GrimAgeAccel metric may only be a marker of 
breast risk factors, rather than having independent 
associations with disease risk. Conversely, associations 
for the DNAm-predictors of cystatin C and leptin were 
robust to adjustment and may be useful DNAm-based 
markers for predicting breast cancer. Notably, in the 
FHS where these markers were developed, the DNAm-
predictors of these proteins only had moderate 
correlations with directly measured concentrations 
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(cystatin C: ρ= 0.39; leptin: ρ= 0.35) [26]. Another 
consideration is that breast cancer is a heterogenous 
disease with different etiologies [36–38]; our findings 
suggest GrimAgeAccel may only be associated with 
postmenopausal and ER-positive invasive tumors. 
Interestingly, these tumors are the most prevalent and 
have good survival [28]. It is likely that we were 
underpowered to test associations with the less 
prevalent, more lethal subtypes—fewer than 200 
women were diagnosed with either premenopausal or 
ER-negative breast cancers. The epigenetic mortality 
predictors may also be better markers for the incidence 
of late stage breast cancer or breast cancer mortality but 
only 98 (5%) women in our sample were diagnosed 
with stage III or IV disease and overall survival is quite 
high [28]. This is, however, the largest available study 
to examine blood methylation predictors of breast 
cancer; designing future studies to investigate blood 
DNAm predictors of breast cancer in more diverse 
populations that have higher incidences of aggressive 
phenotypes may be required.  
 
In summary, we find that the GrimAgeAccel mortality 
predictor was weakly associated with postmenopausal and 
ER-positive invasive breast cancers. Given the reliance on 
smoking-associated CpGs, it is perhaps unsurprising that 
the associations with breast cancer incidence were weak. 
Other components of DNAm GrimAge, however, 
appeared to be useful in predicting breast cancer. Blood 
DNAm may be a useful matrix to derive novel breast 
cancer predictors. For example, epigenetic clocks were 
designed to capture age effects and are associated with 
breast cancer incidence [25]. Single CpGs are also 
associated with breast cancer incidence [39, 40] and may 
be sensitive to emerging and established breast cancer risk 
factors [41–46]. Future efforts to design epigenetic breast 
cancer predictors may therefore be aided by selecting 
CpGs associated with both breast cancer risk factors as 
well as the disease itself.  
 
MATERIALS AND METHODS 
 
Sample population 
 
The Sister Study is a prospective cohort of 50,884 
cancer-free women, recruited from the United States 
(including Puerto Rico) and enrolled between 2003–
2009 [47]. Eligible women were between the ages of 35 
and 75, could not have breast cancer themselves, but 
had a biological sister previously diagnosed with the 
disease. Participants are re-contacted annually to update 
information on breast cancer and response rates are 
approximately 95%. Among the women who report an 
incident breast cancer, permission to retrieve medical 
records is requested six months after diagnosis. The 
positive predictive value of a self-reported breast cancer 

in this population is approximately 99.4% [48]. In July 
2014, a case-cohort subsample of non-Hispanic white 
women was selected for blood genome-wide DNA 
methylation analysis [49]. This subsample included 
1,294 women randomly selected from the full cohort, of 
whom 90 developed incident breast cancer (invasive or 
ductal carcinoma in situ), and 1,479 additional women 
who developed breast cancer after blood draw (data 
release 6.0). Whole blood samples and informed 
consent were obtained at a home visit. The institutional 
review boards at the National Institute of Environmental 
Health Sciences and the Copernicus Group approved 
the study.  
 
Genomic DNA processing and epigenetic mortality 
predictor calculation  
 
Processing procedures for the DNA samples have been 
previously reported [50]. Genomic DNA from whole 
blood samples was extracted using DNAQuick at 
BioServe Biotechnologies LTD (Beltsville, MD) or 
using an automated system (AutoPure LS, Gentra 
Systems) in the NIEHS Molecular Genetics Core 
Facility. One microgram of extracted DNA was 
bisulfite-converted using the EZ DNA Methylation kit 
(Zymo Research, Orange County, CA). After testing for 
complete bisulfite conversion, following the 
manufacturer’s protocol, DNA was analyzed using 
Illumina’s Infinium HumanMethylation450 BeadChip. 
To reduce batch effects, arrays were processed using 
high throughout robotics. Methylation analysis was 
conducted at the NIH Center for Inherited Disease 
Research (Baltimore, MD). 
 
The Enmix R software package was used for 
methylation data preprocessing and quality control [51]. 
This included background noise reduction using the 
ENmix method; applying the RELIC method to correct 
for fluorescent dye-bias; quantile normalization to make 
overall fluorescence intensity distribution comparable 
between arrays; and reducing probe design bias using 
the ‘regression on correlated probes’ method [52]. Data 
from the Sister Study can be requested via 
https://sisterstudy.niehs.nih.gov/English/coll-data.htm. 
GrimAgeAccel was calculated using an online 
calculator (https://dnamage.genetics.ucla.edu/home) and 
a continuous version of the MS was calculated as 
described by the developers [27].  
 
Statistical analysis 
 
Although GrimAgeAccel was designed to be 
independent of chronological age, the MS was not. We 
therefore regressed the MS on chronological age and 
predicted the residuals to create a MS that was 
independent of chronological age to use in our main 

https://sisterstudy.niehs.nih.gov/English/coll-data.htm
https://dnamage.genetics.ucla.edu/home
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analyses. We assessed Pearson correlations between 
the epigenetic mortality predictors and chronological 
age. We standardized the epigenetic mortality 
predictors and the individual DNAm GrimAge 
components to have means of zero and standard 
deviations of one. To examine associations with breast 
cancer risk, we used case-cohort Cox proportional 
hazard models to calculate hazard ratios, 95% 
confidence intervals and P-values. We treated 
chronological age as the time-scale in all models. For 
the primary analysis, we combined invasive and ducal 
carcinoma in situ to represent breast cancer overall. In 
secondary analyses, we considered those categories 
separately. We also investigated associations for 
invasive breast cancer by menopausal status at 
diagnosis and tumor estrogen receptor status. Because 
we were interested in assessing predictive utility of 
these biomarkers, we focused on unadjusted asso-
ciations. However, we also examined associations 
accounting for established breast cancer risk factors, 
including: body mass index (BMI), menopause, a 
BMI-menopause interaction term, physical activity, 
alcohol intake, parity, age at first birth (among 
parous), age at menarche, breastfeeding duration, and 
hormone therapy and oral contraception duration [37, 
38, 53–57]. All analyses were conducted using Stata 
version 15 (College Station, TX).  
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 

 

 

Supplemental Figure 1. Continuous participant characteristics at study enrollment by cancer status at follow-up. Two-sided P-
values were calculated using two-sample t-tests. 
 

 
 

Supplemental Figure 2. Pearson correlations for chronological age and the raw Mortality Score, the age-adjusted Mortality 
Score and the GrimAgeAccel metric. 
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Supplementary Tables 
 

Supplementary Table 1. Epigenetic mortality predictors and breast cancer risk overall and stratified by stage at 
diagnosis. 

Mortality predictor 
All breast cancer 

(DCIS & invasive combined)  Invasive breast cancer  Ductal carcinoma in situ 

HR (95% CI) P-value  HR (95% CI) P-value  HR (95% CI) P-value 
GrimAgeAccel         
   Model 1 1.06 (0.98, 1.14) 0.17  1.08 (0.99, 1.17) 0.08  0.99 (0.86, 1.13) 0.85 
   Model 2 1.03 (0.95, 1.12) 0.46  1.04 (0.95, 1.14) 0.41  1.01 (0.87, 1.17) 0.95 
Mortality Score         
   Model 1 0.99 (0.92, 1.07) 0.85  0.98 (0.91, 1.06) 0.65  1.03 (0.91, 1.17) 0.61 
   Model 2 0.98 (0.90, 1.06) 0.55  0.96 (0.88, 1.04) 0.30  1.05 (0.92, 1.21) 0.45 

Model 1: Crude, unadjusted. (Events/at risk: overall, 1,569/2,773; Invasive, 1,231/2,449; DCIS, 338/1,618) 
Model 2: Adjusted age at enrollment plus baseline status of body mass index (BMI), menopause, a BMI-menopause 
interaction term, physical activity, alcohol intake, parity, age at first birth (among parous), age at menarche, breastfeeding 
duration, and hormone therapy and oral contraception duration (Events/at risk: overall, 1,550/2,727; Invasive, 1,216/2,407; 
DCIS, 334/1,586) 
Abbreviations: hazard ratio, HR; confidence interval, CI; ductal carcinoma in situ, DCIS. 
 

Supplementary Table 2. Epigenetic mortality predictors and invasive breast cancer risk and stratified by menopause 
at diagnosis or tumor estrogen receptor status. 

Mortality predictor 
Postmenopausal breast cancer  Premenopausal breast cancer 
HR (95% CI) P-value  HR (95% CI) P-value 

GrimAgeAccel      
   Model 1 1.10 (1.01, 1.20) 0.04  0.95 (0.79, 1.15) 0.62 
   Model 2 1.05 (0.95, 1.16) 0.30  1.01 (0.82, 1.24) 0.92 
Mortality Score      
   Model 1 0.99 (0.91, 1.08) 0.82  0.94 (0.77, 1.14) 0.52 
   Model 2 0.97 (0.88, 1.06) 0.46  0.97 (0.78, 1.20) 0.78 

Mortality predictor 
Estrogen receptor positive  Estrogen receptor negative 

HR (95% CI) P-value  HR (95% CI) P-value 
GrimAgeAccel      
   Model 1 1.08 (0.99, 1.17) 0.09  1.03 (0.87, 1.23) 0.74 
   Model 2 1.04 (0.95, 1.14) 0.40  0.99 (0.81, 1.20) 0.88 
Mortality Score      
   Model 1 0.98 (0.90, 1.07) 0.62  0.98 (0.84, 1.16) 0.84 
   Model 2 0.96 (0.87, 1.05) 0.32  0.95 (0.80, 1.13) 0.55 

Model 1: Crude, unadjusted. (Events/at risk: postmenopausal, 1,020/2,093; premenopausal, 198/590; ER-
positive,1,043/2,270; ER-negative, 168/1,446) 
Model 2: Adjusted age at enrollment plus baseline status of body mass index (BMI), menopause, a BMI-menopause 
interaction term, physical activity, alcohol intake, parity, age at first birth (among parous), age at menarche, breastfeeding 
duration, and hormone therapy and oral contraception duration (Events/at risk: postmenopausal, 1,005/2,056; 
premenopausal, 198/583; ER-positive, 1,031/2,231; ER-negative, 165/1,415) 
 

 


