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INTRODUCTION 
 

Kidney cancer is one of the most common urinary 

tumors in the world, with an estimated 73,820 new cases 

and 14,770 deaths in the United States in 2019 [1]. The 

incidence and mortality of kidney cancer in China is also 

increasing. In 2015, the estimated number of new cases 

was 66,800 and the number of deaths was 23,400 [2]. 

Clear cell renal cell carcinoma (ccRCC) is the major 

subtype of kidney cancer and is the most common type 

of renal cell carcinoma (RCC) in adults. According to  

 

the World Health Organization, it is one of the most 

deadly urinary tumors with an annual global mortality 

rate of approximately 90,000 [3]. Although extensive 

research has been conducted on the mechanisms of 

carcinogenesis and progression, the etiology of ccRCC 

still remains unclear. The development and progression 

of RCC is reportedly associated with a variety of factors, 

including genetic aberrations and cellular or metabolic 

factors [4]. Considering the high morbidity and mortality 

of RCC, it is critical to reveal the causes and the 

underlying molecular mechanisms, and to explore 
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ABSTRACT 
 

Clear cell renal cell carcinoma (ccRCC) is one of the most common cancers worldwide. Despite intense efforts to 
elucidate its pathogenesis, the molecular mechanisms and genetic characteristics of this cancer remain unknown. 
In this study, three expression profile data sets (GSE15641, GSE16441 and GSE66270) were integrated to identify 
candidate genes that could elucidate functional pathways in ccRCC. Expression data from 63 ccRCC tumors and 54 
normal samples were pooled and analyzed. The GSE profiles shared 379 differentially expressed genes (DEGs), 
including 249 upregulated genes, and 130 downregulated genes. A protein-protein interaction network (PPI) was 
constructed and analyzed using STRING and Cytoscape. Functional and signaling pathways of the shared DEGs 
with significant p values were identified. Kaplan-Meier plots of integrated expression scores were used to analyze 
survival outcomes. These suggested that FN1, ICAM1, CXCR4, TYROBP, EGF, CAV1, CCND1 and PECAM1/CD31 
were independent prognostic factors in ccRCC. Finally, to investigate early events in renal cancer, we screened for 
the hub genes CCND1 and PECAM1/CD31. In summary, integrated bioinformatics analysis identified candidate 
DEGs and pathways in ccRCC that could improve our understanding of the causes and underlying molecular events 
of ccRCC. These candidate genes and pathways could be therapeutic targets for ccRCC. 
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molecular biomarkers for early diagnosis, prevention 

and personalized therapy. 

 

Clear cell renal cell carcinoma represents a 

heterogeneous group of histologically similar neoplasms. 

Its development and progression are multistep processes 

characterized by aberrant genes, which subsequently 

lead to phenotypic cellular transformation [5]. RNA 

sequencing (RNA-Seq) has been used to detect genome-

wide genetic changes [6]. Comprehensive and 

systematic study of the interactions between 

differentially expressed pathways and protein-coding 

genes can more accurately identify the biological 

changes that occur during the process of ccRCC 

carcinogenesis. Therefore, using these bioinformatics 

methods to analyze RNA-Seq data can aid the 

understanding of molecular pathogenesis and identify 

relevant tumor biomarkers. To fully comprehend the 

changes in gene expression that occur during ccRCC, 

RNA-Seq has been used to identify many key genes 

involved in disease progression. So far, the key drivers 

of carcinogenesis are still unknown, limiting the 

progress of ccRCC targeted therapy [7]. Therefore, 

understanding the pathogenesis of this disease remains a 

major challenge and many key genes are yet to be 

identified. 

 

In this study, we first selected the gene sets GSE15641, 

GSE16441 and GSE66270 from the Gene Expression 

Omnibus (GEO). Second, we applied the R package 

‘LIMMA’ from the Bioconductor project [8] and Venn 

diagram software to obtain the differentially expressed 

genes (DEGs) commonly found in the above three data 

sets. Third, the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) was used to analyze 

these DEGs including molecular function (MF), cellular 

components (CC), biological processes (BP), and Kyoto 

Encyclopedia of Gene and Genome (KEGG) pathways. 

Fourth, we established a protein-protein interaction (PPI) 

network and then applied Cytotype MCODE (Molecular 

Complex Detection) for additional DEG analysis to 

identify some significant module. Fifth, cytoHubba was 

used to screen 10 hub genes. In addition, these hub genes 

were imported into the Kaplan Meier plotter online 

database to obtain important prognostic information (P < 

0.05). Meanwhile, we further verified the expression of 

hub DEGs between ccRCC tissues and normal kidney 

tissues by gene expression profiling analysis (GEPIA; 

P<0.05). Finally, two DEGs (CCND1 and 

PECAM1/CD31) were generated. In summary, the aim 

of this study was to improve the understanding of the 

carcinogenesis of ccRCC by analyzing information 

about the genetic changes that occur during disease 

progression and by revealing the expression of 

biomarkers that may be used for clinical diagnosis, 

treatment, and disease progression monitoring. 

RESULTS 
 

Identification of DEGs in kidney cancer 

 

There were 63 ccRCC tissues and 54 normal kidney 

tissues in our present study. Via limma software 

package, 2217, 3197 and 5343 DEGs from GSE15641, 

GSE16441 and GSE66270 were extracted respectively. 

The differential expression of multiple genes from two 

sets of sample data included in each of the three 

microarrays is shown in Figure 1A–1C. Then, Venn 

diagram software was used to identify the commonly 

DEGs in the three datasets. Results showed that a total 

of 379 commonly DEGs were detected, including 249 

downregulated genes (logFC< 1) and 130 up-regulated 

genes (logFC> 1) in the ccRCC tissues (Figure 1D). 

 

DEGs gene ontology and KEGG pathway analysis in 

kidney cancers 

 

To analyze the biological classification of DEGs, 

functional and pathway enrichment analyses were 

performed using DAVID. GO analysis results showed 

that changes in BP of DEGs were significantly enriched 

in angiogenesis, extracellular matrix organization, 

response to hypoxia, excretion and response to drug 

(Table 1). Changes in CC were mainly enriched in 

extracellular exosome, plasma membrane, extracellular 

space, cell surface, and integral component of plasma 

membrane (Table 1). Changes in MF of DEGs were 

mainly enriched in transporter activity, protein 

homodimerization activity, receptor binding, 

extracellular matrix structural constituent, and cysteine-

type endopeptidase inhibitor activity involved in 

apoptotic process (Table 1). KEGG pathway analysis 

revealed that the DEGs were mainly enriched in viral 

myocarditis, Cell adhesion molecules, Phagosome, 

Biosynthesis of antibiotics and PI3K-Akt signaling 

pathway (Table 1). 

 

The significant modular analyses through DEGs 

protein–protein interaction network (PPI) 

 

To identify the significant modular, the STRING online 

database (available online: http://string-db.org) and 

Cytoscape software were used to merge the 379 DEGs. 

The PPI network of DEGs was constructed (Figure 1E) 

and the most significant module was obtained using 

Cytoscape (Figure 1F). The functional analyses of genes 

involved in this module were analyzed using DAVID. 

GO analysis results showed that changes in BP of the 

significant module genes were significantly enriched in 

response to hypoxia, angiogenesis, positive regulation 

of peptidase activity, platelet degranulation and 

mammary gland alveolus development (Table 2). 

Changes in CC of the significant module genes were 

http://string-db.org/
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mainly enriched in platelet alpha granule lumen, 

extracellular space, extracellular region, cell surface, 

and cytoplasmic vesicle (Table 2). Changes in MF of 

the significant module genes were mainly enriched in 

peptidase activator activity, integrin binding and protein 

binding (Table 2). KEGG pathway analysis revealed 

that the significant module genes were mainly  

enriched in focal adhesion, bladder cancer, pathways in 

cancer, proteoglycans in cancer and viral myocarditis 

(Table 3). 

 

 
 

Figure 1. Differential expression of data between two sets of samples, Venn diagram, PPI network and the most significant 
module of DEGs. (A) GSE15641 data, (B) GSE16441 data, and (C) GSE66270 data. The red points represent upregulated genes screened on 
the basis of fold change > 1.0 and a corrected P-value of < 0.05. The blue points represent downregulation of the expression of genes 
screened on the basis of fold change < 1.0 and a corrected P-value of < 0.05. The black points represent genes with no significant difference. 
(D) DEGs were selected with a |fold change| >1 and P-value <0.05 among the mRNA expression profiling sets GSE15641, GSE16441 and 
GSE66270. The 3 datasets showed an overlap of 379 genes. (E) The PPI network of DEGs was constructed using Cytoscape. (F) The most 
significant module was obtained from PPI network with 12 nodes and 58 edges. Upregulated genes are marked in light red; downregulated 
genes are marked in light blue. Abbreviations: FC: fold change; GEO: Gene Expression Omnibus; DEGs: differentially expressed genes; PPI: 
protein–protein interaction. 
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Table 1. GO and KEGG pathway enrichment analysis of DEGs in ccRCC samples. 

Term Description Count in gene set P-value 

Gene Ontology    

GO:0001525 Angiogenesis 24 4.59E-10 

GO:0030198 Extracellular matrix organization 22 1.33E-09 

GO:0001666 Response to hypoxia 20 4.94E-09 

GO:0007588 Excretion 10 6.05E-08 

GO:0042493 Response to drug 24 1.63E-07 

GO:0070062 Extracellular exosome 128 2.66E-20 

GO:0005886 Plasma membrane 142 4.29E-12 

GO:0005615 Extracellular space 67 1.11E-11 

GO:0009986 Cell surface 36 1.37E-09 

GO:0005887 Integral component of plasma membrane 62 1.12E-08 

GO:0005215 Transporter activity 19 2.19E-07 

GO:0042803 Protein homodimerization activity 36 3.44E-06 

GO:0005102 Receptor binding 21 4.90E-05 

GO:0005201 Extracellular matrix structural constituent 9 6.94E-05 

GO:0043027 
Cysteine-type endopeptidase inhibitor activity involved in 

apoptotic process 
6 9.09E-05 

Biological pathway    

hsa05416 Viral myocarditis 12 6.03E-07 

hsa04514 Cell adhesion molecules (CAMs) 17 3.51E-06 

hsa04145 Phagosome 17 7.21E-06 

hsa01130 Biosynthesis of antibiotics 20 1.29E-05 

hsa04151 PI3K-Akt signaling pathway 26 2.30E-05 

hsa04510 Focal adhesion 19 3.10E-05 

hsa04066 HIF-1 signaling pathway 12 1.06E-04 

hsa00010 Glycolysis / Gluconeogenesis 10 1.33E-04 

hsa04512 ECM-receptor interaction 11 2.13E-04 

hsa03320 PPAR signaling pathway 9 7.09E-04 

 

Table 2. GO and KEGG pathway enrichment analysis of the significant module in ccRCC samples. 

Term Description Count in gene set P-value 

Gene Ontology    

GO:0001666 Response to hypoxia 5 3.32E-06 

GO:0001525 Angiogenesis 5 9.29E-06 

GO:0010952 Positive regulation of peptidase activity 3 3.03E-05 

GO:0002576 Platelet degranulation 4 3.57E-05 

GO:0060749 Mammary gland alveolus development 3 5.28E-05 

GO:0031093 Platelet alpha granule lumen 4 4.22E-06 

GO:0005615 Extracellular space 7 5.39E-05 

GO:0005576 Extracellular region 6 0.00157 

GO:0009986 Cell surface 4 0.00361 

GO:0031410 Cytoplasmic vesicle 3 0.00844 

GO:0016504 Peptidase activator activity 3 1.73E-05 

GO:0005178 Integrin binding 3 0.00203 

GO:0005515 Protein binding 11 0.00843 
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GO:0001618 Virus receptor activity 2 0.04469 

Biological pathway    

hsa04510 Focal adhesion 5 1.42E-04 

hsa05219 Bladder cancer 3 0.00151 

hsa05200 Pathways in cancer 5 0.00167 

hsa05205 Proteoglycans in cancer 4 0.0025 

hsa05416 Viral myocarditis 3 0.00291 

hsa05212 Pancreatic cancer 3 0.00377 

hsa04066 HIF-1 signaling pathway 3 0.00806 

hsa04668 TNF signaling pathway 3 0.00994 

 

Table 3. Functional roles of 10 hub genes. 

No. 
Gene 

symbol 
Full name Function 

1 VEGFA 
Vascular Endothelial Growth 

Factor A 

Pathways: VEGF Signaling Pathway and Bladder cancer; GO: protein 

homodimerization activity and protein heterodimerization activity. 

2 FN1 Fibronectin 1 
Pathways: RET signaling and Cell surface interactions at the vascular 

wall; GO: heparin binding and protease binding. 

3 ITGB1 Integrin Subunit Beta 2 
Pathways: Activated TLR4 signalling and Focal Adhesion; GO: protein 

heterodimerization activity. 

4 ICAM1 
Intercellular Adhesion 

Molecule 1 

Pathways: Interferon gamma signaling and Glucocorticoid receptor 

regulatory network. 

5 CXCR4 
C-X-C Motif Chemokine 

Receptor 4 

Pathways: Human cytomegalovirus infection and Blood-Brain Barrier 

and Immune Cell Transmigration: VCAM-1/CD106 Signaling Pathways; 

GO: G protein-coupled receptor activity and ubiquitin protein ligase 

binding. 

6 PECAM1 
Platelet And Endothelial Cell 

Adhesion Molecule 1 

Pathways: Blood-Brain Barrier and Immune Cell Transmigration: 

VCAM-1/CD106 Signaling Pathways and Innate Immune System 

7 CCND1 Cyclin D1 
Pathways: Gastric cancer and Bladder cancer; GO: protein kinase activity 

and enzyme binding. 

8 TYROBP 
TYRO Protein Tyrosine 

Kinase Binding Protein 

Pathways: RET signaling and Innate Immune System; GO: identical 

protein binding and obsolete signal transducer activity, downstream of 

receptor. 

9 EGF Epidermal Growth Factor 
Pathways: Gastric cancer and Vesicle-mediated transport; GO: calcium 

ion binding and epidermal growth factor receptor binding. 

10 CAV1 Caveolin 1 
Pathways: Focal Adhesion and TNF signaling (REACTOME); GO: 

identical protein binding and signaling receptor binding. 

 

Hub gene selection and survival outcomes of the 

cohorts 

 

We filtered 30 hub genes that were identified by 

filtering according to the criterion of degrees >10 

criteria (each node had more than 10 interactions), and 

the 10 most significant genes according to node degree 

were VEGFA, FN1, ITGB2, ICAM1, CXCR4, 
PECAM1/CD31, TYROBP, CCND1, EGF, CAV1. 

(Figure 2A) The names, abbreviations and functions for 

these hub genes are shown in Table 3. A network of the 

hub genes and their co-expression genes was analyzed 

using cBioPortal online platform (Figure 2B). The 

biological process and KEGG enrichment analysis of 

the hub genes is shown in Figure 2C–2D. Hierarchical 

clustering shows that the hub gene can basically 

distinguish between kidney cancer samples and non-

cancer samples (Figure 2E). 

 

To determine whether the hub genes in ccRCC have 

clinical relevance, we performed correlation analysis 

with the clinical correlative of kidney cancer outcomes 

in TCGA kidney cancer data sets. Using the data  

from gene expression profiling interactive analysis 
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Figure 2. Interaction network and analysis of the hub genes. (A) Screen out the 10 most important hub genes using the cytoscape 

software plugin cytoHubba. (B) Hub genes and their co-expression genes were analyzed using cBioPortal. Nodes with bold black outline 
represent hub genes. Nodes with thin black outline represent the co-expression genes. (C) The biologic process functional annotation analysis 
of hub genes was performed by ClueGO and CluePedia. Different colors of nodes refer to the functional annotation of ontologies. Corrected P 
value <.01 was considered statistically significant. (D) The KEGG functional annotation analysis of hub genes was performed by ClueGO and 
CluePedia. Different colors of nodes refer to the functional annotation of ontologies. Corrected P value <.01 was considered statistically 
significant. (E) Hierarchical clustering heatmap of 10 most important hub genes was constructed depend on TCGA cohort. Red indicates that 
the expression of genes is relatively upregulated, green indicates that the expression of genes is relatively downregulated, and black indicates 
no significant changes in gene expression; gray indicates that the signal strength of genes was not high enough to be detected. Abbreviation: 
TCGA: the cancer genome atlas program; KEGG: Kyoto Encyclopedia of Genes and Genomes. 

http://www.baidu.com/link?url=iyJeRz6yqVA6SggzEYSsdUlG1AvDU4GojNE9b6ubMTFaG3M2ABisQhc4B08b1q03
http://www.baidu.com/link?url=iyJeRz6yqVA6SggzEYSsdUlG1AvDU4GojNE9b6ubMTFaG3M2ABisQhc4B08b1q03
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(GEPIA), we noted that ccRCC patients who had  

an association of genomic alterations in CCND1  

showed reductions in overall and disease-free survival 

(P=2.5E-05 for overall survival and P=6.7E-05 for 

disease-free survival) (Figure 3A–3B). In addition,  

the PECAM1/CD31 alteration was significantly 

associated with worse overall survival (P=3.3E-05 for 

overall survival) while disease-free survival was not 

statistically significant (P=0.24 for disease-free survival) 

(Figure 3C–3D). 

 

Additionally, when have optimized cut-off for hub gene 

analysis, we found that high expression of FN1, ICAM1, 

CXCR4, TYROBP, EGF, and CAV1 are associated with 

poor prognosis (Figure 4) and suggested that these genes 

can also be used as indicators to monitor prognosis. 

 

 
 

Figure 3. Univariate survival analysis of the hub genes was performed using the Kaplan-Meier curve. (A–B) The gene of CCND1 
expression showed obviously significant better DFS and OS in ccRCC samples (Logrank P < .05). (C–D) The expression of the PECAM1/CD31 
gene showed a significantly better OS in the ccRCC sample, whereas there was no statistical difference in DFS. Abbreviation: DFS: disease-free 
survival; OS: overall survival; ccRCC: clear cell renal cell carcinoma. 
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Differential expression of CCND1 and 

PECAM1/CD31 

 

The mRNA expression of CCND1 and PECAM1/CD31 

were compared between kidney tumor samples and 

adjacent normal tissues respectively based on RNA-

sequence data from TCGA database. Transcriptional 

level of CCND1 expressions were found highly 

expressed in 533 ccRCC tissues compared with 72 

normal tissues (Figure 5A). As was shown in Figure 5B, 

 

 
 

Figure 4. Univariate survival analysis of the hub genes was performed using the Kaplan-Meier curve. The 8 genes of 10 hub 

genes showed significant difference in OS. Each elevated expression in the 5 significant hub genes showed obviously significant worse OS in 
ccRCC samples, whereas elevation of the remaining 3 hub genes showed better OS (Logrank P < .05). Abbreviation: OS: overall survival; 
ccRCC: Clear cell renal cell carcinoma. 
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CCND1 mRNA expressions of ccRCC samples were 

significantly correlated with mild clinical stages, and the 

highest CCND1 mRNA expressions were found in  

stage 1. Similarly, relationship between CCND1 mRNA 

expression and different pathological grade was 

measured, which suggested that mRNA expressions of 

CCND1 were significantly correlated with pathological 

grades (Figure 5C). In addition, mRNA level of 

PECAM1/CD31 was also increased in ccRCC tissues 

(Figure 5D). PECAM1/CD31 mRNA expression in the 

ccRCC sample was also significantly correlated with 

mild clinical staging, and the highest PECAM1/CD31 

mRNA expression was found in stage 1 (Figure 5E). 

Meanwhile, mRNA expression levels of PECAM1/CD31 

were also associated with lower clinicopathological 

grading (Figure 5F). 

In addition, representative proteins expressions of 

immunohistochemistry images indicated that CCND1 

staining was not detected in normal kidney tissues, while 

its medium staining was observed in ccRCC tissues 

(Supplementary Figure 1). Taken together, it suggested 

that transcriptional and proteomic expressions of 

CCND1 were highly expressed in ccRCC tissues 

compared with normal tissues. Therefore, the hub gene 

CCND1 and PECAM1/CD31 may play key role in the 

progression of clear cell renal cell carcinoma. Overall, 

elevated expression of CCND1 and PECAM1/CD31 

mRNA was significantly associated with mild clinical 

pathological parameters in ccRCC patients and was only 

significantly elevated in the early stages of the disease. 

Therefore, it may play an important role in the early 

diagnosis of ccRCC. 

 

 
 

Figure 5. Transcriptional expression of CCND1 and PECAM1/CD31 in ccRCC tumor tissues and adjacent normal renal tissues. 
(A) Transcriptional level of CCND1 expression was found highly expressed in 533 ccRCC tissues compared with 72 normal tissues (p<0.0001). 
(B) Transcriptional expression of CCND1 was significantly correlated with AJCC stages, patients who were in more mild stages tended to 
express higher mRNA expression of CCND1. (C) Transcriptional expression of CCND1 was significantly correlated with ISUP grade, patients 
who were in more mild grade score tended to express elevated mRNA expression of CCND1. Highest mRNA expressions of CCND1 were found 
in stage 1 or grade 1. (D) Transcriptional level of PECAM1/CD31 expression was found highly expressed in 533 ccRCC tissues compared with 
72 normal tissues (p<0.0001). (E) Transcriptional expression of PECAM1/CD31 was significantly correlated with AJCC stages, patients who 
were in more mild stages tended to express higher mRNA expression of PECAM1/CD31. (F) Transcriptional expression of PECAM1/CD31 was 
significantly correlated with ISUP grade, patients who were in more mild grade score tended to express elevated mRNA expression of 
PECAM1/CD31. Highest mRNA expressions of PECAM1/CD31 were found in stage 1 or grade 1. 
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Clinicopathological characteristics baseline for 

ccRCC patients and cox regression analyses of 

CCND1 as well as PECAM1/CD31 in TCGA cohort 

 

This study included 533 selected samples in TCGA 

cohort. As shown in Supplementary Table 1, the clinical 

characteristics of these samples contained information 

regarding age, gender, laterality, T stage, N stage, M 

stage AJCC stage, and ISUP grade. 

 

Univariate and multivariate analyses were conducted to 

identify OS-correlated characteristics. In univariate Cox 

regression analysis models of CCND1, traditional 

prognostic factors such as pTNM stage, AJCC stage, and 

ISUP grade were significantly relevant to OS (p<0.05; 

Supplementary Table 2) in ccRCC patients in the TCGA 

cohorts. Importantly, CCND1 amplification markedly 

correlated with poor OS (hazard ratio [HR]=0.408, 

p<0.001). In multivariate Cox regression analysis, 

traditional prognostic factors, specifically pM stage, 

were still relevant to OS (HR=2.764, p<0.001; 

Supplementary Table 2) in ccRCC patients. Importantly, 

elevated CCND1 expression was significantly associated 

with poor OS (HR=0.603, p=0.043) in TCGA cohorts of 

ccRCC patients. 

 

In addition, in univariate Cox regression analysis models 

of PECAM1/CD31, traditional prognostic factors such as 

pTNM stage, AJCC stage, and ISUP grade also were 

significantly relevant to OS (p<0.05; Supplementary 

Table 3) in ccRCC patients in the TCGA cohorts. 

Significantly, PECAM1/CD31 amplification markedly 

correlated with poor OS (HR=0.448, p<0.001). In 

addition, in multivariate Cox regression analysis, 

traditional prognostic factors such as pM stage, were still 

relevant to OS (HR=2.971, p<0.001; Supplementary 

Table 3) in ccRCC patients. Importantly, elevated 

PECAM1/CD31 expression was significantly associated 

with poor OS (HR=0.595, p=0.016) in TCGA cohorts of 

ccRCC patients. 

 

External prognostic validation of CCND1 and 

PECAM1/CD31 

 

Consistent with previous results, we enrolled survival 

and follow-up data from an independent cohort 

GSE3538 (Zhao Renal dataset). It suggested that high 

expression of CCND1 and PECAM1/CD31 in GSE3538 

were significantly associated with favorable prognosis in 

ccRCC patients (Figure 6) [9]. 

 

Subsequently, we measure CCND1 and PECAM1/CD31 

expression level in three pairs of ccRCC tumor and 

normal samples. Significantly elevated CCND1 and 

PECAM1/CD31 expression in human ccRCC tissues 

compared with normal tissues in protein and mRNA 

levels (Figure 7A–7B). 

 

Expression of CCND1 and PECAM1 other types of 

tumors and prognostic value 

 

We have already discussed the better prognosis of 

ccRCC patients with high expression of CCND1 and 

PECAM1/CD31. To assess the expression and prognostic 

value of CCND1 and PECAM1/CD31 in other tumors, 

we used the tumor-immune system interactions  

(TISIDB, http://cis.hku.hk/TISIDB/index.php) online 

database to detect the expression of CCND1 and 

PECAM1/CD31 in other types of tumors other than 

kidney cancer and to assess the prognostic value based 

on TCGA cohort. As shown in Supplementary Figure 2, 

the high expression of CCND1 is not only related to the 

better prognosis of patients with kidney renal clear cell 

carcinoma, but also related to the better prognosis of 

 

 
 

Figure 6. The gene of CCND1 and PECAM1/CD31 expression significantly correlated OS and PFS in an independent external 
ccRCC cohort GSE3538. 

http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
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liver hepatocellular carcinoma. However, the high 

expression of CCND1 is associated with poor prognosis 

of head and neck squamous cell carcinoma, lung 

adenocarcinoma, mesothelioma and pancreatic 

adenocarcinoma. In addition, while the high expression 

of PECAM1/CD31 is related to the better prognosis of 

patients with kidney renal clear cell carcinoma, and skin 

cutaneous melanoma, the high expression of 

PECAM1/CD31 is related to the poor prognosis of 

patients with brain low grade glioma and uveal 

melanoma (Supplementary Figure 3). 

GSEA analysis 

 

A total of 100 significant genes were obtained by GSEA 

with positive and negative correlation. Importantly, 

GSEA was used to perform hallmark analysis for 

CCND1 and PECAM1/CD31. Results suggested  

that the most involved significant pathways of CCND1 

included hedgehog signaling, heme metabolism, 

PI3K/AKT/mTOR signaling, TGF-β signaling, UV-

response, and Wnt/β-catenin signaling. The details are 

shown in Figure 8A–8E. In addition, transcriptional 

 

 
 

Figure 7. Significantly elevated CCND1 and PECAM1/CD31 expression in human ccRCC tissues compared with normal tissues in (A) protein 

and (B) mRNA levels. 
 

 
 

Figure 8. Significant CCND1-related genes and hallmarks pathways in ccRCC obtained by GSEA. A total of 100 significant genes 
were obtained by GSEA with positive and negative correlation. (A–E) The most involved significant pathways included hedgehog signaling, 
heme metabolism, PI3K/AKT/mTOR signaling, TGF-β signaling, UV-response, and Wnt/β-catenin signaling. (F) Transcriptional expression 
profiles of the 100 significant genes were performed in a heat map. 



www.aging-us.com 12068 AGING 

expression profiles of the 100 significant genes were 

performed in a heat map (Figure 8F). In addition, GSEA 

enrichment analysis showed that the most important 

pathways for PECAM1/CD31 include angiogenesis, 

apical junction, hedgehog signaling, TGF-beta 

signaling, and Wnt/β-catenin signaling. The details are 

shown in Figure 9A–9E. Meanwhile, transcriptional 

expression profiles of 100 significant genes related to 

PECAM1/CD31 were performed in the heat map 

(Figure 9F). 

 

DISCUSSION 
 

Clear cell renal cell carcinoma is one of the most 

common genitourinary system malignancies in the 

world. It is well known that advanced ccRCC is difficult 

to treat while early ccRCC has a favorable prognosis. 

Although various causes and underlying mechanisms of 

ccRCC formation and progression were investigated in 

multiple “omics” studies, the global morbidity and 

mortality of ccRCC has remained high over the past few 

decades. Similar to other solid tumors, the development 

and progression of ccRCC is characterized by abnormal 

genetic and protein expression. Numerous studies have 

demonstrated that development of ccRCC is the result of 

an accumulation of cellular and molecular aberrations, 

including epigenetic, transcriptomic, miRNA, proteomic 

and metabolomic abnormalities [10–13]. The multiple 

“omics” research that aim to identify diagnostic 

biomarkers for early detection of kidney cancer, 

highlight not only the heterogeneity, but also the 

potential molecular commonalities in different stages of 

kidney cancer. Clearly, ccRCC has significant molecular 

heterogeneity, involving numerous genetic and protein 

level changes, thus, a group of well-selected candidates 

could represent all of these tumors. With the 

development of bioinformatics, several molecular 

markers in ccRCC have been identified as potential 

novel prognostic biomarkers, but none of them has been 

independently validated. Neither have these biomarkers 

been compared with each other to determine further 

studies and screen candidates. The molecular signature 

of ccRCC, which may provide potential biomarkers for 

early detection and monitoring for progression, is still far 

from fully defined. 

 

In our study, unlike a single genetic or cohort study, the 

study analyzed three microarray datasets, including 63 

kidney tumors and 54 normal kidney samples. A total of 

379 DEGs were identified in ccRCC, including 249 

upregulated genes and 130 downregulated genes. Gene 

ontology was performed based on DAVID, which 

showed that the DEGs were mainly enriched in 

angiogenesis, extracellular matrix organization, 

response to hypoxia, excretion and response to drug 

categories. Pathway enrichment was analyzed based on 

the KEGG database to evaluate the functional relevance 

of DEGs. Based on the STRING database and 

Cytoscape software, relevant PPIs were constructed and 

visualized that contained 379 nodes and 1704 edges. 

 

 
 

Figure 9: Significant PECAM1/CD31-related genes and hallmarks pathways in ccRCC obtained by GSEA. A total of 100 significant 
genes were obtained by GSEA with positive and negative correlation. (A–E) The most involved significant pathways included angiogenesis, 
apical junction, hedgehog signaling, TGF-beta signaling, and Wnt/β-catenin signaling. (F) Transcriptional expression profiles of the 100 
significant genes were performed in a heat map. 
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The most significant 10 hub genes were selected,  

and comprised VEGFA, FN1, ITGB2, ICAM1,  

CXCR4, PECAM1/CD31, TYROBP, CCND1, EGF, 

and CAV1. To screen for early diagnosis of renal 

cancer, we selected two genes that were elevated in the 

early stages of renal cell carcinoma: CCND1 and 

PECAM1/CD31. 

 

The gene CCND1 encodes the cyclin D1 protein, a 

member of the cyclin family involved in the regulation 

of cell cycle progression. Cyclin D1, dimerizes with 

cyclin-dependent kinase (CDK) 4 or CDK6 to regulate 

the G1/S phase transition of the cell cycle [14]. Previous 

studies have showed that cyclin D1 plays a vital role in 

tumors of the breast [15], lung [16], bladder [17] and 

colon [18]. In a recent study, He et al. observed that 

expression of cyclin D1 in breast cancer tissue was 

higher than in normal samples, and the expression levels 

were significantly correlated with tumor size, clinical 

stage and pathological grade [19]. The relationship 

between CCND1 and renal cell carcinoma has not yet 

been fully determined, but its tendency to increase 

expression in the early stages of renal cell carcinoma 

may serve as an indicator for early diagnosis of renal cell 

carcinoma. 

 

Platelet and endothelial cell adhesion molecule 1, 

(PECAM1, also named CD31), encodes a protein 

involved in several processes of primary tumor growth 

and proliferation, including angiogenesis, vascular 

permeability, and extracellular circulation [20]. There is 

evidence that PECAM1/CD31 is involved in the 

progression of a variety of malignancies including 

melanoma and cancers of the lung and breast [21, 22]. 

There is a need to further explore the molecular 

mechanisms between the expression of PECAM1/CD31 

and tumorigenesis, and identify potential therapeutic 

targets. Like CCND1, PECAM1/CD31 was also observed 

to be highly expressed in the early stages of ccRCC. This 

suggests that PECAM1/CD31 and CCND1 could be used 

as indicators for the early diagnosis of renal cancer. 

 

Gene set enrichment analysis (GSEA) showed that 

significant pathways for CCND1 and PECAM1/CD31 

include the transforming growth factor (TGF)-β and 

Wnt pathways. TGF-β signaling events are well known 

to control diverse processes and numerous responses, 

such as cell proliferation, differentiation, apoptosis, and 

migration [23]. In the early stages of tumor 

development, TGF-β often acts as a tumor suppressor, 

whereas in later phases, cancer cells can become 

resistant to its antimitogenic effects and TGF-β can shift 

into a tumor promoter [24–26]. In the later phases of 

cancer progression, TGF-β signaling can reduce 

expression of epithelial markers, such as E-cadherin, 

and promote epithelial-to-mesenchymal transition 

(EMT) by increasing the expression of mesenchymal 

markers including N-cadherin and vimentin [27, 28]. 

EMT is essential for normal embryonic development, 

but it also contributes to tumor invasion and metastasis. 

Recent studies have confirmed that TGF-β is involved 

in bone metastasis of breast cancer and prostate cancer 

[29–31]. Because TGF-β has a wide range of functions 

during tumor metastasis, specific blocking of TGF-β 

ligand and/or receptor activity may provide better 

antitumor therapeutic effects. Several clinical trials of 

drugs that target TGF-β are currently underway 

including those that are aimed at cancer progression and 

metastasis [32]. 

 

The Wnt signaling pathway has also been intensively 

studied and plays a role in cell proliferation, growth, cell 

fate and differentiation [33, 34]. Mutations in Wnt 

signaling pathway components are linked to many 

diseases, including cancer [35]. It is important to 

understand that the Wnt signaling pathway also provides 

potential benefits for genetic therapy. The components 

of the Wnt signaling pathway can be divided into Wnt 

ligands and Wnt receptors [36]. There are 19 Wnt 

ligands, all of which have a cysteine-rich domain and 

can activate different types of Wnt signaling pathways 

by binding to specific Wnt signaling receptors [37]. In 

addition, some Wnt ligands are also involved in the 

formation and development of cancer. WNT1 encodes a 

number of glycoproteins that are reported to be markers 

of advanced metastasis in cancer patients [38]. WNT3A 

was found to be overexpressed and correlated with the 

level of MMP9 in colorectal tumor tissues [39]. Wnt 

signaling is involved in determining cell fate, and 

mutations in Wnt signaling pathway components are 

reported to be strongly associated with different types of 

human cancers, such as lung, breast and ovarian cancer 

[40–42]. Thus, inhibitors of Wnt signaling could be used 

for cancer treatment. 

 

The phosphatidylinositol 3-kinase (PI3K) signaling 

pathway is overactivated in most cancers [43]. PI3K 

signaling plays an important role in cellular physiology, 

coordinates insulin signaling during organism growth, 

and mediates key cellular processes such as glucose 

homeostasis, protein synthesis, cell proliferation and 

survival. This pathway has been a fierce field of 

investigation, especially in light of cancer genome 

studies that have showed it is one of the most common 

pathways altered in human malignancies. PI3K signaling 

impacts on many processes that regulate the hallmarks of 

cancer, including cell proliferation, survival, and 

genomic instability, and metabolism [44]. 

 

Our study is an attempt to construct a gene regulatory 

network incorporating DEGs that have been identified 

in normal tissues and primary ccRCC, and to initiate the 
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functional annotation of hub genes that they share. 

Furthermore, we believe that alterations in ICAM1, 

CXCR4, TYROBP, FN1, and CAV1 are significantly 

associated with worse prognosis, indicating that these 

genes may play important roles in creating aggressive 

malignant phenotypes of ccRCC. This study had the 

following limitations. First, the data we utilized were 

drawn from unbalanced samples of normal tissues and 

primary ccRCCs, which were of poor quantity and 

downloaded from the GEO database, rather than 

samples obtained by our team. Second, this study failed 

to explore underlying mechanisms of signaling 

pathways in ccRCC, although a series of functional 

annotations and enrichment analyses were investigated. 

Further research should focus on exploring the detailed 

mechanisms between the hub genes and ccRCC 

carcinogenesis. 

 

In conclusion, this study has identified DEGs and hub 

genes in normal tissues and primary ccRCC tissues, that 

may help us uncover the mechanisms behind the 

development of ccRCC, and provide more clues for its 

prognosis. Further research is needed to elucidate the 

molecular pathogenesis and alteration of the signaling 

pathways of the hub genes in ccRCC. 

 

MATERIALS AND METHODS 
 

Transcriptional expression profiles process 

 

NCBI-GEO is regarded as a free public database of 

transcriptional expression profile and we obtained the 

gene expression profile of GSE15641, GSE16441 and 

GSE66270 in kidney cancer and normal kidney tissues. 

The data of GSE15641 were obtained with the GPL96 

platform (Affymetrix Human Genome U133A Array) 

and came from 32 kidney tumours and 23 normal 

kidney tissue sample. Similarly, the data of GSE16441 

were based on the GPL6480 platform (Whole Human 

Genome Microarray 4x44K G4112F). The gene 

microarray data were collected from 17 renal clear cell 

carcinoma and 17 non-tumor. The GSE66270 data were 

obtained from the GPL570 platform (Affymetrix 

Human Genome U133 Plus 2.0 Array). 14 primary 

kidney tumours and 14 Adjacent Normal kieney tissues 

were analysed for the GSE66270 data set. 

 

Standardization and elucidation of DEGs 

 

DNA microarray analysis started with preprocessing 

and standardization of raw biological data. This 

procedure eliminated noise from the biological data and 

guaranteed integrity. Then, background correction of 

probe data, standardization, and summarization were 

performed by robust multiarray average analysis 

algorithm [45] in affy package of R [46]. 

The DEGs between normal kidney tissues and ccRCC 

samples were screened and identified across 

experimental conditions. Delineating parameters such as 

adjusted P values (adj. P), Benjamini and Hochberg 

false discovery rate (FDR) and fold change were 

utilized to filter DEGs and provide a balance between 

the discovery of statistically significant genes and 

limitations of falsepositives. Probe sets without 

corresponding gene symbols or genes with more than 

one probe set were removed or averaged. The absolute 

value of |log2FC| (fold change) >1.00 and P value <.05 

were considered statistically significant. Then, the raw 

data in TXT format were checked in Venn software 

online to detect the commonly DEGs among the three 

datasets. The DEGs with log FC < 0 was considered as 

down-regulated genes, while the DEGs with log FC > 0 

was considered as an up-regulated gene. 

 

KEGG and GO enrichment analyses of DEGs 

 

Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (http://david.ncifcrf.gov) (version 

6.7) is an online biological information database that 

integrates biological data and analysis tools, and 

provides a comprehensive set of functional annotation 

information of genes and proteins for users to extract 

biological information [47]. Kyoto Encyclopedia of 

Gene and Genome (KEGG) is a database resource for 

understanding advanced functions and biological 

systems from large-scale molecular data generated by 

high-throughput experimental techniques [48]. Gene 

ontology (GO) is a major bioinformatics tool for 

annotating genes and analyzing the biological processes 

of these genes [49]. We could use DAVID to visualize 

the DEGs enrichment of molecular function (MF), 

cellular components (CC), biological processes (BP) 

and biological pathways (P < 0.05). 

 

Human protein atlas 

 

The Human Pathology Atlas project (https://www. 

proteinatlas.org) contains immunohistochemistry (IHC) 

data using a tissue microarray-based analysis [50]. 

Staining intensity, quantity, location and patients’ 

information in patients with the respective cancer types 

were available online. In this study, representative 

proteins expressions of IHC images of CCND1 were 

detected in ccRCC and normal tissues in Human Protein 

Atlas. 

 

PPI network and module analysis 

 

DEG-encoded proteins and the PPI were obtained  

using the online database STRING (available online: 

http://string-db.org) [51]. An interaction with a combined 

score >0.4 was considered statistically significant. 

http://david.ncifcrf.gov/
http://david.ncifcrf.gov/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://string-db.org/
http://string-db.org/
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Cytoscape (version 3.7.1), a public source bioinformatics 

software platform, was used to visualize and analyze 

molecular interaction networks [52]. The plug-in 

Molecular Complex Detection (MCODE) (version 1.5.1) 

of Cytoscape was used for clustering a given network 

based on the topology to find densely connected regions 

[53]. MCODE can be used to identify the most dense and 

significant module in the PPI networks with criteria as 

follows: degree cut-off = 2, node score cut-off = 0.2, Max 

depth = 100, and K-score = 2. 

 

Hub genes selection and analysis 

 

The plug-in cytoHubba (version 0.1) of Cytoscape was 

used for screen out hub genes based on degress. The 

hub genes were selected with degrees ≥10(each node 

had more than 11 connections/interactions). A network 

of the genes and their co-expression genes was analyzed 

using cBioPortal (http://www.cbioportal.org) online 

platform [54]. ClueGO is a plug-in of Cytoscape that 

can visualize the nonredundant biological terms for 

large clusters of genes in a functionally grouped 

network [55]. The biological process from GO analysis 

of hub genes was performed and visualized by ClueGO 

(version 2.5.4) and CluePedia (version 1.5.4), which 

was a functional extension of ClueGO and a plug-in of 

Cytoscape [56]. In addition, hierarchical clustering of 

the hub genes was constructed. 

 

Survival analysis 

 

The Kaplan-Meier method was used to analyze 

differences in survival between groups. The primary 

endpoint was disease-free survival (DFS), the duration 

from the onset of curative treatment to the date of 

progression or the start date of the second-line 

treatment or the date of death, whichever occurs first. 

The overall survival (OS) as a secondary endpoint was 

the length of time from the date of diagnosis or first 

treatment to the date of death or last follow-up. The 

Kaplan-Meier method was used to estimate and 

account for the duration of follow-up, the 95% 

confidence interval (95% CI) and the log-rank test in 

the separation curve. The overall score was determined 

as the sum of the weights of each important central 

gene. Univariate and multivariate analysis were 

performed with Cox logistic regression models to find 

independent variables, including age at diagnosis, age 

(ref. < 60 years), gender (ref. Male), pT stage (ref. T1-

T2), pN stage (ref. N0), pM stage (ref. M0), AJCC 

stage (ref. I-II), ISUP grade (ref. 1-2) and CCND1 and 

PECAM1/CD31 expression (ref. Low). X-tile software 

was utilized to take the cut-off value. All hypothetical 

tests were two-sided and p-values less than 0.05 were 

considered significant in all tests. Integrated score was 

identified as sum of the weight of CCND1 and 

PECAM1/CD31 and significant clinicopathological 

prognostic indicators. 

 

Oncomine database 

 

In this study, transcriptional expression profiles of 

CCND1 and PECAM1/CD31 in ccRCC patients were 

obtained from Oncomine database using Oncomine 

online database (http://www.oncomine.com) [57]. 

Difference of transcriptional expression was compared 

by Students’ t-test. Cut-off of p value and fold change 

were as following: p-value=0.01, Fold Change=1.5, 

gene rank=10%, Data type: mRNA. 

 
Western blotting analysis 

 

Total protein was extracted from cells using RIPA lysis 

buffer (TaKaRa) according to the manufacturer’s 

instructions. Proteins in lysates were determined using 

the bicinchoninic acid (BCA) assay and 10% SDS-

PAGE and then transferred onto a polyvinylidene 

fluoride (PVDF) membrane. The membrane was 

incubated with blocking buffer for 2 h at room 

temperature and then with the primary antibody anti-

CCND1 (1:1000, ab16663, Abcam) and and anti-CD31 

(PECAM1/CD31; 1:1000, ab28364, Abcam) overnight 

at 4°C. Then, the protein was visualized using ECL plus 

western blotting detection reagents (Biosciences) and 

detected with an enhanced chemiluminescence kit. 

 

RNA extraction and quantitative real-time PCR 

analysis (qRT-PCR) 

 

Total RNA from harvested patients’ sample cells was 

isolated by Trizol (Invitrogen, Carlsbad, CA), and qRT-

PCR was performed using SYBR® Premix Ex TaqTM 

(TaKaRa) according to manufacturer’s protocol, as 

previously described [58]. The primers pairs were: 

CCND1 forward, 5′- GCTGTGCATCTACACCGACA -

3′, CCND1 reverse, 5′- TTGAGCTTGTTCACCAGGA 

G -3′, CD31/PECAM1/CD31 forward, 5′- GTGCTGCA 

ATGTGCTGTGAA -3′, CD31/PECAM1/CD31 reverse, 

5′- CTGGTTCGTCTTCCGATCTGT -3′. The mRNA 

expression level was normalized to actin and replicated 

in triplicate according to the manufacturer’s instructions. 

The relative expression quantity was calculated using the 

2-ΔΔCt method. 

 

Data processing of gene set enrichment analysis 

(GSEA) 

 

TCGA database were implemented with GSEA method 

using the Category version 2.10.1 package. Student’s-t-

test statistical score was performed in consistent 

pathways and the mean of the differential expression 

genes was calculated. A permutation test with 1000 times 

http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.oncomine.com/
http://www.oncomine.com/
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was used to identify the significantly changed pathways. 

The adjusted P values (adj. P) using Benjamini and 

Hochberg (BH) false discovery rate (FDR) method by 

default were applied to correct the occurrence of false 

positive results [23]. The significant related genes were 

defined with an adj. P less than 0.01 and FDR less than 

0.25. Statistical analysis and graphical plotting were 

conducted using R software (Version 3.6.1). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. CCND1 proteins expression significantly high staining expressions were observed in ccRCC tissues. 

 

 

 

 
 

Supplementary Figure 2. (A) The expression and prognostic value of CCND1 in tumors based on TCGA cohort. (B–G)High expression of 

CCND1 is related to the better prognosis of patients with kidney renal clear cell carcinoma and liver hepatocellular carcinoma. However, high 
expression of CCND1 is associated with poor prognosis of head and neck squamous cell carcinoma, lung adenocarcinoma, mesothelioma and 
pancreatic adenocarcinoma. 
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Supplementary Figure 3. (A) The expression and prognostic value of PECAM1/CD31 in tumors based on TCGA cohort. (B–E) The high 
expression of PECAM1/CD31 is related to the better prognosis of patients with kidney renal clear cell carcinoma and skin cutaneous 
melanoma However, the high expression of PECAM1/CD31 is related to the poor prognosis of patients with brain low grade glioma and uveal 
melanoma. 
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Supplementary Tables 
 

 

Supplementary Table 1. Clinicopathological characteristics baseline for ccRCC patients in TCGA cohort. (ccRCC: clear 
cell renal cell carcinoma; TCGA: The Cancer Genome Atlas) 

Characteristics TCGA cohort (N=533) 

N (%)  

  Age  

    < 60 years 245 (46.0) 

    ≥ 60 years 288 (54.0) 

  Gender  

    Male 345 (64.7) 

    Female 188 (35.3) 

  Laterality  

    Left 251 (47.1) 

    Right 282 (52.9) 

  pT stage  

    T1 273 (51.2) 

    T2 69 (12.9) 

    T3 180 (33.8) 

    T4 11 (2.1) 

  pN stage  

    N0 240 (45.0) 

    N1 16 (3.0) 

    Nx 277 (52.0) 

  pM stage  

    M0 422 (79.2) 

    M1 79 (14.8) 

    Mx 32 (6.0) 

  AJCC stage †  

    I  267 (50.1) 

    II  57 (10.7) 

    III 123 (23.1) 

  IV 86 (16.1) 

ISUP grade  

G1 14 (2.6) 

G2 229 (43.0) 

G3 206 (38.6) 

G4 76 (14.3) 

Gx  8 (1.5) 
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Supplementary Table 2. Univariate Cox logistic regression analysis of CCND1 for predicting OS in TCGA cohort (OS: 
overall survival; TCGA: The Cancer Genome Atlas) 

Covariates 
Univariate analysis  Multivariate analysis 

HR 95% CI P value  HR 95% CI P value 

Age 1.795 1.311-2.456 <0.001  1.028 1.010-1.047 0.002 

Gender (ref. Male) 1.054 0.775-1.434 0.737  - - - 

pT stage (ref. T1-T2) 3.138 2.320-4.245 <0.001  1.520 0.675-3.421 0.312 

pN stage (ref. N0) 3.380 1.795-6.367 <0.001  1.703 0.852-3.405 0.132 

pM stage (ref. M0) 3.589 2.636-4.886 <0.001  2.764 1.654-4.620 <0.001 

AJCC stage (ref. I-II) 3.835 2.798-5.256 <0.001  1.153 0.453-2.933 0.765 

ISUP grade (ref. G1-G2) 2.651 1.887-3.723 <0.001  1.504 0.920-2.460 0.104 

CCND1 expression (ref. low) 0.408 0.297-0.561 <0.001  0.603 0.369-0.985 0.043 

 

Supplementary Table 3. Univariate Cox logistic regression analysis of PECAM1/CD31 for predicting OS in TCGA cohort 
(OS: overall survival; TCGA: The Cancer Genome Atlas) 

Covariates 
Univariate analysis  Multivariate analysis 

HR 95% CI P value  HR 95% CI P value 

Age 1.795 1.311-2.456 <0.001  1.031 1.012-1.050 <0.001 

Gender (ref. Male) 1.054 0.775-1.434 0.737  - - - 

pT stage (ref. T1-T2) 3.138 2.320-4.245 <0.001  1.662 0.734-3.767 0.223 

pN stage (ref. N0) 3.380 1.795-6.367 <0.001  1.919 0.964-3.818 0.064 

pM stage (ref. M0) 3.589 2.636-4.886 <0.001  2.971 1.773-4.978 <0.001 

AJCC stage (ref. I-II) 3.835 2.798-5.256 <0.001  1.170 0.460-2.972 0.742 

ISUP grade (ref. G1-G2) 2.651 1.887-3.723 <0.001  1.484 0.906-2.429 0.117 

PECAM1 expression (ref. low) 0.448 0.333-0.603 <0.001  0.595 0.390-0.906 0.016 

 

 


