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INTRODUCTION 
 
Nowadays, stroke has become the leading cause of adult 
disability and the second most prominent cause of death 
worldwide, only after coronary heart disease. Ischemic 
stroke almost accounts for 80% in all stroke cases [1]. 
Over the past decades, the established therapeutic option 
for ischemic stroke patients is still limited to 
recanalization of occlusive vessels with the clot-breaking 
agent tissue plasminogen activator (t-PA). However, due 
to the serious tissue damage which may occur during the 
subsequent reperfusion (such as bleeding) and the limited 
therapeutic time window (within 4.5h post stroke), more 
than 90% of ischemic stroke patients are unavailable to 
intravenous t-PA therapy [2]. Although numerous 
potential pathophysiologic mechanisms and targets for 
ischemic stroke have been found in recent years, they are 
rarely translated into feasible medical practice [3]. 
 
Tau is a protein mainly expressed in the brain, it has six 
isoforms produced by alternative mRNA splicing of 
microtubule-associated protein tau (MAPT) gene which 
comprises 16 exons on chromosome 17q21 [4] (Figure 
1A). The primary physiological function of tau protein is 
to stabilize microtubule networks within neurons,  

 

whereas the hyperphosphorylated condition will 
significantly reduce its biological activity [5]. Although 
previous studies mainly focused on the mechanisms of 
tau protein in neurodegenerative diseases [6, 7], some 
studies have also demonstrated that increased tau 
immunoreactivity after brain ischemia-reperfusion injury 
can be observed in neuronal cells [8, 9]. Recently, several 
novel functions of tau protein have been revealed [10, 
11]. Whereas the association between tau protein and 
ischemic stroke has not been well discussed. In this 
review, we aim to update the knowledge about the 
genomic and proteomic changes in tau protein following 
ischemia/reperfusion injury and the connection between 
tau protein and ischemic stroke. 
 
Structure and biological functions of tau 
 
Tau was first isolated and named in 1975 for its ability to 
induce tubule formation [12], and was mostly segregated 
into neuronal axons [13]. Tau can be also detected in 
oligodendrocytes and neuronal somatodendritic 
compartments [14]. Besides the nervous system, tau was 
also found to be expressed in many other tissues: heart, 
lung, kidney, and testis, but less abundant [15]. Tau is 
composed of four regions: an N-terminal projection 
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region, a proline-rich domain (PRD), a microtubule-
binding domain (MBD), and a C-terminal region [16] 
(Figure 1A). Six isoforms of tau have been found in 
human adult brain, they are expressed by alternative 
splicing around the N-terminal projection region and 
MBD. The gene expression of these isoforms differs both 
in N-terminal exons (0N, 1N, or 2N) and the number of 
microtubule binding repeat sequences (3R or 4R). The 
4R tau has four microtubule binding repeat sequences 
due to the inclusion of exon 10 when compared with 3R 
tau [4, 17] (Figure 1B). 
 
The mainly physiological tau function in the cell is 
regulating microtubule structure and dynamics by 
binding to microtubules, it has been also proven in cell-
free conditions [12]. Furthermore, the dynamic 
microtubule network provided by tau is key to the proper 
migration of new neurons, and severe reduction of adult 
neurogenesis was found in tau knockout mice [18]. Tau 
also plays an important role in controlling the balance of 

microtubule-dependent axonal transport through the 
differential sensitivity of motor proteins in neurons [19]. 
Additionally, it has been approved that tau is essential in 
the protection of neuronal genomic DNA and RNA 
integrity under hyperthermia condition both in primary 
neuronal cultures and in vivo in adult mice [20]. Besides, 
absence or reduction of tau expression has been reported 
to have protective efforts against memory deficits, 
excitotoxicity, amyloid induced toxicity, and epilepsy in 
animal experiments [21, 22] (Figure 2).\ 
 
Potential mechanisms of tau in ischemic stroke  
 
Tau functions are regulated by a complex array of post-
translational modifications, such as phosphorylation, 
glycation, acetylation, isomerization, nitration, 
sumoylation, O-GlcNAcylation, and truncation [16, 23], 
suggesting that tau plays diverse roles in physiology and 
pathology. Dysfunctional tau is one of the neurotoxic 
proteins, accumulated in neurons and cerebrovascular 

 

 
 

Figure 1. (A) Structure of human tau protein; Tau has an N-terminao projection region, a proline-rich domain(PRD), a microtubule-binding 
domain(MBD), and a C-terminal region. (B) Six isoforms of human tau. They differ by the inclusion of exon 2(NI), exon 3(N2), and exonlO(RI-R4). 
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after ischemia, furthermore, it is closely related to a  
range of pathological changes of ischemic stroke [24, 
25]. According to previous studies, the kinds of 
dysfunctional tau differ in different ischemic models, 
such as neurofibrillary tangle formation [26–28], hyper-
phosphorylation [29–34], dephosphorylation [8, 35–39], 
and re-phosphorylation [8, 40] (Table 1). The hyper-
phosphorylated state is the particularly pathological 
condition of tau in brain ischemia. It decreases the 
affinity of tau for the microtubules by disrupting the 
binding balance [5, 30–34, 41]. In this part, we will 

summarize the potential regulatory mechanisms of tau in 
ischemic stroke. 
 
Tau and oxidative stress 
 
Oxidative stress is a pathological condition which 
constitutes the mechanisms of many disease including 
ischemic stroke. It has been proven in animal 
experiments that the hyperphosphorylation of tau can be 
resulted from oxidative stress through different kinds  
of oxidant, like intracerebroventricular streptozotocin 

 

 
 

Figure 2. (A) Biological function of tau protein. (B) Pathological role of tau protein. 
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Table 1. Patterns of Tau Phosphorylation in Brain after Ischemic Stroke. 

References 
Human/
Animal 

Models/Subjects 
Ischemic 

time 
Analyzed 

tissue 
State of tau protein Tau phospho-sites Effects of tau 

Bi M 2017 [11] Mice 
Focal cerebral 

ischemia model 
90min/ 
30min 

The cortex in 
the ischemic 

area 
Tau N 

Reduce tau protein-
dependent excitotoxicity 

in tau–/– mice 

Basurto IG 
2018 [117] 

Mice 
Focal cerebral 

ischemia model 
1 hour 

The ischemic 
core 

Hyperphosphorylation Ser262/356 
Hyperphosphorylation 
involving asparagine 

endopeptidase 

Khan S 2018 
[27] 

Mice 
Global cerebral 
ischemia model 

10,15,18min 
The 

hippocampus 
and the cortex 

Paired helical filament tau 
protein increase 

Ps396/404 Lead to neuronal death 

Liao G 2009 
[118] 

Mice 

Right common carotid 
artery was occluded 

and hypoxia was 
maintained 

40 min 
The ischemic 

core 
A marked decrease in tau 

phosphorylation 
P301L 

Extracellular glutamate 
accumulation 

Tuo QZ 2017 
[10] 

Mice/ 
Rats 

Focal cerebral 
ischemia model 

Mice:60min 
Rats:90min 

The lesioned 
hemisphere 

Tau N 

Dysfunctional or absent 
tau protein contributes 

to iron-mediated 
neurotoxicity 

Dewar D 1995 
[36] 

Rats 
Focal cerebral 

ischemia model 
2-6hours 

The cortex in 
the ischemic 

area 

Dephosphorylated and/or 
degraded 

Tau 1 
Breakdown of the 

cytoskeleton in ischemic 
region of the neuron 

Geddes JW 
1994 [37] 

Rats 
Complete cerebral 

ischemia model 
20 min 

The 
hippocampal 

formation 
Dephosphorylated Tau 1 

Compromises the ability 
of the neuron to remove 

Elevated intracellular 
Ca2+ 

Shackelford 
DA,1998 [39] 

Rats 
Complete cerebral 

ischemia model 
5-15min 

The 
hippocampus, 
neocortex and 

striatum 

Dephosphorylated Ps396/404 
Possibly contributing to 

disruption of axonal 
transport 

Wen Y 2004 
[31] 

Rats 
Focal cerebral 

ischemia model 
1 hour 

The cortex in 
the ischemic 

area 
Hyperphosphorylation 

PT181, pS202, pT205, 
pT212, pS214, pT231, 
pS262, pS396, pS404, 

and pS422 

Destabilize neuronal 
cytoskeleton, and may 

contribute to the 
Apoptotic process 

Wen Y 2004 
[33] 

Rats 
Focal cerebral 

ischemia model 
1 hour 

The cortex in 
the ischemic 

area 
Hyperphosphorylation 

MC1 and TG3 
(phospho-tau 231/ 235); 

phosphorylated tau 
epitopes: CP13 

(phospho- tau 202/205), 
CP3 (phospho-tau 214), 

PHF-1 (phospho-tau 
396/ 404), and CP9 
(phospho-tau 231) 

Involved in the 
progression of 

Neuropathology in AD 

Kovalska M 
2018 [34] 

Rats 
Global cerebral 
ischemia model 

15min 
The cortex in 
the ischemic 

area 
Hyperphosphorylation Ser202, Thr205 

Degeneration of cortical 
neurons, alterations in 

number and morphology 
of tissue astrocytes and 

dysregulation of 
Oxidative balance 

Fujii H 2017 
[30] 

Rats 
Focal cerebral 

ischemia model 
90 mins 

The ischemic 
core 

Hyperphosphorylation Asp421-truncated tau 

Influence microtubule 
stability and 

Subsequently disturb 
axonal transport, 
resulting in the 
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formation of axonal 
varicosities and other 
axonal abnormalities 

Wen Y 2007 
[29] 

Rats 
Focal cerebral 

ischemia model 
1 hour 

The cortex in 
the ischemic 

area 

Hyperphosphorylation 
and neurofibrillary tangle 
(NFT) like conformations 

P-396/404 
Involved in the 
progression of 

neuropathology in AD 

Majd S 2016 
[38] 

Rats 
Global cerebral 
ischemia model 

8 mins 

Parietal 
cortical and 
subcortical 

hippocampus 
homogenates 

Phosphorylation/ 
dephosphorylation 

Ser(396) and Ser(262), 
Ser(202) /Thr(205) 

(AT8) 

Dephosphorylation of 
AMPK followed the 
same pattern as tau 
dephosphorylation 
during ischemia or 

reperfusion 

Whitehead 
SN,2005 [28] 

Rats 
Subcortical Lacunar 
infarcts by striatal 

endothelin injections 
N Hippocampus 

Neurofibrillary tangles 
and senile plaques to form 

Tau 2 
Mediating neurotoxic 

and neuroinflammatory 

Morioka M 
2006 [32] 

Gerbils 
Global forebrain 
ischemia model 

5 mins 
Hippocampal 

region 
Hyperphosphorylation Serine 199/202 

Induced by MAP kinase, 
CDK5, and GSK3, and 
contributes to ischemic 

neuronal injury 

Gordon KW 
2007 [8] 

Gerbils 
Global forebrain 
ischemia model 

5 mins 
The cortex in 
the ischemic 

area 
Hyperphosphorylation Tau 1 

May caused by 
oxidative stress 

Mailliot C 2000 
[40] 

Dogs 
Cardiac arrest -induced 

global cerebral 
ischemia 

10mins 
The ischemic 

core 

Dephosphorylation, 
differential and re-
phosphorylation 

Ser262/356 
Monitor neuronal 

integrity after brain 
ischemia 

Burkhart KK 
1998 [35] 

Rats/Hu
man 

Complete cerebral 
ischemia model 

Neocortical brain slices 

5mins/ 
30mins 

The cortex in 
the ischemic 

area 

Dephosphorylation and an 
apparent recovery in 
phosphorylated tau 

Tau 1 
Dephosphorylated tau 

may enhance 
Microtubule stability 

Uchihara T 
2004 [127] 

Human Ischemic stroke N 
The cortex in 
the ischemic 

area 
Hyperphosphorylation Ser101 

Microglia tau protein 
passes independent of 

phosphorylation 
modification 

Kato T 1988 
[26] 

Human Ischemic stroke N 
The cortex in 
the ischemic 

area 

Neurofibrillary tangle 
formation 

Tau 1 
These cases may 

represent an initial stage 
of senile changes 

 

(ICV-STZ) [42, 43], streptozotocin [44] and 1,2- 
diacetylbenzene (DAB) [45]. On the other hand, 
hyperphosphorylation of tau can be reduced by 
antioxidants, such as EUK 207 [46], EUK 189 [47] and 
exendin-4 (Ex-4) [42]. There is no unified opinion on the 
underlying mechanisms between oxidative stress and 
hyperphosphorylation of tau. Many studies have found 
that polyunsaturated lipids, thiobarbituric acid reactive 
substances (TBARS), and 4-hydroxynonenal (4-HNE) 
produced by peroxidation of intracellular lipids are 
notably increased, which may contribute to 
hyperphosphorylation of tau [42, 43]. More recently, tau 
hyperphosphorylation is proven to be directly stimulated 
by ROS, which is produced by DAB via the 
phosphorylation of activated glycogen synthase kinase-
3β (GSK-3β) [45]. Moreover, high concentration of 
hyperphosphorylated tau has been shown to stimulate 
the production of ROS [48]. Therefore, oxidative stress 

and tau hyperphosphorylation may be two key elements 
of a vicious circle after ischemic stroke. 
 
Tau and apoptosis 
 
Apoptosis is a dynamically programmed process of cell 
death, acting an essential actor in the neuronal damage 
after ischemic stroke [49]. Tau hyperproteolysis/ 
proteolysis and apoptosis are considered to be two 
independent pathological events after neuron damage, 
most researchers did not demonstrate the underlying 
relationship between them [50, 51]. However, one recent 
study has proven that the accumulation of CDK5-
regulated tau phosphorylation might trigger neuronal 
apoptosis through impairing endoplasmic reticulum-
associated degradation [52]. Researchers also found that 
tau phosphorylation could be inhibited by knocking 
down CDK5 (an upstream regulatory factor of tau), 
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which could protect neurons by mitigating endoplasmic 
reticulum stress from apoptosis [52]. 
 
Tau and autophagy 
 
Autophagy is subtyped into constitutive macro-
autophagy which plays a major role in maintaining the 
appropriate levels of functional tau in neurons [53–55]. 
Autophagy has been indicated to be an important 
pathophysiological process in both hemorrhagic stroke 
and ischemic stroke [56, 57]. Previous studies have 
demonstrated that the decrease in tau is directly 
correlated with the increase in specific autophagy 
markers (such as LC3B-II) in the 3xTg-AD mouse model 
after transient hypoperfusion, indicating that autophagy 
may be a pathway of lowering dysfunctional tau level 
after hypoperfusion [58]. Another study has detected a 
significant decrease in the level of LC3B protein and a 
reduction in infarct volume in ischemic P301L-Tau mice 
[59]. The researchers considered it might be possible that 
the autophagy-mediated degradation is influenced by 
mutated tau with the increase levels of protein aggregates 
[59]. Furthermore, it has been demonstrated that 
regulators of autophagy can mediate tau expression in 
neurons overexpressing human mutant P301L-Tau [60]. 
In human tauopathies, p62 is the regulative protein of 
selective autophagy, and its immunoreactivity co-
localizes with tau inclusions [61]. In mice and cells, 
autophagy activation can promote the clearance of 
assembled tau [62] and reduce the aggregation of seeded 
tau [63]. Many studies consider tau phosphorylation a 
consequence of seeded aggregation [64]. P62 and nuclear 
dot protein 52 (NDP52) are both autophagy cargo 
receptors, playing vital role in protecting against seeded 
tau aggregation in cells [60, 65]. So it is possible that 
autophagy, rather than the proteasome, restricts the 
aggregation of seeded tau [60]. 
 
Tau and excitotoxicity 
 
Excitotoxicity has been identified as one of the 
molecular mechanisms of ischemic stroke in many 
studies [66–68]. Many studies suggest that tau 
phosphorylation can be prevented by inhibition of 
calcium influx [69]. The increased activity of calcium-
dependent kinases or altered glutamate homeostasis can 
enhance tau phosphorylation [70, 71], meaning the 
glutamate-induced excitotoxicity can increase dys-
functional tau expression. On the other hand, several 
other studies find that tau also plays a critical role in 
eliciting excitotoxicity [72–77]. There is an increase in 
KCL-evoked glutamate release and a decrease in 
glutamate clearance in TauP301L mice [74]. The 
molecular mechanisms underlying tau-induced 
excitotoxicity remain elucidated. A latter study 
demonstrates tau facilitates excitotoxicity with a 

mechanism that does not directly involve facilitation of 
calcium influx through kainic acid (KA) receptors [78]. 
However, another study suggests that the reduction of 
the pY18-tau formation or level can depress 
excitotoxicity by diminishing N-methyl-D-aspartic acid 
(NMDA) receptor-dependent calcium influx [79, 80]. 
Altogether, excitotoxicity and tau phosphorylation lead 
to a vicious circle in promoting cell death in ischemic 
brain. 
 
Tau protein and inflammation 
 
Inflammation of neural tissue, also called neuro-
inflammation, is considered the main cause of mortality 
in ischemia/reperfusion stroke [81]. Some previous 
studies have suggested that dysfunctional tau is closely 
related to inflammatory cascade. The inflammatory 
messengers can significantly affect the structure and 
function of tau [82–84]. The misfolded tau can represent 
a trigger for inflammatory cascade [82–84]. The exact 
roles of inflammatory processes on tau pathology or 
dysfunctional tau on inflammation still remain un-
equivocal. Some researchers generally consider 
inflammation an exacerbating factor [83], but another 
study also shows that acute inflammation may decrease 
the oligomeric tau levels by improving the ability of 
microglia [85]. The first direct evidence for the role of 
inflammation on tau pathology was demonstrated in a 
vitro study in 2003. This study showed that the 
inflammatory mediator, interleukin-1β (IL-1β), could 
promote tau phosphorylation via activating p38-
mitogen-activated protein kinases (MAPK) [86]. In the 
same year, this role was confirmed in a vivo study with 
the 3xTg model [87]. The latter studies also showed that 
a series of bacterial or viral immune stressors and tumor 
necrosis factors could trigger an increase in tau 
phosphorylation [88–90]. So reducing tau levels or 
inhibiting inflammatory pathways could serve as a way 
to resist tauopathies [91]. In 2009, Kovac et al. found a 
novel toxic gain of function of misfolded tau, truncated 
tau. Truncated tau could induce significant decrease of 
trans-endothelial electrical resistance and increase of 
endothelial permeability of BBB. Further, researchers 
also found that truncated tau showed cytotoxic effects on 
astrocyte-microglia culture manifested by increased 
extracellular adenylate kinase levels. Blood-brain barrier 
damage induced by truncated tau was mediated through 
pro-inflammatory cytokine TNF-α and chemokine MCP-
1 [23]. It is noteworthy that pro-inflammatory cytokine 
interferon-γ (IFNγ) has been reported to have opposing 
effects on the phosphorylation and dephosphorylation of 
tau [92]. The macrophages and microglia play a vital 
role in neuroinflammation. Tau oligomers can only be 
phagocytosed by both macrophages and microglia under 
physiological condition [85]. Microglial internalization 
has been indicated to be effective to both soluble and 
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aggregated human tau [93]. Overall, suppressing the 
inflammation in neural tissue may prove paradoxically 
effective in the development of tau pathology. Further 
studies are required to elucidate the molecular 
mechanism. 
 
Tau protein and angiogenesis 
 
Vascular endothelium refers to cells that line the entire 
circulatory system. It has a close relationship with 
thrombosis and thrombolysis. Dysfunctional endo-
thelium plays a key role in the pathology of stroke by 
increasing the atherosclerotic plaques size and 
vulnerability [94]. Previous studies have suggested that 
endothelial cells can be damaged by tauopathy, such as 
hyperphosphorylation and insolubility, via decreasing 
microtubule assembly [95–98]. Measurement of cerebral 
perfusion in different studies indicate that tau pathology 
is related to reduced blood flow [99, 100]. Truncated tau 
has been proven to play an important role in regulating 
permeability of BBB by decreasing transendothelial 
electrical resistance (TEER) and increasing mannitol 
permeability [23]. In aged tau-overexpressing mice, tau 
pathological changes can impact the brain endothelial 
cell biological function by influencing the integrity of 
the brain’s microvasculature [101]. Furthermore, 
researchers in this study also find the accumulation of 
pathological tau is related to the expression of hypoxia-
and/or angiogenesis-related genes, such as Serpine1, 
Vegfa, Plau and Hmox1 [101]. However, the precise 
cellular signals of these changes and the specific 
interactions between tau and endothelial cells still 
remain further elucidated. Therefore, tau pathology may 
play an important role in the process of BBB disruption 
and neurogenesis by regulating activities of endothelial 
cells after ischemic stroke. 
 
Tau protein and mitochondrial dysfunction 
 
Neuronal cells are particularly sensitive to energy 
deficiencies. The function of mitochondria is to maintain 
the energy supply for cells. Mitochondrial dysfunction is 
one of the pivotal pathological processes in brain 
ischemia and reperfusion. Mitochondrial dysfunction 
then causes neurons necrosis, autophagy and apoptosis 
[102]. Disruption of mitochondrial dynamics (the balance 
between fission and fusion) is the core factor in 
mitochondrial dysfunction. Previous studies showed that 
dynamin-related protein 1 (DRP1), a kind of mito-
chondrial fission proteins, could interact with 
phosphorylated tau, leading to mitochondrial dysfunction 
[103, 104]. Meanwhile, reducing Drp1 levels could 
protect against mitochondrial dysfunction induced by 
hyperphosphorylated tau [105]. Additionally, a 
significant association between tau accumulation and 
mitochondrial translocation deficits was found both in the 

mouse models and human brains [106]. The abnormal 
mitochondrial trafficking can be improved through 
reducing soluble tau levels [106]. In cell and animal 
studies, overexpressed tau can both destroy physiological 
function and distribution of mitochondria, which may 
cause ATP exhausting, oxidative stress and synaptic 
dysfunction [107–109]. In the mechanism studies, 
glycogen synthase kinase 3 (GSK3), axonal protein 
phosphatase 1 (PP1), and phosphorylated tau trapped 
kinesin motor protein complex JIP1 were considered to 
be involved in the pathological interaction [110, 111]. It 
is interesting to notice that tau phosphorylation can also 
be aggravated by ROS mimicking mitochondrial 
oxidative stress in neuronal cells [112]. Altogether, tau 
pathology can destroy the mitochondrial dynamics and 
function, while the dysfunctional mitochondria may 
indicate tau phosphorylation and aggregation. 
 
Tau protein and neurovascular unit damage 
 
The abnormal neuron-to-neuron connections and 
dysfunctional interactions among the different 
components in the neurovascular unit (NVU) might be 
the main reasons for functional deficits after ischemic 
stroke [113]. A study found that ischemia could induce 
neurovascular alterations, glial changes, and the loss of 
tight junctions in NVU, leading to the BBB breakdown 
[9]. By immunofluorescence assay, they also confirmed 
the Aβdeposits and dysfunctional tau existed with glial 
reactions and morphologically altered endothelia [9]. 
Therefore, tau may play an important role in the process 
of NVU damage after ischemic stroke. In the future, a 
focus on all components and investigation of intercellular 
signaling and signaling between cells and extracellular 
matrix is essential to clarify all the facts about ischemic 
stroke. 
 
In summary, we have discussed the potential mechanisms 
of tau in ischemic stroke, including oxidative stress, 
apoptosis, autophagy, excitotoxicity, inflammation, 
endothelium and angiogenesis, and mitochondrial 
dysfunction. In addition, we also discussed the role of tau 
in NVU damage. Tau may stand at the intersection of 
multiple regulatory mechanisms for major pathological 
changes in ischemic stroke. 
 
Therapeutic researches 
 
From the above, it is clear that intervention in tau-
mediated pathological changes could be considered as a 
clinically beneficial strategy in ischemic stroke. No 
such therapy related to tau-regulation have yet achieved 
regulatory approval for clinical application and further 
evidence is still required. However, there has been 
many studies achieved encouraging progress. They 
found the reduction in tau activities and levels might 
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have clinical benefits in stroke treatment. In this part, 
we will mainly discuss the findings in animal and 
clinical studies. 
 
Tau in animal studies 
 
In animal studies, tau hyperphosphorylation was found 
in rats after ischemic damage, and this was considered 
the consequence of the activation/ inactivation of a 
variety of phosphatases and kinases [31]. In addition, tau 
hyperphosphorylation could be caused by hypoxia-
dependent mechanism in vascular dysfunction models, 
such as the ischemic model [114]. Focal mild 
hypothermia is considered a protective factor on 
ischemia/reperfusion damage. It can significantly reduce 
the neurotoxicity by influencing the level of tau in rats 
[115]. In 2017, two important preclinical studies 
involving transient middle cerebral artery occlusion 
(MCAO) mouse models suggested novel roles for tau in 
acute ischemic injury, indicating that agents targeting tau 
and related proteins have the potential to reduce the 
severity of acute brain damage following stroke [10, 11]. 
Peng Lei and colleagues found no elevated brain iron or 
reperfusion injury in young (3-month-old) tau–/– mice 
after MCAO. While this protection was lost in older (12-
month-old) tau–/– mice: the brain iron accumulated 
rapidly. However, the protective effects of tau knockout 
could be revived through normalizing the iron elevation 
during the reperfusion phase. They suggested the 
interaction between tau and iron might be pleiotropic 
modulators of ischemic stroke [10]. Ittner and co-
workers found no up-regulation of the immediate-early 
genes Arc, Fos and Junb in tau–/– mice after MCAO 
damage. But the levels of their mRNA were higher in 
tau+/+ brains [11]. They also demonstrated several 
signaling pathways were differently activated between 
tau–/– mice and tau+/+ mice, mitogen-activated protein 
kinase (MAPK) pathway was the most notable one. 
Then, the inhibitor of excitotoxic RAS/ERK signaling in 
tau–/– mice, SynGAP1, was found significantly 
increased at the post-synapse in the investigation of the 
MAPK pathway. This study demonstrated that tau and 
SynGAP1 might be potential targets for acute ischemic 
stroke [11]. Some other studies also show that inhibitor 2 
of protein phosphatase 2A (I2PP2A) can produce 
hyperphosphorylation of tau through inhibition of PP2A 
[116] in MCAO mouse model [117]. Increased level of 
glutamate transporter 1 in transgenic mouse model can 
reduce ischemic brain damage through reducing the 
accumulation of extracellular glutamate and the 
activation of subsequent calpain and caspase [118]. 
 
Tau in clinical studies 
 
In clinical studies, an increase of the total tau level was 
found in human cerebrospinal fluid(CSF) after brain 

injury, including ischemic stroke [119, 120]. 
Meanwhile, tau was found measurable in serum  
within 6 h after ischemic symptom onset [121]. The 
concentration might peak after 3–5 days [121], or later 
[122]. Moreover, there was no statistical correlation 
between tau serum levels and the severity of clinical 
deficit or disability as assessed by the Barthel index 
(BI). But the serum levels of tau were correlated with 
infarct volumes (from 7ml to 48ml) and functional 
outcomes after 90 days [121]. The results were 
consistent with other studies which indicated that the 
absence of tau in serum during the acute phase (<24h) 
of ischemia could predict good clinical outcomes in 90 
days after stroke [123]. Patients with detected tau in 
serum got more severe neurological deficits and worse 
functional outcomes when compared with patients 
without tau [124]. However, other researchers 
discovered tau protein levels were correlated with the 
scored neurological deficits (BI) from 48 h onward. 
They also found the serum tau levels had no significant 
correlation with stroke etiology as represented by the 
TOAST-criteria [125]. A recent prospective study 
proved that tau levels were closely related to not only 
stroke severity as assessed by NIHSS, but also long-
term outcomes both in plasma and CSF [126]. Notably, 
the study of autopsied brains from patients with  
cerebral infarction found that an increase of tau 
immunoreactivity and deposition of tau in ischemic 
area, but tau deposits were not organized into fibrils or 
more solid inclusions indicating that tau epitope was 
secondary to ischemic damage [127, 128]. Nevertheless, 
tau can be detected in the serum of approximately 40% 
of stroke patients [121, 122]. Present studies have not 
proven why tau could not be detected in the blood of all 
stroke patients. Some researchers think tau may occur in 
blood due to the disruption of BBB. Some factors like 
MMP9 may play a key role in the release of tau into 
circulation [122]. 
 
At present, researchers have found several methods to 
reduce the tau aggregation or tau levels. Methylene blue 
was considered a tau aggregation blocker. It could 
induce autophagy and attenuate tauopathy in vitro and 
in vivo [129], to block tau aggregation in C. elegans 
[130], although its exact mechanism of action is still not 
understood. The AMPK-related kinase Nuak1 has been 
identified as a regulator of tau levels. Inhibition of 
Nuak1 in fruit flies suppressed tau-dependent 
neurodegeneration [131]. Moreover, several approaches 
have targeted the putative enzymes that are responsible 
for tau changes, such as ERK inhibitor [132], JNK 
inhibitor [133], GSK3β [134]. However, these methods 
have not been used clinically for ischemic stroke. 
Further studies need to explore the application of tau-
based therapeutic strategies, especially in acute phase of 
ischemic stroke. 
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CONCLUSIONS AND PERSPECTIVES 
 
This review is committed to describe the pathological 
roles of tau following cerebral ischemia. Tau is a protein 
that plays a vital role not only in microtubule assembly 
and stabilization, but also in pathophysiology of ischemic 
stroke. Initially, we provided a general aspects of tau 
protein, including descriptions of its structure, 
physiological functions and pathological functions. Then, 
we introduce different pathological states of tau protein 
under ischemic condition. The pathological changes 
(such as oxidative stress, autophagy, excitotoxicity, 
inflammation, endothelium and angiogenesis, and 
mitochondrial dysfunction) of tau protein determine its 
potential regulatory mechanisms in ischemic stroke. 
Phosphorylation is the main pathological change of tau in 
ischemic stroke. Therefore, controlling tau 
phosphorylation may induce more protective effects 
under ischemic stimuli. As some experimental results are 
from mouse model with FTDP-17 mutations, there might 
be differences between mouse model with FTDP-17 
mutations and those with ischemic injury in pathogenetic 
mechanisms leading to degeneration. Some studies 
proved that the regional redistribution of tau from the 
neuropil to neuronal perikarya in their stroke model was 
thought to share similarity with that occurring in 
Alzheimer's disease [30]. But the results of molecular 
changes in FTDP-17 mutations mouse might different in 
mouse with stroke. Therefore, more researches still need 
to explore molecular mechanisms in mouse with 
ischemic injury. Lastly, we discuss about the therapeutic 
researches on the treatment of stroke with tau protein. 
The animal studies indicate a role for tau protein in acute 
ischemic brain damage, suggesting that agents targeting 
tau and related proteins have the great potential to reduce 
the severity of brain damage following acute ischemic 
stroke. The clinical studies show that the level of 
serum/plasma or CSF tau is related to the stroke severity 
of clinical deficit and long-term outcomes. The 
underlying mechanisms of pathological tau-induced side 
effects during and after ischemia/reperfusion process are 
complex. There are insufficient clinical studies focused 
on link between tau protein and ischemic stroke. 
However, we still believe that revealing the molecular 
mechanisms of tau in cerebral ischemia and regulating 
the tau phosphorylation may be conductive to developing 
a potential novel target for the ischemic stroke therapy. 
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