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INTRODUCTION 
 
Alzheimer’s disease (AD), a progressive neuro-
degenerative disease, is the main cause of dementia and 
its most significant factor is advanced age [1]. AD is 
characterized by the presence of extracellular senile or 
β-amyloid (Aβ) plaques and, intraneuronal neuro-  

 

fibrillary tangles (NFTs) formed by hyper-
phosphorylated tau aggregates; and by neuronal death 
[2, 3]. High levels of Aβ induce synaptic dysfunction 
and at the end loss of synapses [4–6]. Besides, Aβ 
plaques could contribute to NFTs, neuroinflammation, 
oxidative damage, and changes in chromatin structure 
[7, 8].  
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ABSTRACT 
 
The implication of epigenetic mechanisms in Alzheimer’s disease (AD) has been demonstrated in several 
studies. UNC0642, a specific and potent inhibitor of methyltransferase activity G9a/GLP (G9a-like) complex, was 
evaluated in the 5XFAD mouse model. UNC0642 treatment rescued 5XFAD cognition impairment, reduced DNA-
methylation (5-mC), increased hydroxymethylation (5-hmC), and decreased the di-methylation of lysine 9 of 
histone H3 (H3K9me2) levels in the hippocampus. Increases in the Nuclear Factor erythroid-2-Related Factor 2 
(NRF2), Heme oxygenase decycling 1 (Hmox1) gene expression, and diminution in Reactive Oxygen Species 
(ROS) were also reported. Moreover, neuroinflammatory markers, such as Interleukin 6 (Il-6), Tumor necrosis 
factor-alpha (Tnf-α) gene expression, and Glial fibrillary acidic protein (GFAP) immunofluorescence were 
reduced by UNC0642 treatment. An increase in Nerve growth factor (Ngf), Nerve growth factor inducible (Vgf) 
gene expression, Brain-derived neurotrophic factor (BDNF), and Synaptophysin (SYN) were found after 
UNC0642 treatment. Importantly, a reduction in β-amyloid plaques was also observed. In conclusion, our work 
demonstrates that the inhibition of the G9a/GLP complex by UNC0642 delivered significant neuroprotective 
effects in 5XFAD mice, point out G9a/GLP as a new target for AD. 
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Some critical events known in AD are oxidative stress 
(OS), synaptic loss and glial responses as neuro-
inflammation [9]. Regarding OS, it may damage the 
nervous system and lead to synaptic dysfunction [10] 
and is relevant in neurodegenerative diseases as AD 
[11]. Furthermore, in the inflammation process, some 
cytokines produce neuronal damage and a higher 
expression and changes in Amyloid precursor protein 
(APP) processing of [12]. Moreover, Tumor Necrosis 
Factor-alpha (TNF-α) and Interleukin 6 (IL-6) have 
been detected to aggravate both Aβ and tau pathologies 
in AD [13]. 
 
The regulation of epigenetic mechanisms plays a key role 
in human health, brain development, and function, being 
implicated in neurological disorders. Various 
mechanisms, such as DNA methylation (5-mC), hydro-
xymethylation (5-hmC), histone modifications, and 
regulation of the non-coding RNA, regulate the 
accessibility of chromatin to transcription factors and, 
therefore, these modifications are implicated in the 
modulation of DNA replication, transcription, and repair 
[14]. Consequently, its dysregulation is closely related to 
cognitive decline in aging [15] and transcriptional changes 
in various neurogenerative diseases such as AD, 
Huntington’s disease (HD) and Amyotrophic lateral 
sclerosis (ALS) [14, 16]. By one hand, histone 
modifications found in aging affect the transcription of 
different genes as the Brain-derived neurotrophic factor 
(BDNF) involved in learning and memory. In fact, the 
more BDNF levels, the less cognitive decline in aging, 
being widely accepted as a neuroprotective inductor [14, 
17]. On the other hand, the role of epigenetics in the 
regulation of the mechanisms mentioned above: OS [18], 
neuroinflammation [19], and synaptic plasticity [20] are 
described elsewhere. 
 
Histone epigenetic modifications include acetylation, 
methylation, phosphorylation, and ubiquitination [21]. 
Growing evidence suggests that histone methyl-
transferases act as a crucial regulator in human diseases 
[22]. G9a and G9a-like (GLP) protein are lysine 
methyltransferases that form a heterodimeric complex 
able to mono- and di-methylate lysine 9 of histone H3 
(H3K9me1 and H3K9me2) of the N-terminal tail. Those 
epigenetic modifications lead to transcription repression. 
The G9a/GLP complex plays a role in learning and 
memory because its inhibition participates in the 
maintenance of long-term potentiation (LTP), long-term 
depression (LTD) [23], and also increases Bdnf gene 
expression [17].  
 
Given the evidence demonstrating the implication of the 
G9a/GLP complex in different human diseases, it has 
emerged as a promising pharmacological target, and 
several small-molecules have been designed to inhibit 

these enzymes [24]. Optimization of these molecules lead 
to UNC0642, a compound with IC50 < 2.5 nM and 
optimized pharmacokinetics (PK) [24, 25]. This inhibitor 
of G9a/GLP was the first in vivo chemical probe with high 
potency in reducing H3K9me2 levels, and low cell 
toxicity (EC50 > 3,000 nM). Regarding the in vivo PK 
properties, administration of 5 mg/kg was shown to have a 
maximum concentration (Cmax) in plasma of 947 ng/mL, 
68 ng/mL in the brain and was well tolerated [26]. 
Furthermore, 5mg/Kg dose is sufficient to inhibit 
G9a/GLP activity in adult mice [27].  
 
The 5XFAD is a suitable transgenic mouse model of 
Early-Onset AD (EOAD), developing AD hallmarks as 
Aβ accumulation, plaques and cognitive impairment as 
early as 4-month-old [28–30]. Likewise, the 5XFAD 
model shows synaptic degeneration [31], mitochondrial 
dysfunction [32], increased OS [33], and microglial 
activation [34]. Additionally, epigenetic aberrations in 
the 5XFAD model were also described [35]. Of note, 
the critical role of epigenetics in 5XFAD was revealed 
in a recent study, including a correlation among 
cognitive impairment, Aβ pathology, and epigenetic 
modifications [33]. 
 
The present work aimed to evaluate the beneficial 
effects of the pharmacological inhibition activity of 
G9a/GLP with UNC0642 in 5XFAD mice, evaluating 
epigenetic changes, cognitive improvement, and the 
influence of the G9a/GLP complex inhibition in 
amyloid pathology, OS, neuroinflammation, and 
neuronal plasticity.  
 
RESULTS 
 
Beneficial effects on behaviour and cognition 
induced by UNC0642 in 5XFAD mice 
 
5XFAD treated with UNC0642 restored the locomotor 
activity in comparison with the 5XFAD Control group 
(Figure 1A). Likewise, an increase in vertical activity, 
quantified by the number of rearings, compared to the 
5XFAD Control group was found (Figure 1B). By last, a 
significant increase in grooming in 5XFAD treated with 
UNC0642 in comparison with 5XFAD Control group 
was found (Figure 1C). All these parameters were 
significantly altered in 5XFAD Control in comparison 
with Wild-type (Wt) Control (Figure 1A–1C). Additional 
parameters measured in the Open Field Test (OFT) are 
presented in Table 1.  
 
On the other hand, cognition was measured by the Novel 
Object Recognition Test (NORT) and Object Location 
Test (OLT) tests. NORT analysis demonstrated that 
5XFAD treated with UNC0642 mice exhibited 
significantly reduced cognitive deficits in both short- and 
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long-term memory presented by 5XFAD Control mice 
group (Figure 1D and 1E). Moreover, we confirmed the 
cognitive impairment of the 5XFAD mouse model in both 
short- and long-term memories compared to the Wt 
Control mice group (Figure 1D and 1E). Regarding OLT 
evaluation, a higher Discrimination Index (DI) value in 
5XFAD treated with UNC0642 compared to the 5XFAD 
Control group was found (Figure 1F), demonstrating the 
beneficial effects on cognition after pharmacological 
inhibition of G9a/GLP in 5XFAD, restoring it to Wt 
phenotype. 

UNC0642 treatment decreased 5-mC, increased 5-
hmC and reduced the hippocampus H3K9me2 levels 
in 5XFAD mice 
 
We first evaluated the global levels of 5-mC and 5-hmC 
in DNA samples. We found a significant reduction in 5-
mC levels in 5XFAD treated with UNC0642 in 
comparison with the 5XFAD Control mice group. In 
parallel, 5-hmC levels were increased in 5XFAD treated 
with UNC0642 compared to the 5XFAD Control 
(Figure 2A and 2B). Finally, we measured the

 

 
 

Figure 1. Results of the OFT, DI of the NORT, and DI of the OLT in male mice at 8-month-old Wt Control, 5XFAD Control, and 5XFAD treated 
with UNC0642 (5mg/Kg) mice groups. Locomotor Activity (A), Rearings (B), and Groomings (C). For NORT: Summary of the short-term 
memory (D), and long-term memory (E). Summary of DI (F). Values represented are the mean ± Standard error of the mean (SEM); (n = 27 
(Wt Control n = 10, 5XFAD Control = 10, 5XFAD UNC0642 n = 7)).  *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
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Table 1. Parameters measured in the Open Field Test (OFT).  

 Wt Control 5XFAD Control 5XFAD UNC0642 (5mg/Kg) 
Locomotor activity (cm)  2,614.55 ± 153.22**** 1,672.36 ± 68.84 2,030.46 ± 180.96* 
Distance in zone-Center (cm) 102.09 ± 11.20 87.64 ± 8.21 92.74 ± 8.83 
Distance in zone-Periphery 
(com) 1,983.63 ± 143.41** 1,450.05 ± 133.56 1,623.83 ± 175.20 

Rearings (n) 19.08 ± 2.26** 9.9 ± 0.66 14.29 ± 2.870.09 
Grommings (n)  2.83 ± 0.41** 1.2 ± 0.25 3.71 ± 0.52*** 
Defecations (n) 2.17 ± 0.44** 0.80 ± 0.20 0.86 ± 0.55 
Urinations (n)  0.33 ± 0.26 0.0 ± 0.00 0.0 ± 0.00 

(n): number of events. Results are expressed as a mean ± Standard error of the mean (SEM). *p <0.05; **p <0.01; 
***p<0.001; ****p <0.0001 vs 5XFAD Control. 
 

effectiveness of UNC0642 inhibiting G9a/GLP in the 
brain through the evaluation of H3K9me2 by Western 
Blotting (WB). UNC0642 treatment reduced H3K9me2 
levels compared to the 5XFAD Control, and no changes 
were found between Control mice groups (Figure 2C). 

UNC0642 treatment activated the NRF2 pathway, 
which leads to a reduction in OS levels  
 
To address the question of whether UNC0642 treatment 
reduces OS by upregulating the Nuclear factor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Global 5-methylated (A), and 5-hydroxymethylated cytosine levels (B) in the hippocampus from different mice groups. Representative 
Western Blot, and quantification for H3K9me2 (C). Values in bar graphs are adjusted to 100% for protein levels of the Wt Control. Values 
represented are mean ± Standard error of the mean (SEM); (n = 12 (Wt Control n = 4, 5XFAD Control = 4, 5XFAD UNC0642 n = 4)).  *p<0.05. 
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erythroid-2-related factor 2 (NRF2) pathway, we 
evaluated protein levels of the transcription factor 
NRF2. We found increased in NRF2 protein levels in 
5XFAD treated with UNC0642 compared to the 
5XFAD Control mice group (Figure 3A). In parallel 
fashion, the expression of NRF2 targets was increased 
in animals treated with UNC0642. Specifically, Heme 
oxygenase decycling 1 (Hmox1) gene expression, 
Superoxide dismutase 1 (SOD1) and Glutathione 
peroxidase 1 (GPX1) protein levels were increased in 
5XFAD treated with UNC0642 in comparison with 
the 5XFAD Control group, being only significant for 
the Hmox1 gene expression (Figure 3B–3D). 

Furthermore, no changes were found between both 
Control mice groups, demonstrating the activation of 
the NRF2 pathway through the inhibition of the 
G9a/GLP.  
 
By last, evaluation of hydrogen peroxide (H2O2) levels 
in homogenates of the hippocampus tissue demonstrated 
a significant decrease in Reactive Oxygen Species 
(ROS) levels in 5xFAD treated with UNC0642 
compared to the 5XFAD Control (Figure 3E). Likewise, 
a significant reduction in ROS levels in Wt Control in 
comparison to the 5XFAD Control was found, 
confirming the pathogenic phenotype (Figure 3E).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3. Representative WB, and quantification for NRF2 (A), SOD1 (C), and GPX1 (D). Representative gene expression for Hmox1 (B). 
Representative OS measured as hydrogen peroxide concentration in homogenates of the hippocampus tissue (E). Values in bar graphs are 
adjusted to 100% for protein levels of the Wt Control. Gene expression levels were determined by real-time PCR. Values represented are 
mean ± Standard error of the mean (SEM); (n = 3-6 for each group). *p<0.05; **p<0.01. 
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Reduction of neuroinflammation after treatment 
with UNC0642 in 5XFAD mice 
 
We found a significant reduction in Il-6 and Tnf-α, as 
well as a slight but not significant decrease in C-X-C 
motif chemokine ligand 10 (Cxcl10) gene expression 
between 5XFAD treated with UNC0642 compared to 
5XFAD Control mice group (Figure 4A). Likewise, a 
significant reduction in Il-6, Tnf-α, and Cxcl10 between 
5XFAD Control in comparison with Wt Control was 
found (Figure 4A). Moreover, no changes in Monocyte 
chemoattractant protein 1 (Mcp1) gene expression 
among mice groups were observed (Figure 4A).  
 
On the other hand, immunostaining quantification of 
Glial fibrillary acidic protein (GFAP) fluorescence 
intensity revealed that UNC0642 treatment reduced 
GFAP staining, especially in the Dentate Gyrus (DG) and 
CA3 regions, reaching it to Wt Control (Figure 4B–4E). 
However, no changes in the immunostaining quan-
tification of Ionized calcium binding adapter molecule 1 
(IBA1) between 5XFAD treated with UNC0642 and 
5XFAD Control were found (Figure 4F–4I), whereas a 
significant reduction of IBA1 immunostaining 
quantification in Wt Control in comparison with 5XFAD 
Control was determined (Figure 4F–4I). 
 
Increased synaptic marker and neurotrophins 
induced by UNC0642 in 5XFAD mice 
 
A significant increase in Synaptophysin (SYN) protein 
levels was found in 5XFAD treated with UNC0642 
compared to the 5XFAD Control group, reaching Wt 
Control levels (Figure 5A). Albeit did not reach 
significance, UNC0642 treatment increased Postsynaptic 
density protein 95 (PSD95) protein levels (Figure 5B).  
 
In addition, we evaluated the BDNF another target of 
G9a/GLP, and we found a significant increase in BDNF 
protein levels in 5XFAD treated with UNC0642 in 
comparison with the 5XFAD Control mice group 
(Figure 5C). Next, we determined the gene expression 
of neurotrophic factors such as Nerve growth factor 
(Ngf), and Nerve growth factor inducible (Vgf). We 
found restored gene expression, for both of them, in 
5XFAD treated with UNC0642 in comparison with 
5XFAD Control, being only significant in Vgf gene 
(Figure 5D).  
 
UNC0642 treatment reduced β-amyloid plaques in 
5XFAD mice 
 
Finally, we evaluated the effect of UNC0642 treatment 
on β-amyloid pathology in 5XFAD mice. The 
pharmacological inhibition of G9a/GLP had a strong 
effect in reducing the number of β-amyloid plaques 

stained with Thioflavin-S (by an average of 45%) 
(Figure 6A and 6B), indicating the prevention of β-
amyloid burden in a transgenic mouse model 
characterized by rapidly develops β-amyloid plaques 
pathology. An overview of the effect of inhibiting the 
G9a/GLP complex with UNC0642 in the 5XFAD 
mouse model can be seen in (Figure 7). 
 
DISCUSSION 
 
It is well established that epigenetic modifications are 
associated with neurodegeneration and cognitive 
decline. Because of the deregulation of transcriptional 
activity, resulting in an aberrant neuronal function [36, 
37]. Those epigenetic alterations can be the con-
sequence of mutations in genes coding for proteins 
directly involved in core processes of methylation and 
histone modification [38]. Thus, much research has 
focused on rescuing the cognitive deficit through 
epigenetic-based therapies during AD to normalize the 
epigenetic profile and the associated cognitive decline. 
For instance, the regulation of the histone acetylation in 
in vitro studies and AD mouse models has been 
demonstrated useful [33, 39–41]. To this line epigenetic 
regulation by G9a/GLP histone lysine–methyl-
transferase complex is emerging as a critical mechanism 
underlying the learning and memory processes [42–44]. 
In fact, H3K9me2 (a mark associated with gene 
repression) and the H3K9-specific histone methyl-
transferase G9a have been linked to memory 
consolidation [23, 44, 45]. 
 
The present study investigated the neuroprotective 
effects of UNC0642, a potent and specific G9a/GLP 
inhibitor in 5XFAD mice model. Cognitive perfor-
mance and several molecular pathways regulated by this 
chromatin-modifying enzyme were studied. The 
pharmacological intervention was applied at the age of 
8-month-old when cognitive impairment correlates with 
β-amyloid plaques deposition and epigenetic alterations 
in 5XFAD mice model [33]. 
 
Here, we demonstrated that pharmacological inhibition 
of G9a/GLP displayed better behavioural task, showing 
more locomotor activity and less anxiety-behaviour, as 
well as showed improvement in recognition and spatial 
memory in 5XFAD mice. In the same line, it has been 
reported that chronic treatment with UNC0642 and A-
366 decreased anxiety-like behaviours in adult male 
mice [27]. Furthermore, in another study, it has been 
found that treatment of 5XFAD mice with G9a/GLP 
inhibitors leads to the remarkable restoration of the 
cognition [46]. Accordingly, the cognitive improvement 
achieved by UNC0642 treatment in 5XFAD mice 
parallels with the histone methylation mark H3K9me2, 
and with global epigenetic marks 5-mC and 5-hmC.  
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Figure 4. Representative gene expression of inflammatory markers for Il-6, Tnf-α, Cxcl10, and Mcp1 (A). Representative images for GFAP (B) 
and IBA1 immunostaining (F) and quantifications for GFAP on the bar chart (C, E), and for IBA1 (G–I). Gene expression levels were determined 
by real-time PCR. Values represented are mean ± Standard error of the mean (SEM); (n = 4-6 for each group). DG: Dentate Gyrus. Scale bar 
for immunohistochemical images is 200 μm. *p<0.05; **p<0.01. 
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Recent studies have suggested that aberrant 5-mC and 5-
hmC is associated with neurodegeneration and AD 
through altering the structure of the DNA double helix 
that affects gene expression [47]. In addition, these 
epigenetic marks are essential for synaptic plasticity [45], 

cognitive function [48], and age-related alterations [37]. 
We have previously described that 5XFAD presented a 
higher degree of global 5-mC and a diminution in 5-hmC, 
which paralleled with Aβ deposition [33]. Here, we found 
reduced global 5-mC and increased 5-hmC levels in 

 

 
 

Figure 5. Representative WB, and quantification of neuroplasticity markers for SYN (A), PSD95 (B), and BDNF (C). Representative gene 
expression of neurotrophic factors for Ngf, and Vgf (D). Values in bar graphs are adjusted to 100% for protein levels of the Wt Control. Gene 
expression levels were determined by real-time PCR. Values represented are mean ± Standard error of the mean (SEM); (n = 4-6 for each 
group). *p<0.05; **p<0.01. 
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5XFAD mice treated with UNC0642. In the same line, 
non-pharmacological interventions like Environmental 
Enrichment (EE) improved cognition in rodents after 
changes in those epigenetic marks after [49]. A reduction 
in H3K9me2 levels in the 5XFAD mice hippocampus 
treated with UNC0642. Concretely, UNC0642 reduced 
the transcriptional silencing of this mark that demonstrate 
the direct mechanistic cause for the cognitive 
improvement observed. Consistent with our results, few 
studies have found significantly elevated levels of 
H3K9me2, which correlates with synaptic dysfunction 
and cognitive impairment in mice and AD human post-
mortem tissues [46]. Besides, those works showed that the 
treatment with the G9a/GLP inhibitor brought down 
H3K9me2 levels in the brain. 
 
Besides cognitive and epigenetic improvement induced 
by UN0642 in 5XFAD mice, molecular and bio-
chemical pathways modulated by G9a/GLP were 
studied. It is well accepted that OS as a consequence of 
ROS accumulation is associated with neurodegeneration 
[50]. OS occurs when the balance between antioxidant 
enzymes and ROS are disrupted [51, 52] and can 

influence several cellular pathways, from DNA and 
histone to histone chromatin-modifying enzymes, which 
directly affect the epigenetic landscape [53]. Of interest, 
decreased protein levels of the NRF2 have been 
reported in AD [54]. Therefore, overexpression of 
antioxidant enzymes may confer protection against 
oxidative insults [55]. By last, recently, it has been 
demonstrated that an administration of G9a/GLP 
inhibitor attenuates the induction of H3K9me2, 
activating NRF2 and reducing OS [56]. When we 
evaluated the NRF2 pathway, Hmox1 gene expression 
was significantly increased, although increases in SOD1 
and GPX1 protein did not reach significance. However, 
the H2O2 concentration was significantly reduced, 
demonstrating OS reduction in 5XFAD mice treated 
with UNC0642. 
 
Neuroinflammation has a key role in neurodegenerative 
disorders, including AD [57]. Furthermore, there is 
evidence suggesting that epigenetic mechanisms may 
lead to inflammation by modulating the expression of 
pro-inflammatory cytokines [58]. In this study, we 
found that the inhibition of G9a/GLP by UNC0642 

 

 
 

Figure 6. Representative images (A) and quantifications (B) of β-amyloid plaques stained with Thioflavin-S in Wt Control, 5XFAD Control and 
5XFAD treated with UNC0642 (5mg/Kg). Values represented are mean ± Standard error of the mean (SEM); (n = 4 for each group). *p<0.05. 
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reduced gene expression of Il-6, Tnf-α, and Cxcl10. 
GFAP, a marker of astrogliosis, was drastically reduced. 
Conversely, IBA1 levels were not modified. It is well 
nown that there is a differential relation of reactive 
astrocytes and microglial activation to the β-amyloid 
plaques in AD [59]. Furthermore, whereas microglial 
activation can play a role in plaque removal, the 
astrogliosis has been related to proinflammatory state 
[60, 61]. Therefore, our findings agree with several 
reports describing that G9a-dependent H3K9me2 is 
associated with several inflammatory pathways, 
including T cell receptor signalling, Interleukin 4 (IL-4) 
signalling, and GATA3 transcription [22]. Likewise, 
inhibition of G9a/GLP activity with the small-molecule 
inhibitors BIX-01294 or UNC0638 resulted in enhanced 
T cell differentiation, reducing inflammation [62]. 
 
One of the critical early events in AD is the loss of 
synaptic plasticity because [63]. These synaptic failures 
are affected by the Aβ accumulation as well as 
epigenetic marks such as CpG methylation and histone 
modifications [64]. Of interest, several studies 
demonstrated that G9a and/or GLP inhibition leads to 
Bdnf upregulation expression and them neuroprotection 
in different conditions, such as in a model of hypoxic 
metabolic stress [65], or in hippocampal slices of CA1 

region from male Wistar rats [17]. UNC0642 treatment 
increased synaptic markers, as SYN, and neurotrophic 
factors such as Ngf, Vgf, and BDNF in 5XFAD, 
demonstrating that this epigenetic target is also working 
on the neuroplasticity. 
 
Finally, UNC0642 reduced Aβ burden, the main 
neuropathological AD hallmark in 5XFAD brain. 
Although several studies have previously demonstrated 
the in vivo neuroprotective properties of the G9a/GLP 
inhibition [26], this is the first in vivo studies, which 
assess a reduction in the Aβ burden. 
 
Taken together, we demonstrated that G9a/GLP 
inhibition with UNC0642 has neuroprotective effects in 
a transgenic mouse model of EOAD, improving 
cognitive performance through reduction in its 
repressive chromatin mark H3K9me2 and changing the 
global levels of 5-mC and 5-hmC. Noteworthy, 
UNC0642 prevented Aβ plaques accumulation, 
increased synaptic plasticity and neuronal markers that 
are characteristically loss in AD. Moreover, UNC0642 
was able to reduce OS and neuroinflammation. Thus, 
our results provide new evidence that inhibition 
G9a/GLP activity might be a promising target for AD 
therapy (Figure 7). 

 

 
 

Figure 7. Scheme of epigenetic and molecular mechanisms changed in 5XFAD mice induced by pharmacological inhibition of G9a/GLP by 
UNC0642 “Created with BioRender.com” (A). 
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MATERIALS AND METHODS 
 
Animals 
 
Male Wt (n = 10), 5XFAD (n = 17) (8-month-old) were 
used to perform cognitive and molecular studies. We 
divided these mice randomly into three groups: Wt 
Control (n = 10), 5XFAD Control (n = 10), and 5XFAD 
treated with G9a/GLP histone methyltransferase inhibitor, 
the UNC0642 (5XFAD UNC0642 (5mg/Kg) n = 7). The 
sample size for the intervention was chosen following 
previous studies in our laboratory and using one of the 
available interactive tool (http://www.biomath.info/ 
power/index.html). Animals had free access to food and 
water and were kept under standard temperature 
conditions (22±2°C) and 12h: 12h light-dark cycles (300 
lux/0 lux). UNC0642 (5mg/Kg/day) was dissolved in 
1,8% 2-hydroxypropyl-β-cyclodextrin and administered 
through drinking water for 4 weeks. After the treatment 
period, behavioural tests were performed in the animals. 
Water consumption was controlled each week, and 
UNC0642 concentration was adjusted accordingly to 
reach the optimal dose. 
 
Studies and procedures involving mouse behaviour test, 
brain dissection and extractions followed the ARRIVE 
and standard ethical guidelines (European Communities 
Council Directive 2010/63/EU and Guidelines for the 
Care and Use of Mammals in Neuroscience and 
Behavioural Research, National Research Council 
2003) and were approved by Bioethical Committees 
from University of Barcelona and Government of 
Catalonia. All efforts were made to minimize the 
number of animals used and their suffering. 
 
Behavioural tests 
 
Open field test 
The OFT was performed as previously described [66]. 
The floor was divided into two areas defined as the 
center and peripheral zone. Behaviour was scored with 
SMART® ver.3.0 software, and each trial was recorded 
for later analysis using a camera situated above the 
apparatus. Mice were placed at the center and allowed 
to explore the white polywood box (50x50x25 cm) for 5 
minutes. Afterward, the mice were returned to their 
home cages, and the OFT apparatus was cleaned with 
70% ethanol (EtOH). The parameters scored included 
center staying duration, rearings, defecations, and the 
distance travelled, calculated as the sum of global 
distance travelled in the open field arena for 5 minutes. 
 
Novel object recognition test 
 
The NORT protocol employed was a modification of 
[67, 68]. Briefly, mice were placed in a 90°, two-arm, 

25-cm-long, 20-cm-high, 5-cm-wide black maze. 
Before performing the test, the mice were individually 
habituated to the apparatus for 10 minutes for 3 days. 
On day 4, the animals were allowed to explore freely a 
10 minutes acquisition trial (First trial), during which 
they were placed in the maze in the presence of two 
identical, novel objects at the end of each arm. After a 
delay (2h and 24h), the animal was allowed to explore 
two objects one old object and one novel object. The 
time that mice explored the Novel object (TN) and 
Time that mice explored the Old object (TO) were 
measured. A DI was defined as (TN−TO)/(TN+TO). 
Exploration of an object was defined as pointing the 
nose towards at a distance ≤2 cms and/or touching it 
with the nose. Turning or sitting around the object was 
not considered exploration. In order to avoid object 
preference biases, objects were counterbalanced. 
 
Object location test 
 
The OLT is a well-established task based on the 
spontaneous tendency of rodents to spend more time 
exploring a novel object location than a familiar object 
location, as well as to recognize when an object has 
been relocated [69]. Briefly, the test was performed 
during 3 days in a wooden box (50 × 50 × 25 cm), in 
which three walls were white except one that was black. 
The first day, the box was empty, and the animals just 
habituated to the open field arena for 10 minutes. The 
second day, two objects were placed in front of the 
black wall, equidistant from each other and the wall. 
The objects were 10-cm high and identical. The animals 
were placed into the open field arena and allowed to 
explore both objects and surroundings, for 10 minutes. 
Afterward, animals were returned to their home cages, 
and the OLT apparatus was cleaned with 70% EtOH. 
The third day, one object was moved in front of the 
white wall to test the spatial memory. Trials were 
recorded using a camera mounted above the open field 
area, and the total exploration time was determined by 
scoring the amount of time (seconds) spent sniffing the 
object in the new location (TN) and the object in the old 
location (TO). In order to evaluate the cognitive 
performance, the DI was calculated, which is defined as 
(TN-TO)/(TN+TO). 
 
Immunodetection experiments 
 
Brain processing 
Mice were euthanized by cervical dislocation one day 
after the cognitive tests finished. Brains were imme-
diately removed from the skull.  The hippocampus was 
then isolated and frozen in powdered dry ice. They were 
maintained at −80°C until protein extraction, RNA and, 
DNA isolation. For protein extraction, tissue samples 
were homogenized in lysis buffer containing phospha-  

http://www.biomath.info/power/index.html
http://www.biomath.info/power/index.html


www.aging-us.com 11602 AGING 

Table 2. Antibodies used in Western blot studies. 

Antibody Host Source/Catalog WB dilution 
SOD1 Sheep Calbiochem/574597 1:1000 
SYN Rabbit Dako/CloneSY38 1:2000 
PSD95 Rabbit Abcam/ab18258 1:1000 
H3K9me2 Rabbit Epigentek/A-4035 1:1000 
GPX1 Rabbit Novus Biological/NBP1-33620 1:1000 
BDNF Rabbit Bios/BS-4989R 1:1000 
NRF2 Rabbit Cell Signaling/DIZ9C 1:1000 
TBP Mouse Abcam/ab51841 1:1000 
Actin Mouse Sigma-Aldrich/A5441 1:2000 
GAPDH Mouse Millipore/MAB374 1:5000 
Goat-anti-mouse HRP conjugated  Biorad/170-5047 1:2000 
Goat-anti-rabbit HRP conjugated  Biorad/170-6515 1:2000 
Rabbit-anti-sheep HRP conjugated  Abcam/ab97130 1:2000 
 

tase and protease inhibitors (Cocktail II, Sigma-Aldrich). 
Total protein levels were obtained, and protein concen-
tration was determined by the method of Bradford. 
 
Protein levels determination by Western blotting  
 
For WB, aliquots of 15 µg of hippocampal protein were 
used. Protein samples from 12 mice (n = 4 per group) 
were separated by Sodium dodecyl sulphate-
Polyacrylamide gel electrophoresis (SDS-PAGE) (8-
12%) and transferred onto (Polyvinylidene difluoride) 
PVDF membranes (Millipore). Afterward, membranes 
were blocked in 5% non-fat milk in 0,1% Tris-buffered 
saline - Tween20 (TBS-T) for 1 hour at room 
temperature, followed by overnight incubation at 4°C 
with the primary antibodies listed in Table 2. 
 
Membranes were washed and incubated with secondary 
antibodies for 1 hour at room temperature. Immuno-
reactive proteins were viewed with a chemilumines-
cence-based detection kit, following the manufacturer's 
protocol (ECL Kit; Millipore) and digital images were 
acquired using a ChemiDoc XRS+ System (BioRad). 
Semi-quantitative analyses were carried out using 
ImageLab software (BioRad), and results were 
expressed in Arbitrary Units (AU), considering control 
protein levels as 100%. Protein loading was routinely 
monitored by immunodetection of glyceraldehyde-3-
phosphate dehydrogenase (GADPH) or β-actin. 
 
 
 
 
 
 
 
 

Immunofluorescence 
 
Coronal section of 30 μm was obtained by a cryostat 
(Leica Microsystems CM 3050S, Wetzlar, Germany) 
and kept in a cryoprotectant solution at −20°C.  
 
First, free-floating slices were selected and placed on a 
24-wells plaque. After that, were washed five times 
with PBS 0.01M + 1% Triton X-100. Then, free-
floating sections were blocked with a solution 
containing 5% fetal bovine serum (FBS), 1% Triton X-
100, PBS 0.01M + gelatine 0.2% for 2h at room 
temperature. Afterward, slices were washed with PBST 
(PBS 0.1M, 1% Triton X-100) five times for 5 minutes 
each and were incubated with the primary antibodies 
listed in Table 3, over-night at 4°C. On the following 
day, coronal slices were washed with PBST 6 times for 
5 minutes and then incubated with the secondary 
antibodies at room temperature for 2h. Later, sections 
were co-incubated with, 1mg/ml DAPI staining solution 
(Sigma-Aldrich, St. Louis, MI) for 5 minutes in the dark 
at room temperature and washed with PBS 0.01M. 
Finally, the slices were mounted using Fluoromount G 
(EMS, USA) and image acquisition was performed with 
a fluorescence laser microscope (Olympus BX51, 
Germany). At least 3 images from 4 different 
individuals by the group were analyzed with ImageJ/Fiji 
software available online from the National Institutes of 
Health. 
 
 
 
 
 
 
 
 

Table 3. Antibodies used in Immunofluorescence studies. 

Antibody Host Source/Catalog WB dilution 
GFAP Rabbit Abcam/ab48050 1:1000 
IBA1 Rabbit Abcam/ab16589 1:1000 
Alexa Fluor® 594 Goat TermoFisher/ab150080 1:400 
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β-amyloid plaques histology 
 
β-amyloid plaques from 12 mice (n = 4 per group) were 
stained with Thioflavin-S. The frozen brains were 
embedded into OCT Cryostat Embedding Compound 
(Tissue-Tek, Torrance, CA, USA) and then cut into 30 
µm- thick sections at −20 ºC using a cryostat (Leica 
Microsystems, Germany) and kept in a cryoprotectant 
solution at −20°C. Free-floating slices were selected and 
placed on a 24-wells plaque. For the Thioflavin-S 
staining procedure, the brain sections were first 
rehydrated at room temperature by 5 minutes incubation 
in PBS. To continue with, brain sections were incubated 
with 0.3% Thioflavin-S (Sigma-Aldrich) solution for 20 
minutes at room temperature in the dark. Subsequently, 
these samples were submitted to washes in 3 minutes 
series, specifically with two washes using 80% EtOH, 
one wash using 90% ethanol and three washes with PBS. 
Then, slides were mounted with Fluoromount-GTM 
(EMS, Hatfield, NJ, USA) and allowed to dry overnight. 
Image acquisition was performed with a fluorescence 
laser microscope (Olympus BX51, Germany). For plaque 
quantification, similar and comparable histological areas 
were selected, focusing on the adjacent positioning of the 
whole cortical area and the hippocampus. 
 
Determination of OS in the hippocampus 
 
Hydrogen peroxide from 9 mice (n = 3 per group) was 
measured as an indicator of OS, and it was quantified 
using the Hydrogen Peroxide Assay Kit (Sigma-
Aldrich, St. Louis, MI) according to the manufacturer’s 
instructions. 
 
Global DNA methylation and hydroxymethylation 
quantification 
 
Isolation of genomic DNA from 12 samples (n = 4 per 
group)  was  conducted using the FitAmpTM Blood and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cultured Cell DNA Extraction Kit, according to the 
manufacturer's instructions. Then, Methylflash 
Methylated DNA Quantification Kit (Epigentek, 
Farmingdale, NY, USA) and MethylFlash Hydroxy-
Methylated DNA Quantification Kit were used in order 
to detect methylated and hydroxymethylated DNA. 
Briefly, these kits are based on specific antibody 
detection of 5-mC and 5-hmC residues, which trigger an 
Enzyme-Linked Immunosorbent Assay (ELISA)-like 
reaction that allows colorimetric quantification by 
reading absorbance at 450 nm using a Microplate 
Photometer. The absolute amount of methylated or 
hydroxymethylated DNA (proportional to the Optical 
Density [OD] intensity) was measured and quantified 
using a standard curve plotting OD values vs. five serial 
dilutions of a control methylated and hydroxy-
methylated DNA (0.5–10 ng). 
 
RNA extraction and gene expression determination 
 
Total RNA isolation was carried out using Trizol 
reagent following the manufacturer’s instructions. The 
RNA content in the samples was measured at 260 nm, 
and the purity of the samples was determined by the 
A260/280 and A260/230 ratio in a NanoDrop™ ND-
1000 (Thermo Scientific). Reverse transcription-
Polymerase Chain Reaction (RT-PCR) was performed 
as follows: 2 μg of messenger RNA (mRNA) was 
reverse-transcribed using the High Capacity cDNA 
Reverse Transcription kit (Applied Biosystems). Real-
time quantitative PCR (qPCR) was employed to 
quantify the mRNA expression of a set of OS, 
inflammatory markers, and neurotrophic factors listed 
in Table 4. 
 
SYBR® Green real-time PCR was performed on a Step 
One Plus Detection System (Applied-Biosystems) 
employing SYBR® Green PCR Master Mix (Applied-
Biosystems).  Each reaction mixture  contained  6.75 μL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Primers and probes used in qPCR studies. 

SYBR Green primers 
Target Product size (bp) Forward primer (5′-3′) Reverse primer (5′-3′) 
Il-6 189 ATCCAGTTGCCTTCTTGGGACTGA TAAGCCTCCGACTTGTGAAGTGGT 
Tnf-α 157 TCGGGGTGATCGGTCCCCAA TGGTTTGCTACGACGTGGGCT 
Cxcl10 72 GGCTAGTCCTAATTGCCCTTGG TTGTCTCAGGACCATGGCTTG 
Mcp1 159 CCCACTCACCTGCTGCTACT TCTGGACCCATTCCTTCTTG 
Ngf 111 GGAGCGCATCGAGTGACTT CCTCACTGCGGCCAGTATAG 
Vgf 178 GTCAGACCCATAGCCTCCC CTCGGACTGAAATCTCGAAGTTC 
β-actin 190 CAACGAGCGGTTCCGAT GCCACAGGTTCCATACCCA 

Taqman probes 
Target Product size (bp) Reference 
Hmox1 69 Mm00516005_m1 
Tbp 93 Mm00446971_m1 
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of complementary DNA (cDNA) (which concentration 
was 2 μg), 0.75 μL of each primer (which concentration 
was 100 nM), and 6.75 μL of SYBR® Green PCR 
Master Mix (2X).  
 
TaqMan-based real-time PCR (Applied Biosystems) 
was also performed in a Step One Plus Detection 
System (Applied-Biosystems). Each 20 μL of TaqMan 
reaction contained 9 μL of cDNA (18 ng), 1 μL 20X 
probe of TaqMan Gene Expression Assays and 10 μL of 
2X TaqMan Universal PCR Master Mix. 
 
Data were analyzed using the comparative Cycle 
threshold (Ct) method (ΔΔCt), where the housekeeping 
gene level was used to normalize differences in sample 
loading and preparation [33]. Normalization of expression 
levels was performed with β-actin for SYBR® Green-
based real-time PCR results and TATA-binding protein 
(Tbp) for TaqMan-based real-time PCR. Primers and 
TaqMan probes are listed in Table 4. Each sample (n = 6 
per group) was analyzed in duplicate, and the results 
represent the n-fold difference of the transcript levels 
among different groups. 
 
Data analysis 
 
Data analysis was conducted using GraphPad Prism 
ver. 8 statistical software. Data are expressed as the 
mean ± Standard error of the mean (SEM) of at least 3 
samples per group. Means were compared with One-
way Analysis of variance (ANOVA), followed by the 
Dunnett post hoc test. Comparison between groups 
was also performed by two-tailed Student’s t-test for 
independent samples when it was necessary. Statistical 
significance was considered when p values were 
<0.05. 
 
The statistical outliers were determined with Grubs' 
test and when necessary were removed from the 
analysis. 
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