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INTRODUCTION 
 

Glioma is the most common primary tumor of the central 

nervous system, with an average annual age-adjusted 

incidence rate of 6.0 per 100,000 in the United States from 

2010 to 2014 [1]. According to the 2016 World Health 

Organization (WHO) classification, glioblastoma (GBM), 

corresponding to grade IV glioma, is the most commonly 

occurring type of glioma [2]. Despite considerable 

advances in the development of treatments for GBM, 

including surgery, radiotherapy, chemotherapy, targeted  

 

therapy, and immunotherapy, the optimal management 

strategy remains controversial [3]. Notably, GBM patients 

generally exhibit significant morbidity and mortality, with 

a 5-year overall survival (OS) rate of approximately 5% 

[1]. Clinicopathologic parameters, including age and 

resection extent, and various molecular alterations have 

been reported as the prognostic factors for GBM in the 

literature [4–6]. Although numerous clinical and molecular 

studies in GBM have been reported in recent years, the 

prognostic biomarkers and predictors of therapeutic 

responses for GBM are still not clearly elucidated. 
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ABSTRACT 
 

Glioblastoma (GBM) is the most common brain tumor with significant morbidity and mortality. Autophagy 
plays a vital role in GBM development and progression. We aimed to establish an autophagy-related multigene 
expression signature for individualized prognosis prediction in patients with GBM. Differentially expressed 
autophagy-related genes (DE-ATGs) in GBM and normal samples were screened using TCGA. Univariate and 
multivariate Cox regression analyses were performed on DE-ATGs to identify the optimal prognosis-related 
genes. Consequently, NRG1 (HR=1.142, P=0.008), ITGA3 (HR=1.149, P=0.043), and MAP1LC3A (HR=1.308, 
P=0.014) were selected to establish the prognostic risk score model and validated in the CGGA validation 
cohort. GSEA revealed that these genes were mainly enriched in cancer- and autophagy-related KEGG 
pathways. Kaplan-Meier survival analysis demonstrated that patients with high risk scores had significantly 
poorer overall survival (OS, log-rank P= 6.955×10-5). The autophagy signature was identified as an independent 
prognostic factor. Finally, a prognostic nomogram including the autophagy signature, age, pharmacotherapy, 
radiotherapy, and IDH mutation status was constructed, and TCGA/CGGA-based calibration plots indicated its 
excellent predictive performance. The autophagy-related three-gene risk score model could be a prognostic 
biomarker and suggest therapeutic targets for GBM. The prognostic nomogram could assist individualized 
survival prediction and improve treatment strategies. 
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Autophagy is a lysosomal degradation pathway that is 

essential for survival, differentiation, development, 

and homeostasis [7] and has been reported to play a 

key role in diverse pathologies, especially cancer [8]. 

By eliminating damaged proteins and organelles, 

autophagy can suppress early-stage development of 

cancer, thereby mitigating cellular damage and 

limiting chromosomal instability [9, 10]. However, 

autophagy can also promote tumor growth by 

providing nutritional elements under low oxygen and 

low nutrient conditions [11]. In most cases, autophagy 

is thought to suppress early tumorigenesis and promote 

the development of existing tumors [12]. Previous 

studies have investigated the roles of certain 

autophagy-related genes (ATGs) in the development 

and progression of glioma. These ATGs may be 

regulated by—and, in turn, regulate—multiple 

signaling pathways, many of which are dysregulated in 

GBM and targetable with various inhibitors [12, 13]. 

Therefore, ATGs are promising therapeutic targets and 

prognostic predictors in GBM. 

 

With the rapid development of large-scale genome-

sequencing technologies, numerous studies have 

investigated large numbers of molecular biomarkers 

for GBM, including 1p/19q codeletion, telomerase 

reverse transcriptase (TERT) promoter mutations, 

tumor protein 53 (TP53) mutations, X-linked helicase 

II (ATRX) mutations, and isocitrate dehydrogenase 

(IDH) mutation [14–16]. Emerging evidence 

demonstrates that certain single genes cannot 

completely represent the characteristics of tumors, 

whereas global gene expression patterns of multiple 

genes can serve as excellent molecular biomarkers that 

allow early diagnosis, subgroup classification, risk 

stratification, prognosis prediction, and therapeutic 

targeting in GBM [17–19]. However, global 

expression patterns based on ATGs have not 

previously been recognized in GBM. 

 

In this study, by assessing the global gene expression 

profile, we aimed to investigate and validate an 

autophagy-related multiple gene expression signature 

that can predict prognosis and suggest therapeutic 

targets in GBM. Moreover, we combined both the 

autophagy signature and clinical parameters to establish 

a novel promising prognostic nomogram model with 

more accurate predictive ability than clinical risk factors 

for GBM patients. 

 

RESULTS 
 

Identification of DE-ATGs and enrichment analysis 

 

Following analysis of the TCGA GBM dataset using 

edgeR, a total of 13625 DEGs were identified in GBM 

and normal samples, and these genes are displayed in 

the volcano plot (Figure 1A). As shown by the Venn 

diagrams in Figure 1B, the seventy-two significant DE-

ATGs (the intersection of the DEGs and ATGs) were 

selected for further analysis. 

 

GO analysis, including the biological process (BP), 

cellular component (CC) and molecular function (MF) 

categories, was performed on the DE-ATGs. In the BP 

category, the DE-ATGs were significantly enriched in 

the terms autophagy, mitophagy and autophagosome 

assembly (Figure 1C). In the CC category, the DE-

ATGs were significantly enriched in the terms cytosol, 

extracellular exosome, mitochondrion and 

autophagosome membrane (Figure 1D). In the MF 

category, the DE-ATGs were significantly enriched in 

the terms ATP binding, protein serine/threonine kinase 

activity, and cysteine-type endopeptidase activity 

(Figure 1E). In addition, KEGG pathway analysis 

revealed that the DE-ATGs were mainly enriched in 

pathways in cancer, insulin signaling pathway and 

proteoglycans in cancer. 

 

Identification of prognosis-related ATGs 

 

By performing univariate Cox regression analysis on 

the 72 candidate genes in the TCGA cohort consisting 

of 155 GBM patients, we identified 9 prognosis-related 

genes, which were indicated to have significant 

prognostic value (P<0.05). Subsequent multivariate Cox 

regression analysis indicated that only 3 genes—

Neuregulin 1 (NRG1, HR 1.142, P=0.008), Integrin 

Subunit Alpha 3 (ITGA3, HR 1.149, P=0.043), and 

Microtubule-Associated Protein 1 Light Chain 3 Alpha 

(MAP1LC3A, HR 1.308, P=0.014)—exhibited 

significant prognostic value for GBM (Supplementary 

Table 1). The differential expression of the above three 

genes in tumor and normal tissues was further validated 

in the Gene Expression Profiling Interactive Analysis 

(GEPIA) database, which included 163 GBM samples 

and 207 normal samples, revealing that ITGA3 was 

significantly upregulated but NRG1 and MAP1LC3A 

were significantly downregulated in GBM tissues 

(Figure 2A–2C) [20]. Then, we analyzed the expression 

of the proteins encoded by the three genes using clinical 

specimens from the Human Protein Profiles 

(http://www.proteinatlas.org) [21]. MAP1LC3A was 

moderately positive but ITGA3 and NRG1 were weakly 

positive in GBM tissue relative to their expression 

levels in normal tissue (Figure 2D–2F). In addition, K-

M survival curves were constructed to assess the 

associations between the expression levels of the 

prognosis-related genes and OS, and the results 

indicated that the ITGA3, NRG1 and MAP1LC3A low-

expression group (log-rank P = 0.012, 0.012, and 0.047) 

had a better prognosis (Figure 2G–2I). 

http://www.proteinatlas.org/
http://www.proteinatlas.org/
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Construction of the ATG-based prognostic risk score 

model (autophagy signature) 

 

The prognostic risk score model was established with the 

following formula: risk score = expression level of 

NRG1 × 0.132 + expression level of ITGA3 × 0.139 + 

expression level of MAP1LC3A × 0.269. Subsequently, 

we calculated the prognostic risk score for each patient in 

the TCGA training set. All patients were divided into the 

high-risk (high risk score) or the low-risk (low risk score) 

group using the median risk score as the cutoff (Figure 

3A). In addition, K-M survival analysis demonstrated 

that patients with high risk scores had significantly 

poorer OS than patients with low risk scores (log-rank P 

= 6.955×10-5). The 6-month OS rates of the high-risk and 

low-risk groups were 64.3% and 84.2%, respectively. 

The 1-year OS rates of the high-risk and low-risk groups 

were 39.5% and 73.4%, respectively. The 3-year OS 

rates of the high-risk and low-risk groups were 3.9% and 

13.3%, respectively (Figure 4A). The C-index of the 

ATG-based prognostic model for OS prediction was 

0.782 (95% CI, 0.743 to 0.821; P = 5.13×10-11). 

Furthermore, the autophagy signature showed favorable 

predictive ability of the 0.5-, 1- and 3-year OS rates, with 

AUC values of 0.89, 0.84 and 0.78, respectively, in the 

TCGA training set (Figure 4B). In addition, when 

patients were stratified by different clinicopathologic 

parameters, the autophagy signature remained a 

significant prognostic factor in the TCGA training set and 

in the CGGA validation sets (Supplementary Figure 1). 

 

Evaluation of the prognostic autophagy signature in 

external validation cohorts 

 

To confirm that the prognostic autophagy signature had 

similar predictive values in different populations, we then 

used it to predict OS in two independent external 

validation cohorts using the median risk score as the 

cutoff. As shown in Figure 3B, a total of 83 patients in the 

CGGA Batch-1 set (validation set-1) were classified into a 

low-risk group (n = 42) and a high-risk group (n = 41), 

and the OS of the GBM patients in the high-risk group 

was significantly lower than that of the patients in the 

low-risk group (log-rank P = 8.413×10-4; Figure 4C). The 

autophagy signature constructed with the TCGA training 

set also showed a favorable predictive ability for the 0.5-, 

1- and 3-year OS rates, with AUC values of 0.78, 0.69 

and 0.73, respectively, in the CGGA validation set-1 

(Figure 4D). In addition, as shown in Figure 3C, a total of 

133 patients in the CGGA Batch-2 set (validation set-2) 

were classified into a low-risk group (n = 67) and a high-

risk group (n = 66), and the OS of the GBM patients in 

the high-risk group was significantly lower than that of 

patients in the low-risk group (log-rank P = 1.112×10-2;

 

 
 

Figure 1. Identification of differentially expressed autophagy-related genes (DE-ATGs) in glioblastoma (GBM) and enrichment 
analysis. (A) Volcano plot of DEGs in tumor and normal samples of The Cancer Genome Atlas (TCGA) dataset. The vertical axis indicates the -log 
(adjusted P value [adj. P value]), and the horizontal axis indicates the log2 (fold change [FC]). The red dots represent upregulated genes, and the 
green dots represent downregulated genes (adj. P value <0.01 and |log2(FC)|>1). (B) Venn diagram showing the 72 DE-ATGs (the intersection of 
the DEGs and ATGs). (C) Biological processes enriched in the DE-ATGs. (D) Cellular components enriched in the DE-ATGs. (E) Molecular functions 
enriched in the DE-ATGs. (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the DE-ATGs. 
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Figure 4E). The autophagy signature generated by the 

TCGA training set also showed a favorable predictive 

ability for the 0.5-, 1- and 3-year OS rates, with AUC 

values of 0.76, 0.72 and 0.69, respectively, in the CGGA 

validation set-2 (Figure 4F). 

 

Determination of the autophagy signature as an 

independent prognostic factor 

 

Table 1 shows the demographics and clinicopathologic 

characteristics of GBM patients in the TCGA training 

cohort and CGGA validation cohorts based on the 

autophagy signature. Then, we performed univariate 

and multivariate Cox regression analyses to evaluate the 

prognostic significance of the autophagy signature 

combined with various clinicopathologic parameters 

(Table 2). In the TCGA training cohort, univariate 

analysis indicated that the autophagy signature (P = 

9.54×10-5), age (P = 9.67×10-3), new event occurrence 
(P = 4.59×10-3), pharmacotherapy (P = 1.25×10-4), 

radiotherapy (P = 1.55×10-6) and IDH status (P = 

8.39×10-3) were significantly associated with OS.

 

 
 

Figure 2. Expression and survival analysis for ITGA3, MAP1LC3A and NRG1 in GBM. The expression levels of ITGA3 (A), MAP1LC3A 

(B) and NRG1 (C) in tumor and normal tissues were validated in the GEPIA database, which included 163 GBM samples and 207 normal 
samples. The red box on the left was tumor group, and the gray box on the right was normal group. The expression profiles of the proteins 
encoded by ITGA3 (D), MAP1LC3A (E) and NRG1 (F) in normal and tumor tissues using clinical specimens from the Human Protein Profiles. K-
M OS curves based on the expression levels of ITGA3 (G), MAP1LC3A (H) and NRG1 (I) in patients with GBM in the TCGA dataset. 
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Subsequent multivariate analysis indicated that the 

autophagy signature (P = 1.24×10-4), age (P = 0.028), 

pharmacotherapy (P = 0.030), radiotherapy (P = 6.36×10-5) 

and IDH status (P = 0.029) were significantly correlated 

with OS. Therefore, the prognostic autophagy signature 

constructed by the TCGA training set was an independent 

prognostic factor for GBM. In addition, following the 

univariate and multivariate analyses, the autophagy 

signature was also proven to be an independent prognostic 

factor in both the CGGA Batch-1 and Batch-2 validation 

cohorts (Table 2). The K-M survival curves and log-rank 

test for all these clinicopathological variables in the TCGA 

training set and CGGA validation sets are shown in 

Supplementary Figure 2. 

 

GSEA 

 

GSEA revealed that the DE-ATGs in the high ITGA3, 

MAP1LC3A, and NRG1 expression groups in the TCGA 

GBM cohort were mainly enriched in KEGG pathways 

related to autophagy and cancer. The significantly enriched 

autophagy-related pathways included regulation of 

autophagy, MAPK signaling pathway, endocytosis, and 

insulin signaling pathway. The significantly enriched 

cancer-related pathways included pathways in cancer, 

MAPK signaling pathway, mTOR signaling pathway, and 

glioma (Figure 5, Supplementary Table 2). In addition, 

GSEA was performed in the ATG-based high-risk and 

low-risk groups in the TCGA GBM cohort, and the DE-

ATGs were also significantly enriched in the pathways 

related to autophagy and cancer. The DE-ATGs in the 

high-risk group were enriched mainly in the lysosome, 

cytokine-cytokine receptor interaction, and focal adhesion 

pathways. The DE-ATGs in the low-risk group were 

enriched mainly in MAPK signaling pathway, endocytosis, 

and insulin signaling pathway (Supplementary Figure 3, 

Supplementary Table 3). In summary, the defined DE-

ATGs contribute to vital cancer and autophagy-related 

KEGG pathways, which can provide strong evidence for a 

cancer-targeted treatment for GBM. 

 

Construction and validation of the nomogram 

 

To establish a clinically applicable method for 

predicting the prognosis of GBM patients, we 

established a prognostic nomogram to predict the 

survival probability at 0.5, 1, and 3 years based on the 

TCGA training set. Five independent prognostic 

parameters, including age, autophagy signature, 

pharmacotherapy, radiotherapy and IDH status, were 

enrolled in the prediction model (Figure 6A). The C-

index of the nomogram was 0.832 (95% CI, 0.793 to 

0.871; P = 3.013×10-10). The calibration plots (Figure 

6B–6D) show excellent agreement between the 

nomogram prediction and actual observation in terms of 

the 0.5-, 1- and 3-year survival rates in the TCGA cohort.

 

 
 

Figure 3. Risk score analysis of the GBM autophagy signature in the TCGA training cohort (A), CGGA Batch-1 validation cohort (B), and CGGA 
Batch-2 validation cohort (C). Upper panel: patient survival status and time distributed by risk score. Middle panel: risk score curve of the 
autophagy signature. Bottom panel: heatmap of NRG1, ITGA3, and MAP1LC3A expression in GBM samples. The colors from green to red 
indicate the expression level from low to high. The dotted line indicates the individual inflection point of the risk score curve, by which the 
patients were categorized into low-risk and high-risk groups. 
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The nomogram also showed a favorable predictive ability 

for the 0.5-, 1- and 3-year OS rates, with AUC values of 

0.807, 0.739 and 0.787, respectively (Supplementary 

Figure 4). These findings suggest the appreciable 

reliability of the nomogram. In addition, in the two CGGA 

external validation cohorts, the C-indexes of the 

nomogram for predicting OS were 0.737 and 0.721. The 

calibration plots also demonstrate excellent agreement 

between prediction and observation for the 0.5-, 1- and 3-

year OS probabilities of the patients in CGGA Batch-1 

(Figure 6E–6G) and Batch-2 (Figure 6H–6J). The AUC 

values demonstrated that the nomogram also has favorable 

predictive ability for the OS rates in the two CGGA 

validation cohorts (Supplementary Figure 4). 

 

DISCUSSION 
 

Autophagy has been reported to play a key role in 

tumorigenesis, progression aggressiveness, and therapeutic 

resistance of multiple cancers, especially glioma [8–10]. 

Correcting the dysregulation of autophagy-related 

pathways can suppress tumor growth and improve 

sensitivity to various therapies. Chang et al. [22] reported 

that honokiol-induced autophagy can promote apoptosis 

and inhibit GBM cell growth. Zhang et al. [23] reported 

that high expression of the ATG MAPK8IP1 and low 

expression of SH3GLB1 can suppress the proliferation, 

migration and invasion of glioma cells. In addition, most 

studies have focused more intensely on treatments of 

GBM targeting autophagy in recent years. Incorporation of 

the autophagy modulating drug temozolomide (TMZ) with 

concomitant radiotherapy significantly improved patient 

survival by inducing autophagy [12, 13]. Therefore, ATGs 

are promising therapeutic targets and prognostic predictors 

in GBM. 

 

By leveraging advances in large-scale genome-sequencing 

technologies, numerous studies have investigated

 

 
 

Figure 4. Survival analysis and prognostic performance of the autophagy-related risk score model in GBM. K-M survival curve of 

the risk score for patient OS in the TCGA training cohort (A), CGGA Batch-1 validation cohort (C), and CGGA Batch-2 validation cohort (E). The 
high-risk groups had significantly poorer OS rates than the low-risk groups. The prognostic performance of the autophagy signature 
demonstrated by the time-dependent ROC curve for predicting the 0.5-, 1-, and 3-year OS rates in the TCGA training cohort (B), CGGA Batch-
1 validation cohort (D), and CGGA Batch-2 validation cohort (F). 
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Table 1. Demographics and clinicopathologic characteristics of GBM patients in the TCGA training cohort and CGGA 
validation cohort based on the autophagy signature. 

Variables 

TCGA (Training set) 
CGGA Batch 1 (Validation 

set-1) 

CGGA Batch 2 (Validation set-

2) 

Total 

(n=155) 

Low 

risk 
(n=78) 

High risk 

(n=77) 

Total 

(n=83) 

Low 

risk 
(n=42) 

High 

risk 

(n=41) 

Total 

(n=133) 

Low 

risk 
(n=67) 

High risk 

(n=66) 

Age          

 <= 50 years 38 24 14 40 22 18 54 28 26 

 > 50 years 117 54 63 43 20 23 79 39 40 

Sex          

 Female 54 26 28 32 19 13 54 29 25 

 Male 101 52 49 51 23 28 79 38 41 

New event          

 None or NA 66 30 36 NA   NA   

 Yes 89 48 41 NA   NA   

KPS          

 < 80 33 19 14 NA   NA   

 >= 80 83 41 42 NA   NA   

 NA 39 18 21 NA   NA   

Pharmaceutical therapy         

 CT only 65 34 31 
23 

(No) 
8 15 17 (No) 11 6 

 CT + TMT 27 13 14 
57 

(Yes) 
32 25 111(Yes) 54 57 

 CT + HT 21 14 7 3 (NA) 2 1 5 (NA) 2 3 

 Others 5 4 1 -   -   

 No or NA 37 13 24 -   -   

Radiation therapy          

 No 23 7 16 10 6 4 17 9 7 

 Yes 125 66 59 70 34 36 113 56 57 

 NA 7 5 2 3 2 1 4 2 2 

Surgery          

 Biopsy only 16 10 6 NA   NA   

 Tumor resection 139 68 71 NA   NA   

IDH status          

 Wildtype 147 70 77 72 33 39 103 50 53 

 Mutant 8 8 0 11 9 2 30 17 13 

1p/19q status          

 Non-codeletion NA   82 41 41 103 63 40 

 Codeletion NA   0 0 0 5 4 1 

 NA NA   1 1 0 25 0 25 

NA, not available; KPS, Karnofsky performance score; CT, chemotherapy; TMT, targeted molecular therapy; HT, hormone 
therapy. 
“New event” included progression and recurrence. “Others” in pharmaceutical therapy included CT + TMT + HT, CT + TMT + 
Immunotherapy, and CT + Immunotherapy. 

 

large numbers of molecular biomarkers for GBM  

[14–16]. Previous studies have investigated multiple 

gene expression patterns in GBM, which can be used 

for risk stratification, treatment guidance, and prognosis 

prediction [5, 6, 14–16]. However, global expression 

patterns based on ATGs have not been previously 

constructed in GBM. In this study, we first identified 72 

DE-ATGs based on the TCGA database and then 

confirmed 3 genes significantly correlated with 

prognosis in univariate and multivariate Cox regression 

analyses. High expression levels of ITGA3, 

MAP1LC3A, and NRG1 were associated with poor 

prognosis in GBM patients. GSEA revealed that these 3 

ATGs were mainly enriched in KEGG pathways related 

to autophagy and cancer, providing strong evidence that 

dysregulation of autophagy plays a vital role in the 

development and progression of GBM. NRG1, one of 

the most active members of the epidermal growth factor
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Table 2. Univariate and multivariate cox proportional hazards analysis of clinical parameters and risk score of GBM 
patients in the TCGA training cohort and CGGA validation cohorts. 

Variables 

TCGA (Training set) CGGA Batch 1 (Validation set-1) CGGA Batch 2 (Validation set-2) 

Univariate Analysis Multivariate analysis Univariate Analysis Multivariate analysis Univariate Analysis Multivariate analysis 

HR  

(95% CI) 
P 

HR  

(95% CI) 
P 

HR  

(95% CI) 
P 

HR  

(95% CI) 
P 

HR  

(95% CI) 
P 

HR  

(95% CI) 
P 

Age             

 <= 50 years Reference  Reference  Reference  Reference  Reference    

 > 50 years 
1.80  

(1.15–2.82) 
9.67e-3 

1.31  

(1.03–2.64) 
0.028 

1.27  

(1.09–2.04) 
0.032 

1.28  

(1.07–2.09) 
0.033 

1.32  

(0.88–1.98) 
0.18   

Sex             

Female Reference    Reference    Reference    

Male 
0.96  

(0.66–1.40) 
0.835   

1.25  

(0.76–2.05) 
0.389   

0.83  

(0.56–1.23) 
0.357   

New event             

 None or NA Reference  Reference  NA    NA    

 Yes 
0.59  

(0.40–0.85) 
4.59e-3 

0.78  

(0.51–1.21) 
0.272 NA    NA    

KPS             

 < 80 Reference    NA    NA    

 >= 80 
0.77  

(0.49–1.23) 
0.276   NA    NA    

 NA 
0.89  

(0.53–1.52) 
0.684   NA    NA    

Pharmaceutical 

therapy 
      

 CT only Reference  Reference  (No) Reference Reference  (No) Reference Reference  

 CT + TMT 
0.92  

(0.54–1.55) 
0.743 

0.94  

(0.55–1.62) 
0.828 

(Yes) 0.39 

(0.23–0.67) 
6.19e-4 

0.41  

(0.24–0.70) 
1.31e-3 

(Yes) 0.51 

(0.28–0.92) 
0.026 

0.81  

(0.30–0.96) 
0.037 

 CT + HT 
1.43  

(0.84–2.44) 
0.190 1.41 (0.82-2.43) 0.216 

(NA) 0.69 

(0.20–2.36) 
0.558 

0.85  

(0.20–3.59) 
0.827 

(NA) 1.18 

(0.33–4.20) 
0.794 

2.06  

(0.22–8.97) 
0.523 

 Others 
1.14  

(0.45-2.89) 
0.784 

1.37  

(0.75–2.50) 
0.260 -    -    

 No or NA 
2.47  

(1.56–3.91) 
1.25e-4 

1.73  

(1.67–4.45) 
0.030 -    -    

Radiation 

therapy 
            

 No Reference  Reference  Reference  Reference  Reference  Reference  

 Yes 
0.31  

(0.19–0.50) 
1.55e-6 

0.26  

(0.13–0.50) 
6.36e-5 

0.81  

(0.50–0.94) 
0.049 

0.78  

(0.34–0.97) 
0.045 

0.33  

(0.18–0.61) 
4.72e-4 

0.29  

(0.10–0.82) 
0.019 

 NA 
0.60  

(0.24–1.50) 
0.275 

0.44  

(0.17–1.10) 
0.079 

0.58  

(0.40–6.19) 
0.513 

0.58  

(0.40–6.19) 
0.513 

0.69  

(0.15–3.08) 
0.622 

0.31  

(0.02–4.21) 
0.376 

Surgery             

 Biopsy only Reference    NA    NA    

 Tumor 

resection 

0.95  

(0.53–1.69) 
0.852   NA    NA    

IDH status             

 Wildtype Reference  Reference  Reference    Reference  Reference  

 Mutant 
0.26  

(0.09–0.71) 
8.39e-3 

0.28  

(0.09–0.88) 
0.029 

0.64  

(0.32–1.30) 
0.218   

0.43  

(0.25–0.74) 
2.36e-3 

0.40  

(0.23–0.68) 
8.33e-4 

1p/19q status             

 Non-

codeletion 
NA    NA    Reference    

 Codeletion NA    NA    
0.77  

(0.24–2.43) 
0.650   

 NA NA    NA    
1.11  

(0.66–1.87) 
0.704   

Autophagy 

signature 
            

 Low risk Reference  Reference  Reference  Reference  Reference  Reference  

 High risk 
2.06  

(1.43–2.96) 
9.54e-5 

2.12  

(1.45–3.12) 
1.24e-4 

2.27  

(1.39–3.72) 
1.12e-3 

2.28  

(1.35–3.86) 
0.002 

1.66  

(1.12–2.46) 
0.012 

1.75  

(1.17–2.61) 
0.006 

HR, hazard ratio; CI, confidence interval; NA, not available; KPS, Karnofsky performance score; CT, chemotherapy; TMT, 
targeted molecular therapy; HT, hormone therapy. 
“New event” included progression and recurrence. “Others” in pharmaceutical therapy included CT + TMT + HT, CT + TMT + 
Immunotherapy, and CT + Immunotherapy. 
All statistical tests were two-sided. 



www.aging-us.com 12254 AGING 

 
 

Figure 5. GSEA of NRG1, ITGA3, and MAP1LC3A in the TCGA GBM cohort. Red box: regulation of autophagy and autophagy-related 

KEGG pathways (A–C, F–H, and K–M). Blue box: pathways in cancer and their related KEGG pathways, including glioma (B–E, G–J, and L–O). 
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(EGF)-like family, encodes a membrane glycoprotein 

that mediates cell-cell signaling and plays a critical role 

in the growth and development of multiple organ 

systems [24]. An et al. [25] reported that NRG1 can 

inhibit doxorubicin-induced autophagy via multiple 

signaling pathways to prevent further damage from 

cardiomyopathy. Previous studies have demonstrated 

that NRG1 plays an important role in aspects of glioma 

development and progression, including cell survival, 

migration, proliferation, and metastasis [26, 27]. 

Recently, Yin et al. [28] investigated whether Nrg1 can 

regulate apoptosis and invasion in GBM via targeting 

by miR-125a-3p. ITGA3 encodes a preproprotein that is 

proteolytically processed to generate light and heavy 

chains that comprise the alpha 3 subunit [29, 30]. This 

subunit joins with a beta 1 subunit to form an integrin 

 

 
 

Figure 6. Nomogram to predict the 0.5-, 1-, and 3-year survival probability of patients with GBM. (A) Prognostic nomogram to 
predict the survival of GBM patients based on the TCGA training set. Calibration curves of the nomogram for predicting survival at 0.5, 1, and 
3 years in the TCGA training cohort (B–D), CGGA Batch-1 validation cohort (E–G), and CGGA Batch-2 validation cohort (H–J). The actual 
survival is plotted on the y-axis; the nomogram-predicted probability is plotted on the x-axis. 
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that functions as a cell surface adhesion molecule and 

interacts with extracellular matrix proteins. The 

literature reports that high expression of ITGA3 can 

promote proliferation, progression and invasion in 

various tumors, such as cholangiocarcinoma, thyroid 

carcinoma, pancreatic adenocarcinoma and glioma [31–

33]. Fiscon et al. [33] demonstrated that ITGA3 was 

involved in ECM-receptor interactions and focal 

adhesion pathways and promoted the development and 

differentiation of GBM cells. MAP1LC3A encodes a 

light chain subunit that can associate with either 

MAP1A or MAP1B. MAP1A and MAP1B are 

microtubule-associated proteins that mediate the 

physical interactions between microtubules and 

components of the cytoskeleton. The expression of 

MAP1LC3A was reported to be suppressed in many 

tumor cell lines, suggesting that it may be involved in 

the carcinogenesis of multiple tumors, such as gastric 

cancer, esophageal squamous carcinoma, osteosarcoma, 

and glioma [34, 35]. Giatromanolaki et al. [35] reported 

that extensive expression of MAP1LC3A was observed 

in 43% of GBM samples and that upregulation of 

MAP1LC3A was associated with impaired autophagic 

activity, which may facilitate GBM carcinogenesis. In 

addition, Zhang et al. [36] indicated that the products of 

MAP1LC3A can serve as autophagic markers and 

indicate autophagic activity. This group used 

nanoparticles loaded with curcumin to initiate 

autophagy, which promoted antimigratory and anti-

invasive effects on GBM. In summary, NRG1, ITGA3 

and MAP1LC3A may serve as tumor inducers by 

regulating autophagy and apoptosis in GBM. These 

ATGs can be used as independent prognostic 

biomarkers and novel targets for guiding GBM therapy. 

 

Then, we developed and validated a novel prognostic 

signature based on the expression of three ATGs that, 

compared with clinical risk factors, improves the ability 

to predict the survival of patients with GBM. According 

to the ATG-based risk score model, patients with GBM 

were divided into a high-risk group and a low-risk 

group. Patients with high risk scores had significantly 

poorer OS than patients with low risk scores. Therefore, 

more precise individualized treatment strategies for 

GBM patients with high risk scores can be established. 

These patients should receive more aggressive 

treatments and closer follow-up to detect recurrence. 

 

Nomograms have been widely used in clinical practice for 

their intuitive visual presentation [37]. To our knowledge, 

this nomogram is the first to incorporate an autophagy-

related signature for predicting the survival of GBM 

patients that was constructed and validated in large 

databases with long-term follow-up. In this study, we 

established a nomogram incorporating the autophagy 

signature, age, pharmacotherapy, radiotherapy, and IDH 

mutation status. Calibration plots based on the TCGA and 

CGGA databases indicated that actual survival 

corresponded closely with predicted survival, suggesting 

that the predictive performance of the nomogram was 

excellent. This visual scoring system could assist both 

physicians and patients in performing individualized 

survival predictions, which would facilitate the selection of 

better treatment options. 

 

The present study has some limitations. First, the 

clinical information downloaded from the TCGA and 

CGGA databases was limited and incomplete. Detailed 

information about neuroimaging, resection extent, 

radiotherapy and chemotherapy were not enrolled in the 

nomogram. Second, the prediction model needs further 

validation in multicenter, large-scale clinical trials and 

prospective studies. 

 

In conclusion, by assessing the global gene expression 

profile, we identified a reliable autophagy-related three-

gene risk score model that has significant value in 

predicting the prognosis of GBM patients and could 

suggest therapeutic targets for GBM. Then, we 

established a novel promising prognostic nomogram 

model incorporating both the autophagy signature and 

clinical parameters for providing individualized survival 

prediction and facilitating the selection of better 

treatment strategies. Further studies in large-scale, 

multicenter and prospective clinical cohorts are needed 

to verify the prognostic model developed in this study. 

 

MATERIALS AND METHODS 
 

Data retrieval and processing 

 

The level 3 RNA sequencing data and clinical 

information of GBM patients were downloaded from 

The Cancer Genome Atlas (TCGA, https://portal.gdc. 

cancer.gov/) and the Chinese Glioma Genome Atlas 

(CGGA, http://www.cgga.org.cn) databases, 

respectively. The TCGA GBM cohort was selected as 

the training set and contained 155 tumor samples and 5 

normal samples. The CGGA cohort was selected as the 

validation set; Batch-1 contained 83 GBM patients and 

Batch-2 contained 133 GBM patients. All patients 

without prognostic information were initially excluded. 

Because the data were obtained from TCGA and 

CGGA, approval for our study by the ethics committee 

was not necessary. 

 

Identification of differentially expressed autophagy-

related genes (DE-ATGs) and enrichment analysis 

 

The differentially expressed genes (DEGs) in GBM and 

normal samples in the TCGA cohort were screened 

using edgeR (https://bioconductor.org/packages/ 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://bioconductor.org/packages/release/bioc/
https://bioconductor.org/packages/release/bioc/
https://bioconductor.org/packages/release/bioc/


www.aging-us.com 12257 AGING 

release/bioc/) in R 3.5.1 [38]. Adjusted P (adj. P) values 

were applied to correct the false positive results using the 

default Benjamini-Hochberg false discovery rate (FDR) 

method. Adj. P < 0.01 and |fold change (FC)| > 1 were 

considered the cutoff values for identifying DEGs [39]. 

The DEGs in the TCGA cohort are displayed in volcano 

plots. The 232 ATGs were obtained from the Human 

Autophagy Database (HADb, http://www.autophagy.lu/), 

which provides a complete and up-to-date list of human 

genes and proteins involved directly or indirectly in 

autophagy as described in the literature from PubMed and 

biological public databases [40]. The intersection of the 

DEGs and ATGs was considered the set of significant DE-

ATGs for further analysis and was then visualized via 

Venn diagrams. 

 

Then, the Database for Annotation, Visualization and 

Integrated Discovery (DAVID, http://david.ncifcrf.gov/) 

was used to perform functional annotation and pathway 

enrichment analyses, including Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis, for the significant DE-ATGs 

[41, 42]. DAVID is an online tool for gene functional 

classification, which is essential in high-throughput 

gene analysis for understanding the biological 

significance of genes [43]. A P value of < 0.05 was 

considered statistically significant. 

 

Construction and evaluation of the ATG-based 

prognostic risk score model 

 

The schematic diagram for constructing the risk score 

model was shown in Supplementary Figure 5. 

Univariate Cox regression analysis was first performed 

on the DE-ATGs in the TCGA GBM training cohort to 

identify the association between the expression levels of 

the genes and patients' OS using the survival package 

(http://bioconductor.org/packages/survival/) in R 3.5.1 

[44]. Then, genes with a P value of < 0.05 identified by 

univariate Cox regression were further screened by 

multivariate Cox regression. Based on the Akaike 

information criterion (AIC), the optimal prognosis-

related genes were determined to establish a prognostic 

risk score model for predicting OS [45]. According to 

the median expression levels of the prognosis-related 

genes, patients were divided into high and low 

expression groups [46]. Then, Kaplan-Meier (K-M) 

survival analysis using the survival package was 

performed to estimate the associations between the 

expression levels of the prognosis-related genes and OS. 

 

The prognostic risk score model was established with 

the following formula: risk score = expression level of 

Gene1 × β1 + expression level of Gene2 × β2 +…+ 

expression level of Genen × βn; where β is the 

regression coefficient calculated by the multivariate 

Cox regression model [46]. Subsequently, a prognostic 

risk score was generated for each patient. All TCGA 

GBM patients were divided into the high-risk (high risk 

score) and low-risk (low risk score) groups according to 

the median value of their risk score. Then, a K-M 

survival curve was constructed to estimate the prognosis 

of patients with high risk scores or low risk scores, and 

the survival differences between the high-risk and low-

risk groups were assessed by a two-sided log-rank test. 

The prognostic performance was evaluated by using 

Harrell's concordance index (C-index) and time-

dependent receiver operating characteristic (ROC) curve 

analysis within 0.5, 1 and 3 years to evaluate the 

predictive accuracy of the ATG-based prognostic model 

with the R packages ‘survcomp’ (http://www. 

bioconductor.org/packages/survcomp/) and 

‘survivalROC’ (https://cran.r-project.org/web/packages/ 

survivalROC/) [37, 47]. The values of both the C-index 

and area under the ROC curve (AUC) range from 0.5 to 

1, with 1 indicating perfect discrimination and 0.5 

indicating no discrimination. Then, the performance of 

the ATG-based risk score model constructed by the 

TCGA training set was validated in the CGGA  

Batch-1 and Batch-2 GBM cohorts via a similar 

approach. 

 

Furthermore, to determine whether the predictive power 

of the ATG-based prognostic model could be 

independent of other clinicopathologic parameters 

(including age, sex, new event occurrence, 

pharmacotherapy, Karnofsky performance score (KPS), 

radiotherapy, surgery, IDH status and 1p/19q status) for 

patients with GBM, univariate and multivariate Cox 

proportional hazards regression analyses were 

performed in the TCGA training set and the two CGGA 

validation sets. 

 

Gene set enrichment analysis (GSEA) 

 

Gene expression levels were set as population 

phenotypes, and GSEA (http://software. 

broadinstitute.org/gsea/index.jsp) was used to assess 

related pathways and molecular mechanisms in GBM 

patients [48]. Enriched gene sets with a nominal P value 

of < 0.05 and a FDR of < 0.25 were considered 

statistically significant. 

 

Construction and validation of the nomogram 

 

Following univariate Cox regression analysis, all 

independent prognostic factors were screened by 

multivariate Cox regression analysis for the 

construction of a prognostic nomogram to assess the 

probability of 0.5-, 1-, and 3-year OS for TCGA GBM 

patients via the rms R package (https://cran.r-project. 

org/web/packages/rms/) [49]. The discrimination 

https://bioconductor.org/packages/release/bioc/
https://bioconductor.org/packages/release/bioc/
http://www.autophagy.lu/
http://www.autophagy.lu/
http://david.ncifcrf.gov/
http://david.ncifcrf.gov/
http://bioconductor.org/packages/survival/
http://bioconductor.org/packages/survival/
http://www.bioconductor.org/packages/survcomp/
http://www.bioconductor.org/packages/survcomp/
http://www.bioconductor.org/packages/survcomp/
http://www.bioconductor.org/packages/survcomp/
https://cran.r-project.org/web/packages/survivalROC/
https://cran.r-project.org/web/packages/survivalROC/
https://cran.r-project.org/web/packages/survivalROC/
https://cran.r-project.org/web/packages/survivalROC/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://cran.r-project.org/web/packages/rms/
https://cran.r-project.org/web/packages/rms/
https://cran.r-project.org/web/packages/rms/
https://cran.r-project.org/web/packages/rms/
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performance of the nomogram was quantitatively 

assessed by the C-index and the AUC [37]. Calibration 

plots were also used to graphically evaluate the 

discriminative ability of the nomogram [47]. Finally, 

the prognostic nomogram was externally validated in 

the CGGA Batch-1 and Batch-2 cohorts. All analyses 

were conducted using R version 3.5.1, and a P value of 

< 0.05 was considered statistically significant. Hazard 

ratios (HRs) and 95% confidence intervals (CIs) were 

reported if necessary. 
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Supplementary Figure 1. Kaplan-Meier survival curves of OS according to low or high risk scores stratified by age, IDH mutation status, 

pharmaceutical therapy, and radiation therapy in the TCGA training cohort (A), CGGA Batch-1 validation cohort (B), and CGGA Batch-2 

validation cohort (C). 

 

 

 

 
 

Supplementary Figure 2. Kaplan-Meier survival curves of age, pharmaceutical therapy, radiation therapy, and IDH mutation status for the 

OS of patients in the TCGA training cohort, CGGA Batch-1 validation cohort, and CGGA Batch-2 validation cohort. 
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Supplementary Figure 3. Gene set enrichment analysis (GSEA) was performed between the ATG-based high-risk and 

low-risk groups based on the TCGA GBM cohort. Red box: regulation of autophagy and autophagy-related KEGG pathways. Blue 

box: pathways in cancer and their related KEGG pathways, including glioma. 
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Supplementary Figure 4. The prognostic performance of the nomogram demonstrated by the ROC curve for predicting the 0.5-, 1-, and 3-

year OS rate in the TCGA training cohort (A–C), CGGA Batch-1 validation cohort (D–F), and CGGA Batch-2 validation cohort (G–I). 
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Supplementary Figure 5. The schematic diagram for constructing the prognostic prediction model based on autophagy 

signature. 
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Supplementary Tables 
 

Supplementary Table 1. Cox regression analysis of 72 differentially expressed autophagy-related genes in 
gliomablastoma patients 

Gene 
Univariate analysis Multivariate analysis 

HR z pvalue HR z pvalue 

CXCR4 1.12752231 1.36150731 0.17335342 - - - 

MAP1LC3C 1.09214902 1.51592606 0.12953805 - - - 

IL24 1.09055155 1.02655736 0.30462894 - - - 

CASP1 1.09631446 1.05763629 0.29022129 - - - 

APOL1 1.03878724 0.56953867 0.56899063 - - - 

PARK2 1.1116884 1.05253107 0.29255596 - - - 

GRID1 0.96610039 -0.4636662 0.64288692 - - - 

RB1CC1 1.05469152 0.4335599 0.66460806 - - - 

WDFY3 0.97232968 -0.2591414 0.79552617 - - - 

EGFR 0.96155822 -0.9756129 0.32925635 - - - 

ERBB2 1.15572387 1.78927734 0.07357016 - - - 

NRG3 1.02157032 0.41012589 0.6817136 - - - 

HDAC1 0.9681987 -0.2503851 0.80228957 - - - 

CASP4 1.27332956 2.31674033 0.02051788 - - - 

MAPK8IP1 1.01901845 0.2236201 0.82305292 - - - 

RPTOR 1.06053203 0.55691437 0.57758593 - - - 

AMBRA1 1.10502149 0.88581859 0.37571529 - - - 

SERPINA1 1.15201256 1.96520121 0.04939095 - - - 

DAPK2 1.15644409 1.62702842 0.10373106 - - - 

CASP3 1.19157365 1.61187975 0.10698811 - - - 

DIRAS3 1.16347952 2.53110692 0.01137032 - - - 

IFNG 1.21783781 1.31300654 0.18918075 - - - 

PINK1 1.11048638 0.9324178 0.35112065 - - - 

ATG2B 1.02325887 0.21985061 0.82598751 - - - 

BIRC5 1.03313466 0.47552664 0.63441165 - - - 

CTSB 1.31560381 2.54009925 0.0110821 - - - 

ITGB1 1.04985848 0.45753454 0.64728688 - - - 

MAPK1 0.92472275 -0.7449741 0.45628737 - - - 

IKBKB 1.08210872 0.59394047 0.55255193 - - - 

MAPK8 0.91317847 -0.9090328 0.36333282 - - - 

PRKCQ 0.93580259 -0.8419977 0.39978924 - - - 

ULK1 1.16006405 1.17391162 0.24043043 - - - 

DRAM1 1.21266735 1.9069304 0.0565296 - - - 

FKBP1B 1.37459207 2.92057153 0.0034939 - - - 

GNB2L1 0.83523584 -1.2999676 0.19361207 - - - 

MAPK3 1.12040281 0.81243541 0.41654183 - - - 

NRG1 1.14389011 2.74819125 0.0059925 1.14157962 2.66231234 0.00776058 
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ITGA3 1.19112653 2.68707229 0.00720814 1.14941814 2.02128687 0.04325008 

VEGFA 1.08260766 1.50294174 0.13285407 - - - 

MYC 0.9135298 -1.0194185 0.30800432 - - - 

ATG4A 1.05172571 0.34005326 0.73381642 - - - 

CDKN1A 1.10613952 1.36952825 0.17083421 - - - 

GNAI3 0.9559024 -0.2984975 0.76532347 - - - 

FAS 1.16693931 1.89196524 0.05849561 - - - 

PRKCD 1.16153179 1.51380892 0.13007431 - - - 

TP73 0.95783626 -0.8832974 0.37707559 - - - 

TMEM74 1.02652779 0.43315698 0.66490073 - - - 

MAPK9 1.11804113 0.81646607 0.41423362 - - - 

ITPR1 1.21698874 1.86942202 0.06156412 - - - 

CX3CL1 0.99173975 -0.0990952 0.92106272 - - - 

IKBKE 1.2062973 1.64515448 0.09993796 - - - 

HIF1A 0.93383523 -0.7361781 0.4616223 - - - 

TUSC1 1.12449246 1.6239062 0.10439583 - - - 

ULK2 1.0903667 0.79924586 0.42414787 - - - 

CAMKK2 1.10383881 0.71073959 0.47724562 - - - 

CDKN2A 0.96348157 -1.178491 0.23860092 - - - 

DAPK1 0.99689091 -0.0375145 0.97007475 - - - 

BAK1 0.93815456 -0.4304121 0.66689588 - - - 

NAMPT 1.12745712 1.8547772 0.06362805 - - - 

TSC1 0.96762564 -0.3495673 0.72666347 - - - 

EIF4EBP1 1.0262793 0.20731651 0.83576268 - - - 

TP53 0.92835436 -0.8075141 0.41937034 - - - 

MAP1LC3A 1.39894856 3.17692527 0.00148845 1.30823622 2.46357359 0.01375597 

CASP8 1.08199498 0.71583924 0.47409062 - - - 

RGS19 1.21061651 1.30953568 0.19035296 - - - 

CCR2 1.11426965 1.70918135 0.08741736 - - - 

PRKAR1A 1.1494814 1.06072757 0.28881373 - - - 

GABARAPL1 1.13059973 1.18350566 0.23660881 - - - 

P4HB 1.35062977 2.14162036 0.03222404 - - - 

PTK6 0.95966931 -0.6245504 0.53226621 - - - 

BAX 1.06447347 0.52869632 0.59701613 - - - 

TP63 1.12260577 2.22352058 0.02618072 - - - 
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Please browse Full Text version to see the data of Supplementary Tables 2 and 3. 

 

Supplementary Table 2. GSEA reports for high ITGA3, MAP1LC3A, and NRG1 expression groups in TCGA-GBM cohort. 

 

Supplementary Table 3. GSEA reports for ATG-based high-risk and low-risk group in TCGA-GBM cohort. 


