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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the five leading 

causes of cancer-related death worldwide. Recent 

developments in the treatment of HCC proved insufficient 

to cure unresectable disease and to substantially prevent 

HCC progression. The limitations of current therapeutics 

primarily reflect incomplete understanding of the complex 

molecular signaling processes contributing to the 

heterogeneous nature of the disease [1].  

 

Liver carcinogenesis is a multistep, long process 

associated with multiple risk factors, e.g. viral hepatitis, 

alcohol abuse, metabolic disorders, and obesity [2].  

 

Over the last two decades, studies based on genome-

wide gene expression and functional profiling have 

revealed the great diversity of transcriptional alterations 

occurring in liver carcinogenesis. However, translating 

these findings into individualized treatments has proved 

to be difficult [2].  

 

Transcription factors (TFs) drive gene expression 

programs that shape specific phenotypes [3], and are 

frequently dysregulated in cancer [4]. Correspondingly, 

most cancer signaling pathways seem to converge on one 

or more TFs, termed “master regulators” (MRs) [4], 

which direct tumor development, progression, and 

metastasis through hierarchical control of gene expression 
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ABSTRACT 
 

Identification of master regulator (MR) genes offers a relatively rapid and efficient way to characterize 
disease-specific molecular programs. Since strong consensus regarding commonly altered MRs 
in hepatocellular carcinoma (HCC) is lacking, we generated a compendium of HCC datasets from 21 studies 
and identified a comprehensive signature consisting of 483 genes commonly deregulated in HCC. We then 
used reverse engineering of transcriptional networks to identify the MRs that underpin the development 
and progression of HCC. After cross-validation in different HCC datasets, systematic assessment using 
patient-derived data confirmed prognostic predictive capacities for most HCC MRs and their corresponding 
regulons. Our HCC signature covered well-established liver cancer hallmarks, and network analyses revealed 
coordinated interaction between several MRs. One novel MR, SEC14L2, exerted an anti-proliferative effect 
in HCC cells and strongly suppressed tumor growth in a mouse model. This study advances our knowledge of 
transcriptional MRs potentially involved in HCC development and progression that may be targeted by 
specific interventions. 
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patterns. Thus, MRs comprise typically a small number of 

TF-encoding genes (and their products) that control a 

disproportionate level of gene expression, giving rise to 

distinct molecular phenotypes associated with a particular 

disease. Therefore, identification and functional 

characterization of MRs is critical to understand 

associated disease processes and design effective 

therapeutic options [5]. For instance, a recent study 

indicated that SOX4 acted as a MR of epithelial-to-

mesenchymal transition (EMT) in HCC [6]. However, 

studies evaluating the presence of MRs in HCC are sparse 

and have yielded limited insight into cancer risk. 

 

Since the expression of genes defining discrete 

phenotypes is highly coordinated, application of reverse 

engineering algorithms to transcriptome datasets allows 

interpreting transcriptional networks by defining MRs and 

their associated regulons and gene circuits. Focusing on 

computational and statistical aspects of MR discovery, the 

ARACNe-MRA (Algorithm for the Reconstruction of 

Accurate Cellular Networks-Master Regulator Analysis) 

method has shown competent performance in this regard 

[4]. Using ARACNe-MRA, researchers have successfully 

identified prognostically relevant MRs in glioma, ovarian, 

breast, and prostate cancer [4, 7].  

 

In the present study, we model liver cancer through a 

TF-centered regulatory network derived from HCC 

transcriptional datasets, followed by MRA analysis of 

changes in transcriptional regulatory programs related 

to tumor phenotype. Our analysis provides insights into 

the gene regulatory circuits operating in HCC and has 

implications for the identification of novel therapeutic 

targets.  

 

RESULTS  
 

Generation of a compendium of gene expression 

profiles in human HCC  

 

To assemble well-annotated human HCC gene 

expression profiles, 21 liver-oriented datasets were 

retrieved, yielding 1,316 gene expression profiles 

(Figure 1A). A detailed characterization of the HCC 

datasets is provided in Supplementary Table 1. 

 

To ensure that the datasets generated from different types 

of arrays are comparable, the ComBat method [8], which 

is especially robust when handling multiple batches [9], 

was applied. For a more quantitative evaluation of the 

effects of dataset adjustment, principal variance 

component analysis (PVCA) [10] was performed to verify 

significant improvement after adjusting for intraplatform 

batch-to-batch differences (Supplementary Figure 1). In 

total, 12,100 annotated genes were present in the final 

dataset (named HCC6 hereafter).  

Functional enrichment analysis of HCC signatures  

 

Based on identical normalization, filtration, and 

statistical treatment of raw datasets, the HCC6 signature 

was defined as a set of genes differentially expressed 

between tumor tissues (PT) and adjacent non-tumor 

tissues (NT). It consisted of 483 genes (32% of them 

upregulated) and included well-known HCC biomarkers 

(e.g. GPC3, AFP, KPNA2; Supplementary Table 2). We 

carried out gene ontology and KEGG pathway 

enrichment analysis to uncover potential biological 

functions for genes in the HCC6 signature, which were 

consistent with reprogramming features characteristic of 

cancer cells (Supplementary Figure 2).  

 

In line with previous research [2], overrepresentation of 

cell proliferation markers was the most prominent feature 

in our HCC6 signature. We observed upregulation of 

numerous cell cycling genes, including cyclins (e.g. 

CCNA2, CCNB1, CCNB2), cyclin-dependent kinases and 

inhibitors (e.g. CDK1, CDK4, CDKN3), and genes acting 

on cell cycle and cell division checkpoints (e.g. AURKA, 
NDC80). Also, the HCC6 signature highlighted 

deregulation of genes associated with DNA replication 

(e.g. MCM2-6, RFC4), DNA unwinding (e.g. TOP2A), 

and DNA repair (e.g. RRM2, FEN1). Increased expression 

of several genes associated with protein translation, i.e. 

ribosomal subunits (e.g. RPS5, RPL38), and translation 

initiation factors (e.g. EIF4G2) was also observed. In 

addition, genes acting at the epigenetic level such as 

regulators of chromatin assembly and remodeling (e.g. 

CHAF1A, HDAC1, HDAC5, HMGB2), and components 

of the polycomb-repressive complex 2 (e.g. EZH2, 

SUZ12) were also up-regulated.  

 

Metabolic reprogramming was noticeable for 

downregulated genes involved in liver specific 

metabolism, including those encoding acute phase 

plasma proteins (e.g. A2M, ALB, CP), components of 

complement and coagulation cascades (e.g. C5-9, CFB, 
F2), and detoxication enzymes (e.g. ADH1A, CYP2E1). 

Key regulators of oxidation-reduction processes (e.g. 

STEAP3, CYP3A4, ALDH8A) were also repressed.  

 

Regulon profiling in HCC  

 

Next, a genome-wide transcriptional network (TN) 

centered on TFs and their predicted target genes was 

inferred using the RTN package [11, 12]. The 

computational pipeline is summarized in Figure 1A. 

Briefly, the TN was constructed by computing mutual 

information (MI) between annotated TFs [13] (n = 

2,020 genes) and all potential targets in each cohort 

based on the ARACNe approach [14]. Then, the MRA 

algorithm was applied to compute the statistical 

significance of the overlap between the network and the 
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molecular signature (differentially expressed genes). 

The groups of inferred target genes associated with each 

MR are hereinafter referred to as regulons. 

 

To assess whether our results on the HCC6 dataset 

are consistent with other tumor-profiling datasets, we 

applied RTN on The Cancer Genome Atlas Liver 

Hepatocellular Carcinoma (TCGA-LIHC) data 

collection (external control), and on GSE14520 

(internal control), etc, independently (Figure 1A). 

The enrichment P-value for each regulon was used to 

rank MRs identified in each network and the 

correlation statistic (R) between these lists was 

compared.  

 

We first ranked HCC6 regulons based on the 

enrichment score and found good agreement (R = 0.29-

0.37) between HCC6, TCGA-LIHC, and GSE14520 

(using its own differentially expressed genes as 

signature), suggesting that these HCC datasets share 

similar sets of regulated genes (Figure 1B). We then 

computed a TN for 990 tumor-matched, adjacent 

normal tissues from HCC6 patients. Enrichment for 

most MRs was found in this network, suggesting both 

PT and NT tissues share partial common regulatory 

network. Of note, after carrying out MRA on a network 

derived from a TCGA pan-cancer dataset, a lower level 

of correlation was observed (R = 0.09), while virtually 

no overlap was found between HCC6 and 

cholangiocarcinoma (TCGA-CHOL).  

Landscape of master regulators of HCC  

 

To preserve the dominant TF-target pairs in the filtered 

TN, the weakest interactions between any two TFs and 

a common target gene were removed applying the data 

processing inequality (DPI) method. The analysis 

yielded 120 MR candidates in the HCC6 dataset 

(Supplementary Table 3). Again, there was good 

agreement between regulons in the HCC6, LIHC, and 

GSE14520 cohorts (Figure 2A, 2B). The regulatory 

network graph in Figure 2C shows association patterns 

between MRs in the HCC6 dataset. 

 

Validation of master regulators of HCC  

 

We set out to systemically check the quality of 

predicted MRs. Since both network and signature 

might affect causal inferences during MR discovery, 

we performed cross-validation of MRA results using 

TNs and signatures from different HCC datasets. 

Compared with the regulons identified in the HCC6 

network using different signatures, results showed the 

HCC6 based network had strong robustness  

(Figure 3A).  

 

Aiming at assessing different features of liver cancer, 

various studies have reported molecular signatures related 

to HCC. Thus, we performed signature validation 

contrasting the TN derived from the HCC6 dataset with 

reported HCC-related signatures: progenitor tumor cell

 

 
 

Figure 1. Schematic representation of MR discovery and validation in HCC datasets. (A) Different HCC-related gene expression 

datasets were analyzed in parallel with the ARACNe-MRA pipeline. (B) MRA agreement among different cohorts using unfiltered networks. 
The scatter plots show ranking agreement (by enrichment P-values) for all regulons between the different cohorts. Each dot represents one 
regulon (MR and all its targets) in the TN. The correlation coefficient R is given for each pairwise ranking. An UpSet plot of the intersection of 
identified regulons in different cohorts is presented in the right panel. 
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origin (CSC_Yamashita, EPCAM_Yamashita, 

CK19_Andersen [15], S2_Hoshida [16] and C2_Cario 

[17]), cellular proliferation [18], vascular invasion [19], 

TGF-beta_Coulouarn [20], MET_Kaposi-Novak [21], 

G3_Boyault [22], S1_Hoshida (TGFβ-WNT) [16]), 

Recurrence_Woo [23], OS_Kim [24], Interferon_Chiang 

[18], and G5/6_Boyault (CTTNB1_WNT activation) [22]. 

Results showed that the HCC6-signature covered almost 

all of these signatures (Figure 3B). 

 

We also examined enrichment levels for target genes 

comprising the regulons of individual MRs. To this end, 

we collected recognized TF targets from the Cistrome 

Cancer web resource [25] and the Gene Transcription 

Regulation Database (GTRD) [26], both containing 

ChIP-seq derived processed data. As an example of this 

analysis, the ESR1 regulon highly overlapped with the 

targets from both Cistrome and GTRD. In turn, the 

motif discovery tool Pscan [27] confirmed that the 

ESR1 binding motif was enriched among its co-

regulated genes (Figure 3C).  

 

Besides ARACNe/RTN, we evaluated other methods 

designed for finding MRs in gene expression patterns, 

i.e. the Expression-2-Kinase (X2K) package with 

default parameters [28], and S. Datta’s approach [5]. 

Compared to these approaches, RTN identified more 

risk-MRs (Figure 3D).  

 

Following a prototypic approach to validate cancer-

associated MRs, we retrieved TFs annotated as cancer-

related in at least one of three cancer gene databases 

(Bushman Laboratory cancer driver gene list [29], 

COSMIC somatic mutation catalog [30], and CCGD 

mouse cancer driver genes [31]). We found that 75% 

(90/120) of the MRs in our HCC6 gene set were

 

 
 

Figure 2. MRA agreement among different cohorts using filtered networks. (A) Networks were filtered by applying a DPI threshold 
of 0.01 to remove the weakest interactions. The scatter plots show ranking agreement (by enrichment P-value) for all regulons. (B) UpSet plot 
of the intersection of identified regulons in different cohorts. (C) Network visualization of the 120 MRs. The size of circles represents the size 
of each regulon. 
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annotated as cancer-associated in the above datasets. 

Applying information contained in these databases, 

receiver-operating characteristic curve analysis 

demonstrated the reliability of MR prediction (Figure 3E).  

 

Identification of MRs associated with HCC subtypes 

and etiology 

 

To answer the question of which MRs were associated 

with the different molecular subtypes of HCC, 

consensus hierarchical clustering [32] was performed on 

the HCC6 samples. Three tumor subgroups were 

discriminated from the consensus matrix (Figure 4A). 

Function annotation analyses (Figure 4B and 4D), MR 

overlap (Figure 4C), and protein-protein interaction 

(PPI) network of HCC6 MRs (Figure 4E) were further 

defined for the three HCC subtypes. For instance, 

network topology analysis indicated that HDAC1/2 

were the top stress genes in the PPI network. As the 

epigenetic factors, HDACs control gene expression by 

recruiting multiple transcription factors and other 

chromatin-related factors. HDAC activate hepatocyte 

growth factor signaling in HCC [33]. 

 

We next performed MRA analysis within the HCC 

subtypes, interpreting subtype-related MRs using 

Metascape [34]. Associations with ‘cellular response to 

organic cyclic compound’, ‘nuclear receptor transcription 

pathway’, ‘chromatin organization’, ‘regulation of cell 

cycle process’, and ‘hormone- mediated signaling 

 

 
 

Figure 3. Performance of MR prediction. (A) MRs identified by using LIHC- and GSE14520-derived networks and the HCC6 signatures. 

The correlation coefficient R is given for each pairwise ranking. (B) Using HCC6 TN and different signatures, enrichment was estimated from 
the corresponding MRA analyses. The color key represents the odds ratios, and significant P-values are superimposed on the grids. (C) Venn 
diagrams showing overlap of the ESR1 regulon with corresponding targets from Cistrome and GTRD. The ESR1 motif was enriched in the ESR1 
regulon (Pscan analysis). (D) A circular plot visualizing all intersections and the corresponding statistics among three MR discovery methods. 
The three tracks in the middle represent the three methods, with individual blocks showing “presence” (green) or “absence” (grey) of the 
gene sets in each intersection. The height of the bars in the outer layer is proportional to the intersection size, as indicated by the numbers 
on the top of the bars. The color intensity of the bars represents the significance (P value) of the intersections. (E) ROC curves plotted for MR 
prediction. 
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pathway’, among others, were defined for all three HCC 

subtypes (Supplementary Table 4). Subtype 1 was 

associated with biological processes such as 

‘mitochondrial biogenesis’, ‘gland, mesenchyme, 

epithelium and tubule development’, ‘circadian clock’, and 

FOXM1 and NOTCH3 pathways, among others. Subtype 

2, containing the BHC (BRAF-HDAC) and the CoREST-

HDAC complexes, was linked to ‘cellular response to 

drug, and antibiotic’, ‘cellular glucose homeostasis’, 

‘positive regulation of DNA repair’, ‘telomerase pathway’, 

and AR and MYC pathways, among others. Subtypes 1 and 

2 both showed activated AKT signaling. Lastly, subtype 3 

was defined by transcriptional networks related to ‘cellular 

response to oxygen levels’, ‘oncogene induced 

senescence’, ‘repression of WNT target genes’, ‘T-helper 

17 type immune response’, ‘stem cell proliferation’, and 

‘TGF-beta signaling pathway’, among others.  

 

Since risk factors for developing HCC include HBV or 

HCV infection, alcoholic liver disease, and metabolism 

disorders like nonalcoholic steatohepatitis, we therefore 

tested whether the etiology of tumors was linked to 

candidate MRs. Detailed information on etiology-

related MRs is provided in Supplementary Table 5. 

 

 
 

Figure 4. HCC subtyping analysis and functional annotation of MRs. (A) Three subgroups were identified by the non-negative matrix 

factorization (NMF) method in the HCC6 dataset, using consensus hierarchical clustering. (B) Meta-analysis of function annotation based on 
three subtype-related MR lists. Heatmap shows the top enrichment clusters (gray color indicates lack of significance). (C) Circos plot of 
MRs’ overlap among the three HCC subtypes. On the inside arc, dark orange color represents the MRs that appear in multiple subtypes and 
light orange color represents MRs that are unique to that subtype. (D) Enrichment network visualization for biological function from the 
three HCC subtypes. Nodes are represented by pie charts indicating their associations with each subtype.  (E) Protein-protein interaction 
(PPI) network of MRs.  
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Consensus MRs in HCC 

 

To define a smaller set of conserved MRs, we selected 

the regulons showing significant enrichment across the 

HCC6, LIHC, and GSE14520 cohorts (Figure 5A). The 

association map of the resultant 44 MRs is provided in 

Figure 5B. 

 

Once identified, we further tested the responsiveness of 

each regulon to tumor phenotype using gene set 

enrichment analysis (GSEA) [35]. Figure 5C shows that 

the top 10 regulons are consistently HCC-responsive. 

Regulons consist of both MR-induced and MR-

repressed genes, and their relative activity influences 

the phenotype. To evaluate regulon activity, two-tailed 

GSEA was performed to calculate differential 

enrichment scores (dES) based on positively and 

negatively regulated regulon subsets in HCC samples. 

Detailed target information for each MR is provided in 

Supplementary Table 6. 

Figure 5D presents an example of this analysis, showing 

GSEA running enrichment scores for the ESR1 regulon 

after it was split into ESR1-activated and -repressed 

targets. Details on biological process involvement for 

the ESR1 regulon, indicating multiple metabolic 

pathway inhibition mechanisms, are shown in 

Supplementary Figure 3. Figure 5E shows the dES 

profile of 44 MRs; two clusters resulted, suggesting 

opposite biological roles in HCC pathogenesis. 

 

Regulon activity and coordinated MRs as prognostic 

read-out 

 

Next, dES representing regulon activity were used to 

investigate the prognostic value of MRs through Kaplan-

Meier survival analysis. Almost half (20/44, P < 0.05) of 

the MRs in our HCC6 cohort were highly correlated with 

survival phenotype (Supplementary Table 7), compared 

with 14/44 and 32/44 in the GSE14520 and LIHC cohorts, 

respectively. 

 

 
 

Figure 5. Profiling of conserved MRs. (A) Regulons are ranked by corresponding enrichment P-values, estimated for the HCC6, LIHC, and 

GSE14520 cohorts. (B) Network view of 44 consistent MRs. (C) GSEA of the top 10 MRs. (D) Examples of the top 10 MRs for which 2-tailed 
GSEA was carried out. (E) dES heatmap of the 44MRs.  
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Figure 6 shows dES and survival plots for the top 2 

regulons. For the ESR1 regulon, we found a continuous 

spectrum of dES across the tumors, except near the 

transition between its active and repressed state, which 

was characterized by an abrupt change. There was a 

strong trend for better survival in tumors with high dES. 

Significant trends were also noted after analyzing the 

GSE14520 and the LIHC cohorts, evaluated as controls 

(Figure 6C–6D). Upon stratification for ESR1 

expression only, this MR was strongly correlated with 

prognosis in the LIHC cohort (Figure 6B), but not in the 

GSE14520 cohort (Supplementary Table 7). 

Meanwhile, an opposite survival trend was found for 

the PTTG1 regulon (Figure 6E–6H). These results 

suggest that regulon activity, expressed as dES, can 

predict survival outcome in a more context-dependent 

manner. Detailed MR-based survival analysis results are 

provided in Supplementary Figure 4. 

 

Since MRs can have divergent effects on the expression 

of a shared target gene in a real cellular setting, we 

examined the relationship between regulons. Correlation 

values were used to assess whether or not MR pairs 

regulated shared target genes in the same (positive or 

negative) direction. This analysis was carried out for 44 

MRs in our regulatory network, and a correlation heatmap 

was generated. In addition, a heatmap of Jaccard 

similarity coefficient (JC) focusing on the overlap 

between the 44 regulons was also obtained (Figure 7A). 

 

Generally, JC values fell into two distinct groups with 

high correlation within each group: gene targets shared 

between two MRs in the same group are regulated in the 

same direction by both MRs, whereas gene targets shared 

between a MR in one group and a MR in the other are 

regulated in opposite directions. This suggests the 

existence of two distinct regulatory MR groups, each one 

opposing the effects of the other. Again, using ESR1 and 

PTTG1 as an example, these two MRs were highly anti-

correlated and showed extensive overlap (R = -0.586, JC 

= 0.431). Considering compounding effect, stratification 

of activity of interacted-ESR1 and PTTG1 regulon further 

reveals different survival patterns. This influence was 

verified in the LIHC and GSE14250 cohorts (Figure 7C–

7D). 

 

Functional analysis of a candidate MR 

 

The lipid-binding protein SEC14L2, which possesses 

putative transcriptional activatory activity, was 

predicted as a conservative MR in HCC in this study 

(Figure 8A). Functional enrichment analysis indicated 

that oxidation-reduction process, metabolic process, 

PPAR signaling, peroxisome pathway, and fatty acid 

degradation, etc, were significantly regulated by 

SEC14L2 regulon in HCC (Figure 8B, 8C). 

A recent report identified SEC14L2 as a host factor 

permitting replication of clinical HCV isolates [36], but 

the relationship between this molecule and HCC was 

not established. Notably, SEC14L2 expression could not 

be detected in human hepatoma and non-hepatoma cell 

lines in vitro [36]. However, primary human 

hepatocytes, both from fetal and adult sources, 

expressed readily detectable levels [36]. We thus 

examined the potential growth-suppressive effects of 

SEC14L2 re-expression in HCC cells.  

 

Restored expression of SEC14L2 was observed in 

SEC14L2-transduced MHCC97-H cells, which showed 

reduced proliferation and decreased colony formation 

(Figure 8E and Supplementary Figure 5). Also, the 

number of cells in G2 phase following SEC14L2 ectopic 

expression was substantially increased (50.96 ± 

0.20% vs 43.28 ± 0.95% in control cells; P < 0.05). On 

wound healing assays, ectopic expression of SEC14L2 

distinctly inhibited migration of MHCC97-H cells (P < 

0.01) (Figure 8G).  

 

We subsequently investigated the effects of forced 

SEC14L2 expression on the tumorigenic potential of 

HCC cells in vivo. To this end, MHCC97-H cells 

stably transduced with SEC14L2 or empty vector were 

injected subcutaneously into nude mice. Periodic 

volume measurements showed that tumor growth  

was nearly abolished after SEC14L2-transduction, 

compared with tumors containing control cells  

(Figure 8H).  

 

As expected, expression of the component genes like 

GYS2, HSD11B1, SLC10A1, ALDH2, and AR, etc, in 

SEC14L2 regulon were significantly up-regulated after 

the ectopic expression of SEC14L2 in MHCC-97H cells 
(Figure 8D). Briefly, GYS2 was recently found to be 

responsible for the deregulation of glycogen 

metabolism in HCC [37]. HSD11B1 was identified as 

a circulating biomarker candidate for HCC [38]. 

SLC10A1(NTCP) expression was markedly reduced 

in most HCC [39]. ALDH2 deficiency promotes liver 

cancer by activating oncogenic pathways via 

oxidized DNA-enriched extracellular vesicles [40]. 

These results suggested that SEC14L2 regulon might 

have a positive mechanism in metabolic pathways 

regulated by SEC14L2. 
 

DISCUSSION 
 

Streamlining the analysis of multiple datasets using the 

same computational processes enhances statistical 

power and may significantly increase the accuracy of 

the findings [41, 42]. Our study compiled a large HCC 

dataset (HCC6) and verified its quality by PVCA
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Figure 6. Regulon activity as read-out of survival outcomes. (A) dES of ESR1 calculated for all samples in the HCC6 cohort. Disease-

specific survival plots for each tumor subgroup are highlighted; patient numbers are listed for each section. (B) Kaplan-Meier survival curve 
using ESR1 gene expression data in the LIHC cohort, generated using the KM-plotter tool [56]. (C) dES of ESR1 in the GSE14520 cohort. (D) dES 
of ESR1 in the LIHC cohort. (E–H) Analysis results for PTTG1. 
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Figure 7. Differential expression effects of MR interactions on shared target genes. (A) Upper panel: Heatmap of gene expression 
correlation for targets shared by the 44 MRs (HCC6). Lower panel: Hierarchical clustering based on jaccard similarity coefficients (shades of 
blue) computed among 44 regulons. (B) Interaction of ESR1-PTTG1 pair in the HCC6 cohort. The dES of ESR1 and PTTG1 are shown. On the 
right upper panel, a cartoon depicts the observed interactions between ESR1 and PTTG1 targets, with brown circles indicating co-activation, 
and green circles denoting co-repression. Targets are shown in grey if the two MRs have opposing effects. Assuming ESR1 and PTTG1 
interaction, survival outcomes for the ESR1 regulon, the PTTG1 regulon, and both interacting regulons are depicted (C, D). 
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analysis. Importantly, we show that the HCC6 signature 

panel overlaps extensively with a comprehensive 935-

gene HCC signature reported by Allain et al. in a meta-

analysis of multiple datasets [2]. This lends confidence 

that the HCC6 dataset captured the main features of 

HCC. 

 

Several lines of evidence support the relevance of the 

MRs and associated regulons discovered in the present 

study. First, two of the most important parameters in 

MRA, i.e. transcription networks and gene signatures, 

were widely cross-tested. Upon similar analysis, MRs 

consistently identified from the HCC6 networks were 

absent in networks obtained from other malignancies. 

Second, most MRs identified in this work are cancer-

related according to database annotation. Finally, the 

impact of some MRs on liver cancer predicted by HCC6 

is highly consistent with current knowledge. 

 

In this sense, the relation between ESR1 and malignant 

disease has been asserted in a variety of tissues 

including breast, colon, bladder, and liver. As a 

candidate tumor suppressor gene [43], decreased ESR1 

expression was significantly correlated to high liver 

damage score, pathological invasion, and tumor size 

[44]. PTTG1, a human securin that inhibits sister 

chromatid separation and is involved in transformation 

and tumorigenesis, is overexpressed in HCC and has 

prognostic significance for postoperative survival of 

patients with HCC [45]. Our prediction also retrieved 

well-known MRs such as FOXM1, EZH2, and SOX4 

[6]. FOXM1, cooperating with YAP, was found to 

contribute to chromosome instability in liver cancer 

[46].  

 

Besides reaffirming findings from previous studies 

(Supplementary Table 8), our analysis also predicted 

putative MR functions in HCC. For instance, several 

MRs belonging to the orphan nuclear receptor (NR) 

family such as NR0B2, NR1I2, NR1H4, and NR1I3 

were found.  

 

NR0B2 is a transcriptional corepressor affecting diverse 

metabolic processes, including bile acid synthesis, 

cholesterol and lipid metabolism, and glucose and 

energy homeostasis. Evidence suggests that NR0B2 

plays an important suppressing role in the development 

of liver cancer [47]. Research has revealed broader 

transcriptional circuits controlled by NR1H4. NR1H4 

deficiency led to a 100% incidence of spontaneous liver 

tumors in male and female mice, indicating that 

disruption of estrogen-protected pathways promotes 

hepatic oncogenesis. NR1I2 plays an integral role in 

xenobiotic and endobiotic metabolism, glucocorticoid 

and mineralocorticoid homeostasis, vitamin 

metabolism, and hepatic gluconeogenesis, and was 

shown to promote tumor growth and chemo-resistance 

in major cancer types [48]. NR1I3 regulates a set of 

genes involved in cellular growth, and studies have 

shown that it may also aid in the promotion of tumor

 

 
 

Figure 8. SEC14L2 is a potential HCC suppressor. (A) Calculation of dES and survival responses for SEC14L2 in the HCC6 cohort. (B) GO 

terms enrichment analysis of SEC14L2 regulon. (C) KEGG pathway enrichment analysis of SEC14L2 regulon. (D) Representative target genes of 
SEC14L2 regulon were significantly up-regulated after SEC14L2 overexpression. (E) SEC14L2 overexpression significantly inhibited cell 
proliferation (CCK-8 assay) and colony formation in HCC cell lines. Upper and lower panels show corresponding results in MHCC97-H cells. 
These assays were repeated in Huh7 cells (Supplementary Figure 6). (F) Cell-cycle distribution analysis of MHCC97-H cells overexpressing 
SEC14L2. (G) Cell migration (wound-healing) assay results. Data represent the average of three independent experiments in duplicate. (H) 
Effect of SEC14L2 overexpression on tumor xenografts in vivo. Almost total inhibition of tumor growth was observed after subcutaneous 
implantation of SEC14L2- overexpressing MHCC97-H cells in nude mice. OE, over-expressed; *P < 0.05, **P < 0.01, ***P < 0.001. 
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formation. Thus, our prediction suggests that multiple 

NRs might also be HCC-related MRs. Broader liver 

transcriptional circuits controlled by multiple orphan 

NRs warrant further consideration. 

 

Overall, we found that 90 out of 120 MRs analyzed 

have support from cancer-gene database. As for the rest, 

little is known about their role in liver cancer according 

to current literature. For example, no study has so far 

implicated SEC14L2 in liver cancer, though proteomic 

analysis identified low levels of SEC14L2 to be 

prognostic markers for overall breast cancer survival 

[49]. Saeed et al. identified SEC14L2 as a host factor 

permitting replication of clinical HCV isolates in cell 

culture [36]. We found that low SEC14L2 expression is 

associated with poor patient survival in the HCC6, 

LIHC, and GSE14520 cohorts. Moreover, SEC14L2 

cross-talks with many NRs (Supplementary Figure 5). 

Further support for the importance of SEC14L2 comes 

from our functional in vivo experiment, indicating that 

restoration of SEC14L2 expression in HCC cells 

significantly inhibited tumor growth. 

 

Earlier, three sub-clusters were defined in HCC by the 

TCGA research team [50]. Clustering analysis of HCC6 

transcriptome profiles also resulted in three clusters, and 

subtype-related MRs were predicted therein. It would 

be interesting to investigate the functions of these MRs 

in future studies. 

 

Importantly, a significant correlation was observed 

between the regulon activity of various MRs and patient 

survival. In contrast, simple classification based on 

molecular expression levels did not unmask prognostic 

relevance across multiple datasets. For instance, ESR1 

and PTTG1 do not have significant prognostic value in 

the GSE14520 cohort, though these two genes have a 

clear role in HCC. Therefore, MRs might have 

increased power to detect prognosis traits that are 

otherwise concealed by sample heterogeneity and co-

regulated genes. The fact that MRs could predict 

clinical outcome, while MR pairs were differentially 

linked to opposite prognostic categories, prompted us to 

deduce that MR interactions have a significant, 

probably major, contribution to HCC pathogenesis. 

These findings may reconcile controversies on the 

prognostic importance of HCC biomarkers and devise 

an applicable way to subgroup patients based on MR 

interactions. 

 

In summary, our integrative analysis led to the 

discovery of many MRs with putative roles in HCC 

development and progression. Further, the present study 

offers information to define MRs as biomarkers for 

early stage diagnosis and to direct targeted therapeutics 

for HCC. 

MATERIALS AND METHODS 
 

HCC gene expression compendium  

 

The HCC compendium was constructed by collecting 21 

HCC-oriented datasets from six main microarray 

platforms (GPL570, GPL571, GPL3921, GPL96, 

GPL6244, and GPL10558) in Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/) (i.e., GPL570: 

GSE1898 and GSE4024, GPL571/3921: GSE14520, etc.). 

All the datasets used fresh frozen liver tissues. 

 

Raw data were uniformly aggregated and normalized 

using robust multi-array average (RMA) [51] or lumi 

package [52] according to the different platform. To 

ensure that the datasets generated from the six types of 

arrays are comparable, the ComBat batch correction 

method was performed to remove platform-specific 

effects [8]. Finally, 2,306 HCC gene expression 

profiles, including 1,316 tumor tissues (PT) and 990 

adjacent non-tumor tissues (NT), were compiled. Genes 

with multiple probesets were represented by the mean 

intensity across all samples. RNA-sequencing liver 

cancer (TCGA-LIHC) Level 3 gene expression data and 

clinical information were downloaded from the Cancer 

Genome Atlas data portal.   

 

HCC gene signature 

 

Differentially expressed genes between PT and NT 

were identified by limma package. FDR adjusted P < 

0.05 and an absolute fold change > 1.5 were used as 

cut-offs for analysis. Enrichment for biological 

functions or canonical pathways was assessed using 

DAVID [53] or Metascape [34]. ConsensusClusterPlus 

(CHC) was used to carry out consensus hierarchical 

clustering to identify subtypes [32], and consensus 

indices of each pair of samples were visualized in a 

consensus matrix. 

 

Network inference and MRA analysis 

 

R package RTN [11, 12] was used to reconstruct and 

analyze the regulatory network based on mutual 

information (MI), a measure that evaluates 

dependencies between two random variables. Briefly, 

the regulatory structure of the network is derived by 

mapping significant associations between a known TF 

and its potential targets. Interactions below a minimum 

MI threshold are eliminated by a permutation step and 

unstable interactions are further removed by bootstrap 

to create a consensus network. In a last step, the data 

processing inequality (DPI) algorithm is applied with 

null tolerance to eliminate interactions that are likely to 

be mediated by another TF. The RedeR package [54] 

was used to visualize the network. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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After network inference, master regulator analysis 

(MRA) was performed. The algorithm computes the 

statistical significance of the overlap between the 

regulon and the signatures (differentially expressed 

genes obtained from each study), corrected for multiple 

comparisons.  

 

Regulon activity and survival analysis 

 

Two-tailed gene set enrichment analysis (GSEA) was 

performed to calculate regulon activity with 1000 

permutations, as previously described [11, 12]. Briefly, 

the resultant regulon was split into two subgroups, 

positive targets (A) and negative targets (B), using 

Pearson correlation. Next, independent enrichment 

scores (ES) for each subgroup were tested by GSEA 

statistics in the ranked phenotype, with two enrichment 

distributions. Regulon activity, represented by 

differential enrichment score (dES=ESA-ESB), was thus 

computed. A highly positive dES implies that the 

regulon is induced, while a highly negative dES 

indicates that the regulatory unit is repressed, in the 

disease phenotype. The two-tail GSEA P-value cutoff 

was set to 0.05 and 1000 permutations were used. 

 

Survival analysis was performed using log-rank 

statistics. For stratified tests, patients were divided into 

three groups based on dES values: those with an active 

regulon (dES>0 and ESA>0 and ESB<0), those with a 

repressed regulon (dES<0 and ESA<0 and ESB>0), and 

a small group in which the dES values were around zero 

(inconclusive). The two large groups were further 

subdivided in half.  

 

Cell culture  

 

The liver cancer cell lines Huh7 and MHCC97-H were 

obtained from the Cell Bank of Chinese Academy of 

Sciences (Shanghai, China), and have been 

authenticated by STR DNA profiling. Cells were grown 

in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 100U/ml penicillin, 100μg/ml 

streptomycin and 10% fetal bovine serum. Cultures 

were performed at 37°C in a 5% CO2 atmosphere.  

 

Cell transduction  

 

Lentivirus production in HEK293T cells was performed 

as previously described [55]. MHCC97-H cells were 

infected with lentivirus expressing SEC14L2 at a 

multiplicity of infection (M.O.I.) of 5 in the presence of 

10 μg/ml polybrene (Sigma, USA) for 16 h, and selected 

using 2 μg/ml of puromycin (Sigma, USA) for one 

week. Stable control and SEC14L2-overexpressing 

MHCC97-H cells were obtained after verification of 

SEC14L2 expression by qPCR.  

Cell proliferation assays  

 

Cell proliferation was detected with CCK8 reagents 

(Dojindo, Japan). To evaluate colony formation, cells 

infected with lentivirus were cultured for 3 weeks, 

stained with gentian violet, and colonies with >50 cells 

were counted. Cell cycle distribution was analyzed 

using a cell cycle staining kit (Multisciences Biotech 

Co., China) and flow cytometry. The experiments were 

repeated at least three times.  

 

In vivo tumorigenicity  

 

Male athymic nude mice (4-5 weeks old) were 

purchased from Shanghai Laboratory Animal Co. Ltd 

(SLAC, China). Mice were injected subcutaneously 

with 5 × 106 MHCC97-H cells in 0.1 mL of serum-free 

DMEM. The left flank was implanted with control 

tumor cells whereas the right side was injected with 

SEC14L2-transduced tumor cells. Animal procedures 

were approved by Hangzhou Normal University’s 

Animal Care and Use Committee (Hangzhou, China).  

 

Statistics  

 

Bioinformatics analysis of microarray data was carried 

out in R (version 3.4.1) and statistical analysis of 

experimental results was performed using Prism 

GraphPad software (version 7). Unpaired Student’s t-

test was used to compute statistical significance, set at p 

< 0.05 unless specified. Data are presented as mean ± 

SEM. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Quality assessment of batch correction for microarray data merging. The bar chart shows the 
proportion of variation attributable to batch effects introduced from potential sources. All the effects, including batch and profile effects, 
interaction between batch and profile effects, and residual effects, were estimated for their contribution to the overall variation by PVCA. (A) 
Data before batch adjustment. (B) Data processed by ComBat as batch adjustment model. 

 

 
 

Supplementary Figure 2. HCC6 signature. (A) Clustering analysis based on expression data from 21 HCC-related datasets revealed a clear 

transcriptional homogeneity in the investigated samples. (B) GO and KEGG analysis of the HCC6 signature. 
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Supplementary Figure 3. Functional annotation of the ESR1 regulon. Red indicates the activated functions by ESR1 regulon. Blue 

indicates the repressed functions by ESR1 regulon. 

 

 

 

 

 

 

 



www.aging-us.com 12394 AGING 

 

 
 

 
 

 
 



www.aging-us.com 12395 AGING 

 
 

 
 

 



www.aging-us.com 12396 AGING 

 
 

 
 

 



www.aging-us.com 12397 AGING 

 
 

 
 

 



www.aging-us.com 12398 AGING 

 
 

 
 

 



www.aging-us.com 12399 AGING 

 
 

 
 

 



www.aging-us.com 12400 AGING 

 
 

 
 

 



www.aging-us.com 12401 AGING 

 
 

 
 

 



www.aging-us.com 12402 AGING 

 
 

 
 

 



www.aging-us.com 12403 AGING 

 
 

 
 

 



www.aging-us.com 12404 AGING 

 
 

 
 

 



www.aging-us.com 12405 AGING 

 
 

 
 

 



www.aging-us.com 12406 AGING 

 
 

 
 

 



www.aging-us.com 12407 AGING 

 
 

 
 

 



www.aging-us.com 12408 AGING 

 
 

Supplementary Figure 4. Prognosis relevance for identified MRs. 

 

 

 

 

 
 

Supplementary Figure 5. Regulon activity of SEC14L2: interaction with multiple NRs. (A) SEC14L2-AR interaction. (B) SEC14L2-

NR1I2 interaction. (C) SEC14L2-NR1I3 interaction. 
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Supplementary Figure 6. SEC14L2 overexpression significantly inhibited cell proliferation in Huh7 cells. (A) Proliferation (CCK-8) 

assay in Huh7 cells. (B) Colony formation assay and quantitative analysis. 
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Supplementary Tables 

 

 

Supplementary Table 1. HCC datasets used in this study. 

ID Brief introduction Platform No. of samples Note* 

GSE9843 Gene expression profiling of 91 hepatocellular 

carcinomas with hepatitis C virus etiology 

GPL570  91  

GSE55092 Viral Expression and Molecular Profiling in 

Liver Tissue versus Microdissected 

Hepatocytes in Hepatitis B Virus - Associated 

Hepatocellular Carcinoma 

GPL570 140 20 profiles from laser 

capture-microdissected 

(LCM) hepatocytes 

GSE62232 Large-scale gene expression profiling  of 81 

hepatocellular carcinomas 

GPL570 81  

GSE45267 Gene expression profiles of human 

hepatocellular carcinoma (training set 1) 

GPL570 87  

GSE45435 Gene expression profiles of human 

hepatocellular carcinoma (validation set) 

GPL570  31  

GSE6764 Genome-wide molecular profiles of HCV-

induced dysplasia and hepatocellular carcinoma 

GPL570 75 10 normal liver 

tissues;10 cirrhotic liver 

tissues;3 cirrhotic liver 

tissue from patients 

without HCC;10 low-

grade dysplastic liver 

tissues;7 high-grade 

dysplastic liver tissues 

GSE17548 Expression data from cirrhosis and HCC tissue 

samples 

GPL570  30  

GSE6222 Genome-wide analysis of gene expression 

patterns in human liver cancers 

GPL570 13 3 cell lines 

GSE40873 Low SLC22A7 expression in noncancerous 

liver promotes hepatocellular carcinoma 

occurrence - a prospective study 

GPL570 49 49 noncancerous liver 

tissues of HCC patients 

within Milan criteria 

GSE15765 Identification of cholangiocarcinoma-like gene 

expression traits in hepatocellular carcinoma  

GPL571 90 13 cholangiocarcinoma; 

7 combined 

hepatocellular 

carcinoma and 

cholangiocarcinoma 

GSE17967 RMA expression data for liver samples from 

subjects with HCV cirrhosis with and without 

concomitant HCC  

GPL571  63 47 cirrhosis 

GSE14520 Gene expression data of human hepatocellular 

carcinoma (HCC) 

GPL571;G

PL3921  

488  

GSE14323 RMA expression data for liver samples from 

subjects with HCV, HCV-HCC, or normal liver 

GPL96;GP

L571 

124 GPL571: 19 Normal;41 

cirrhosis; 17 

cirrhosisHCC; 12 HCC 

GSE35306 Combined hepatocellular-cholangiocarcinomas 

exhibit progenitor features and activation of 

Wnt and TGFbeta signaling pathways  

GPL6244  30 3 intrahepatic 

cholangiocarcinoma;20 

combined 

hepatocellular-

cholangiocarcinoma;7 

HCC 

GSE64041 Gene expression profiling in paired human 

hepatocellular carcinoma and liver parenchyma 

biopsies and normal liver biopsies.  

GPL6244  65 60HCC; 5 healthy liver 

biopsies 
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GSE36376 Gene Expression Profiles of both tumor and 

adjacent non-tumor liver Identify 

Hepatocellular Carcinoma Patients at High 

Risk of Recurrence after Curative Hepatectomy  

GPL10558 433  

GSE76427 Microarray expression data for tumor and 

adjacent non-tumor tissues from hepatocellular 

carcinoma patients 

GPL10558  167  

GSE39791 Hepatic regeneration gene expression signature 

predicts late recurrence of hepatocellular 

carcinoma 

GPL10558  144  

GSE43619 Activation of beta-catenin in hepatocellular 

carcinoma (HCC patients) 

GPL10558 88  

GSE57957 Expression profile of Hepatocellular 

Carcinoma 

GPL10558  78  

GSE60502 Gene expression profiling of 18 hepatocellular 

carcinoma and adjacent non-tumorous liver 

tissue 

GPL96  36  

*Gene expression profiles from cell lines, hepatocytes, and cholangiocarcinoma were excluded. 

 

 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 2. Differentially expressed genes in HCC6. 

 

Supplementary Table 3. MRA analysis on the filtered transcriptional network constructed for HCC6. 

 

Supplementary Table 4. HCC subtype-related MRs. 

 

Supplementary Table 5. HCC etiology-related MRs. 

 

Supplementary Table 6. Regulons: MRs and their targets. 

 

Supplementary Table 7. MR-based survival test. 

 

Supplementary Table 8. Summary of previous knowledge of MRs. 

 


