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ABSTRACT 
 

Understanding the bone and musculoskeletal system is essential to maintain the health and quality of life of 
our aging society.  Mesenchymal stem cells (MSCs) can undergo self-renewal and differentiate into multiple 
tissue types including bone. We demonstrated that BMP9 is the most potent osteogenic factors although 
molecular mechanism underlying BMP9 action is not fully understood.  Long noncoding RNAs (lncRNAs) play 
important regulatory roles in many physiological and/or pathologic processes. Here, we investigated the role of 
lncRNA Rmst in BMP9-induced osteogenic differentiation of MSCs.  We found that Rmst was induced by BMP9 
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INTRODUCTION 
 

Multipotent mesenchymal stem cells (MSCs) are able to 

self-renew and differentiate into different lineages, 

including osteocytes, chondrocytes, and adipocytes [1–6]. 

MSCs are attractive sources of progenitor cells in the field 

of stem cell biology and regenerative medicine [4, 7–10].  

The sequential events of osteogenic differentiation of 

MSCs  resemble  the processes occurring during bone 

development [11]. Although many signaling pathways, 

such as Wnt and Notch, can regulate osteogenic 

differentiation [3, 12–21], bone morphogenetic proteins 

(BMPs) are the most potent osteogenic factors [22–24].  

BMPs belong to the transforming growth factor β (TGF-β) 

superfamily [3, 22, 23, 25], and there are at least 15 

different BMPs identified in humans and rodents [22, 23, 

26].  By analyzing the 14 types of BMPs’ osteogenic 

activities, we found that BMP9 (also known as growth 

differentiation factor 2, or GDF2) is one of the most 

osteogenic BMPs in MCSs both in vitro and in vivo [22, 

24, 27–30], which may be at least in part explained by the 

fact that BMP9 is resistant to naturally occurring 

antagonist noggin [31]. We further demonstrated that the 

TGF-/BMP type I receptors activin receptor-like kinase 1 

(ALK1) and ALK2 are critical to BMP9 osteogenic 

signaling in MSCs [32].   

 

However, the exact molecular mechanisms through 

which BMP9 induces osteogenic differentiation of 

MSCs are not fully understood.  Deep sequencing has 

revealed that on average over 80% of the human 

genome is transcribed into RNA, while only less than 

2% of the human genome is transcribed into protein-

coding mRNA, leaving most of the RNA transcripts as 

noncoding RNAs (ncRNAs) [33–38].  Increasing 

evidence indicates ncRNAs, including long noncoding 

RNAs (lncRNAs), play important regulatory functions 

in normal and/or pathologic cellular processes [34–43].  

Knockdown of some lncRNAs in embryonic stem cells 

and somatic progenitor cells caused defective 

differentiation pathways [44–46]. It was shown that 

lncRNAs associated with chromatin-modifying 

complexes and transcription factors to maintain the 

stemness of pluripotent stem cells [44, 45]. In other 

cases, some lncRNAs were shown to act in cis to 

regulate gene expression during development [46–49]. 

Thus, abundant evidence has implicated lncRNAs in 

regulating stem cell differentiation. 

 

LncRNA Rmst was originally identified as a marker for 

the developing dopaminergic neurons in mouse [50] and 

has been shown indispensable for neurogenesis [45, 46]. 

Recent studies indicate that a trans-spliced tsRMST 

inhibited human embryonic stem cell differentiation 

[51], and RMST has been also implicated possessing a 

tumor suppressor role in triple-negative breast cancers 

[52, 53]. Thus, the biological functions of lncRNA 

Rmst remains largely elusive.   

 

In this study, we investigate the possible role of lncRNA 

Rmst in BMP9-induced osteogenic differentiation of 

MSCs. We find that Rmst is induced by BMP9 through 

the Smad signaling pathway. Silencing Rmst expression 

effectively diminishes BMP9-induced osteogenic, 

chondrogenic and adipogenic differentiation in vitro, and 

significantly attenuates BMP9-induced bone formation. 

Mechanistically, silencing Rmst expression in MSCs 

leads to a decreased expression of Notch receptors and 

ligands. Bioinformatic analysis reveals that Rmst may 

directly bind to eight Notch-targeting miRNAs, six of 

which are downregulated upon BMP9 stimulation. 

Silencing Rmst in MSCs restores and/or enhances the 

expression of four of the eight miRNAs. A constitutively 

active Notch signaling molecule NICD1effectively 

rescues the decreased osteogenic activity caused by Rmst 

silencing.  Collectively, our findings strongly suggest that 

the lncRNA Rmst-miRNA-Notch regulatory axis may 

play an important role in mediating BMP9 osteogenic 

signaling in MSCs. 

 

RESULTS 
 

lncRNA Rmst is induced by BMP9 in the 

intermediate early stage of osteogenic differentiation 

of mesenchymal stem cells (MSCs) 

 

We first examined if BMP9 has any effect of Rmst 

expression in MSCs. We then infected the iMADs 

through Smad signaling in MSCs. Rmst knockdown diminished BMP9-induced osteogenic, chondrogenic and 
adipogenic differentiation in vitro, and attenuated BMP9-induced ectopic bone formation. Silencing Rmst 
decreased the expression of Notch receptors and ligands. Bioinformatic analysis predicted Rmst could directly 
bind to eight Notch-targeting miRNAs, six of which were downregulated by BMP9. Silencing Rmst restored the 
expression of four microRNAs (miRNAs). Furthermore, an activating Notch mutant NICD1 effectively rescued 
the decreased ALP activity caused by Rmst silencing. Collectively, our results strongly suggest that the Rmst-
miRNA-Notch regulatory axis may play an important role in mediating BMP9-induced osteogenic differentiation 
of MSCs. 
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cells, an MSC line we previously characterized, with 

Ad-BMP9 or Ad-GFP control. Total RNA was 

collected at 1, 3, 5, 7, and 9 days post adenoviral 

infection and subjected to TqPCR analysis. We found 

that Rmst was significantly up-regulated at day 3 

(Figure 1A), which represents the intermediate early 

stage of osteogenic differentiation.  Furthermore, 

BMP9-induced Rmst expression was also observed in 

other MSC lines, including iMEFs and imBMSCs 

(data not shown).  

 

We seek to determine whether Rmst plays an 

important role in BMP9-induced osteogenic 

differentiation. Based on the transcriptomic 

arrangement of mouse Rmst, we designed three 

siRNAs targeting the Rmst transcript (Figure 1B), and 

constructed the recombinant adenovirus AdR-

simRmst. We further demonstrated that AdR-simRmst 

infected iMADs cells effectively and significantly 

suppressed endogenous Rmst expression in a time 

course-dependent fashion (Figure 1C).  

 

Silencing Rmst expression leads BMP9-induced 

expression of osteogenic, chondrogenic and 

adipogenic regulators and bone markers in MSCs 

 

As we previously showed that BMP9 can effectively 

induce tri-lineage (osteogenic, chondrogenic and 

 

 
 

Figure 1. BMP9-induced expression of lncRNA Rmst and construction of adenoviral vector-mediated siRNA knockdown of 
Rmst expression in MSCs. (A) BMP9 induces the expression of lncRNA Rmst in MSCs.  Subconfluent iMADs were infected with Ad-GFP or 

Ad-BMP9. At the indicated time points, total RNA was isolated and subjected to quantitative TqPCR analysis of Rmst expression. Gapdh was 
used as a reference gene. “**” p<0.001 when compared with Ad-GFP control group. Each assay condition was done in triplicate. (B) The 
transcriptomic arrangement of mouse lncRNA Rmst and the locations and sequences of three siRNA targeting sites are shown. (C) A 
recombinant adenoviral vector, called AdR-simRmst expressing the three siRNA sites, was constructed. To assess the Rmst knockdown 
efficiency, subconfluent iMADs were infected with AdR-simRmst or control Ad-GFP. At the indicated time point, total RNA was isolated and 
subjected to quantitative TqPCR analysis of Rmst expression. Gapdh was used as a reference gene. “**” p<0.001 when compared with Ad-
GFP control group. Each assay condition was done in triplicate. 
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adipogenic) differentiation in MSCs [22, 29, 30, 54], we 

tested whether silencing Rmst would impact the BMP9-

induced expression of these lineage-specific regulators in 

MSCs. When iMADs cells were infected with Ad-BMP9, 

osteogenic regulator Runx2 expression was significantly 

up-regulated at 36, 72 and 96 hours after infection, while 

Runx2 downstream target Osx was up-regulated at 96h 

time point (Figure 2A). However, co-infection of AdR-

simRmst effectively blunted BMP9-induced expression of 

both Runx2 and Osx (Figure 2A). Similarly, BMP9-

induced expression of chondrogenic regulator Sox9 and 

adipogenic regulator Pparγ was also effectively diminished 

by AdR-simRmst co-infection (Figure 2A), suggesting that 

Rmst may be an important mediator of BMP9-induced 

multiple-lineage differentiation of MSCs.  

 

We also analyzed the effect of silencing Rmst on early 

and late osteogenic markers. When Rmst was 

silenced, BMP9-induced early marker Alp expression 

was significantly inhibited at the three tested time 

points (Figure 2B). Similarly, the BMP9-induced 

expression of later stage osteogenic markers Opn, Ocn 

and Col1a1 was significantly blunted by silencing 

Rmst expression in MSCs (Figure 2B). Interestingly, 

even though BMP9 up-regulated Rmst expression at 

day 3 (Figure 1A), silencing Rmst in iMADs cells 

seemingly inhibited BMP9-induced expression of 

early and late osteogenic markers at as early as 36h. 

One possible explanation of such phenomenon is that 

Rmst may have a high basal level of expression, 

which could be important for normal osteogenic 

differentiation of MSCs.    

 

Rmst silencing inhibits BMP9-induced ALP activity, 

matrix mineralization and adipogenic differentiation 

in MSCs 

 

We examined the effect of Rmst knockdown on BMP9-

induced ALP activity, matrix mineralization and 

adipogenic differentiation of MSCs. The iMADs cells 

were effectively co-transduced by the adenoviral vectors, 

especially AdR-simRsmt and Ad-BMP9 (Figure 3A). 

Quantitative analysis indicated that BMP9-induced ALP 

activity was significantly blunted by Rmst knockdown in 

MSCs (Figure 3B). Similarly, the qualitative histochemical 

staining analysis demonstrated that BMP9-inudced ALP 

activity was effectively inhibited when co-infected with 

AdR-simRsmt at the three analyzed time points (Figure 

3C).  Moreover, we found that BMP9 induced robust 

matrix mineralization in MSCs, which was effectively 

inhibited when Rmst was silenced (Figure 3D).    

 

We next tested whether BMP9-induced adipogenic 

differentiation would be affected by silencing Rmst in 

MSCs. As expected, BMP9 induced robust adipogenic 

differentiation as demonstrated by Oil-Red O staining 

assay (Figure 3E). However, silencing Rmst in the 

iMADs cells caused a significant decrease in BMP9-

 

 
 

Figure 2. Silencing lncRNA Rmst expression reduces BMP9-induced expression of osteogenic, chondrogenic and adipogenic 
regulators and bone markers in MSCs. (A) Subconfluent iMADs were infected with Ad-BMP9 or Ad-GFP and AdR-simRmst. At the 
indicated time points, total RNA was isolated and subjected to TqPCR analysis with primers for mouse Runx2, Sox9, Osx, and Pparγ. Gapdh 
was used as a reference gene. “*” p<0.05 and “**” p<0.001 when compared with the Ad-GFP control group. Each assay condition was done 
in triplicate. (B) The cDNA samples prepared in (A) were further subjected to TqPCR analysis with primers for mouse Alp, Opn, Ocn and 
Col1a1.  Gapdh was used as a reference gene. “*” p<0.05 and “**” p<0.001 when compared with the Ad-GFP control group. Each assay 
condition was done in triplicate. 
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Figure 3. Knockdown of Rmst diminishes BMP9-induced osteogenic and adipogenic differentiation of MSCs. (A) AdR-simRmst 

was shown to infect the iMADs with high efficiency alone or co-infect with Ad-BMP9. Images were recorded at 48h post infection. 
Representative images are shown. (B and C) Downregulation of Rmst reduces BMP9-induced ALP activity in iMADs. Subconfluent iMADs were 
infected with Ad-BMP9, Ad-GFP, and/or AdR-simRmst. ALP activity was quantitatively determined at 3, 5 and 7 days after infection (B) or 
stained histochemically (C). Assays were done in triplicate. “*” p<0.05 and “**” p<0.001 when compared with the Ad-BMP9 alone group. 
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Representative images are shown. (D) Silencing Rmst leads to reduced matrix mineralization induced by BMP9 in iMADs. Subconfluent iMADs 
were infected with Ad-BMP9, Ad-GFP, and/or AdR-simRmst, and cultured in mineralization medium. At day 7 and day 14, the infected cells 
were fixed and subjected to Alizarin Red S staining. Each assay condition was done in triplicate. Representative microscope images are 
shown. (E) Downregulation of Rmst reduces BMP9-induced adipogenesis in iMADs. Subconfluent iMADs were infected with Ad-BMP9, Ad-
GFP, and/or Ad-simRmst. At 10 days post infection, the cells were fixed and subjected to Oil Red O staining. Each assay condition was done in 
triplicate. Representative microscopic images are shown. 

 

induced adipogenic differentiation (Figure 3E). Thus, 

these results indicate that Rmst may play an essential 

role in BMP9-induced multi-lineage differentiation of 

MSCs. 

 

Silencing Rmst expression attenuates the quantity 

and quality of BMP9-induced orthotopic bone 

formation in vivo 

 

We determined whether Rmst knockdown in MSCs 

would impact BMP9-induced bone formation in vivo. 

When the iMADs cells were co-infected with Ad-

BMP9, Ad-GFP, and/or AdR-simRstm and collected 

for subcutaneous injection into the flanks of athymic 

nude mice. Bony masses were successfully retrieved 

from both Ad-BMP9 and Ad-BMP9+AdR-simRmst 

groups at 4 weeks after implantation (Figure 4A) 

although no masses were detected in the Ad-GFP or 

AdR-simRmst group (data not shown). However, 

microCT analysis indicated that the average bone 

volume and mean bone density were significantly 

lower in the Ad-BMP9+AdR-simRmst group, 

compared with that of the Ad-BMP9 group (Figures 

4B–4D).  

 

Histologic evaluation further indicated that while BMP9 

induced the formation of a robust trabecular bone 

network, silencing Rmst expression significantly 

decreased BMP9-induced trabecular bone formation 

(Figure 4E panel a). Trichrome staining also showed 

that BMP9-induced mature, well-mineralized bone 

matrix was significantly diminished when Rmst 

expression was silenced (Figure 4E panel b).  Taken 

together, the above in vivo results strongly suggest that 

Rmst may play an important role in mediating BMP9-

induced osteogenic differentiation of MSCs.  

 

BMP9 regulates the expression of Rmst through 

Smad signaling 

 

To determine whether BMP9 regulates Rmst through 

the canonical Smad signaling pathway,  we performed 

bioinformatic analysis of  putative Smad4 binding motif 

sequences using JASPAR and identified representative 

position weight matrix for motif enriched in Smad4 

binding sites in ChIP-seq database (Figure 5A, panel a). 

Four putative Smad4 binding sites were identified 

within the 3kb promoter region of mouse Rmst (Figure 

5A, panel b).   

We next performed ChIP analysis using anti-Smad4 

antibody to pull down the Rmst promoter. In the semi-

quantitative PCR analysis, we found that Primer Pair 

(PP)-1 and PP-4 enriched most by anti-Smad4 antibody, 

compared with that of the control IgG, while PP-2 and 

PP-3 also exhibited significantly weak but detectable 

signals (Figure 5B).  To further test whether the Smad4 

binding was BMP9-dependent, we infected iMADs with 

Ad-BMP9 or Ad-GFP and performed the anti-Smad4 

ChIP assay as above, followed by quantitative PCR 

analysis to determine the enrichment of the detected 

four regions. We found that PP-1 and PP-4 fragments, 

to a much lesser extent PP-2, were significantly 

enriched upon BMP9 stimulation, while the proximal 

most PP-3 fragment was not enriched upon BMP9 

stimulation (Figure 5C). Taken together, the ChIP assay 

results suggest that BMP9 may directly regulate Rmst 

expression through Smad signaling in MSCs.  

 

Rmst modulates Notch signaling pathway by 

neutralizing a panel of Notch-targeting miRNAs in 

BMP9-induced osteogenic differentiation 

 

We further investigated how Rmst would fulfill its 

regulatory role in mediating BMP9 signaling. One of the 

most important functions of lncRNAs is to modulate, or in 

most cases, to sponge miRNA functions, and we recently 

found that lncRNA H19 can sponge out microRNAs that 

normally target Notch receptors and/or ligands [55]. As 

Notch signaling plays an essential downstream role in 

mediating BMP9 osteogenic signaling [56], we first 

analyzed whether the expression of Notch receptors 

and/or ligands would be impacted by silencing Rmst 

expression; and found that silencing Rmst expression in 

MSCs led to a decreased expression of Notch1, Jag1, 

Dll1, Dll3, and Dll4 (Figure 6A).  

 

Bioinformatic analysis indicates that Rmst may harbor 

multiple binding sites for eight Notch-targeting 

miRNAs (Figure 6B).  To determine whether these 

miRNAs were functionally relevant, we analyzed the 

expression of the eight miRNAs in MSCs upon BMP9 

stimulation, and found that six of them, miR-107, miR-

125a, miR-27b, miR-34a, miR-449a, and miR-449b, 

were significantly suppressed upon BMP9 stimulation 

(Figure 6C).  

 

To further confirm whether those miRNAs were 

functionally related to miRNAs, we analyzed the effect 
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of the miRNA expression when Rmst expression was 

silenced. We found that silencing Rmst increased the 

expression of miR-106, miR-125a, miR-449a and miR-

449b (Figure 6D), suggesting that these miRNAs may 

be directly sponged by Rmst.  

 

Lastly, we tested whether a constitutive activation of 

Notch signaling would rescue BMP9-induced 

osteogenic differentiation which was diminished by 

Rmst silencing.  When the iMADs were co-infected 

with Ad-BMP9, Ad-GFP, Ad-simRmst, and/or Ad-

NICD1, we found that exogenous expression of NICD1 

effectively prevented the decrease in ALP activity 

caused by Rmst silencing; and in fact significantly 

increased ALP activity determined at 3, 5 and 7 

days after infection (Figure 7A). Collectively, our 

results demonstrate that the Rmst-miRNA-Notch 

regulatory loop may play an important role in mediating 

BMP9-induced osteogenesis through Notch signaling. 

 

DISCUSSION 
 

Originally identified in developing mouse liver  

[29, 57], BMP9 has been shown to play important 

roles in many cellular processes, including induction 

of osteogenic differentiation, maintenance of basal 

forebrain cholinergic neurons, inhibition of  

hepatic glucose production, regulation of lipid  

metabolism and iron metabolism, and modulation of 

angiogenesis [29].  

 

 
 

Figure 4. Silencing Rmst expression attenuates BMP9-induced ectopic bone formation. Subconfluent iMADs were infected with 

Ad-BMP9, Ad-GFP, and/or AdR-simRmst for 30h and collected for subcutaneous injection into the flanks of athymic nude mice.  At 4 weeks 
after implantation, the mice were sacrificed and ectopic bone masses were retrieved. Representative macrographic images (A) and micro-CT 
isosurface images (B) are shown. No retrievable masses were found in the Ad-GFP or AdR-simRsmt alone group. The average bone volume (C) 
and mean bone density (D) were determined by analyzing micro-CT data using the Amira program. “*” p<0.05 and “**” p<0.001 Ad-BMP9 
group vs. Ad-BMP9+AdR-simRmst group. (E) Histologic evaluation and trichrome staining. The retrieved masses were processed and 
subjected to hematoxylin and eosin staining (a) and Masson’s trichrome staining (b). Representative images are shown.  
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Mechanistically, we identified several early downstream 

targets of BMP9 signaling, including the Notch 

downstream target Hey1 [29, 30, 58–63], and 

demonstrated BMP9 signaling extensively cross-talks 

with serval other signaling pathways, particularly Wnt 

and Notch signaling [30, 64–71]. Nonetheless, BMP9 is 

one of the least understood BMPs and thus many 

mechanistic aspects of BMP9 signaling remain to be 

fully understood. 

 

Here, we investigated the role of lncRNA Rmst in 

BMP9-induced osteogenic differentiation of MSCs.  

We found that Rmst was induced by BMP9 at the 

intermediate early stage of osteogenic differentiation. 

Silencing Rmst effectively diminished BMP9-

induced osteogenic, chondrogenic and adipogenic 

differentiation in vitro, and significantly attenuated 

the quantity and quality of BMP9-induced ectopic 

bone formation. ChIP analysis demonstrated that 

BMP9 induced Smad4 binding directly to the Rmst 

promoter region. Furthermore, we showed that 

silencing Rmst expression in MSCs led to a 

decreased expression of Notch1, Jag1, Dll1, Dll3, and 

Dll4. Bioinformatic analysis indicated that Rmst may 

directly bind to eight Notch-targeting miRNAs, six of 

which were downregulated upon BMP9 stimulation. 

Accordingly, the expression of four of the eight 

miRNAs can be restored or enhanced by silencing 

Rmst in MSCs; and that exogenous expression of 

NICD1 effectively rescued the decrease in ALP 

activity caused by Rmst silencing and in fact 

significantly increased ALP activity. 

 

Based our findings, we propose a working model 

depicting that the Rmst-miRNA-Notch regulatory loop 

may play an important role in mediating BMP9-induced

 

 
 

Figure 5. BMP9 regulates Rmst expression through Smad signaling pathway. (A) Bioinformatic prediction of putative Smad4 binding 

motif sequences using JASPAR. The representative position weight matrix for motif enriched in Smad4 binding sites by Chip-seq database (a). 
The sequences of putative binding sites and locations of PCR primer pairs are shown in (b). (B) ChIP analysis was performed with specific 
antibody for Smad4 in iMADs. Isotype matched IgG was used as a negative control. A whole cell extract (Input) was used as a positive control. 
(C) BMP9-induced binding of Smad4 to Rmst promoter. The iMADs were infected with Ad-BMP9 or Ad-GFP for 48h, and then subjected to 
anti-Smad4 ChIP pull-down as described in (B). RT-qPCR analysis was carried out to determine relative Smad4 promoter enrichment with 
different primer pairs. “*”, p<0.05, “**”, p<0.01, Ad-BMP9 group vs. Ad-GFP group. 
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osteogenesis through Notch signaling (Figure 7B). 

While BMP9 can induce osteogenic differentiation 

directly through Notch or other mediators, lncRNA 

Rmst provides an important delicate modulation of this 

process. The expression of Notch receptors and Notch 

ligands is normally suppressed by a panel of miRNAs. 

BMP9 induces lncRNA Rmst, which subsequently 

sponges out those Notch-targeting miRNAs, leading to 

the de-suppression of Notch signaling and facilitating 

bone formation.  The constitutive Notch activator 

NICD1 can bypass the Rmst-miRNA loop and directly 

activate Notch downstream events (Figure 7B). 

 

Mounting evidence implicates ncRNAs in many 

physiological and/or pathologic processes, including 

osteogenic differentiation from MSCs [34–43].  We 

have recently investigated the role of lncRNA H19 in 

BMP9-induced osteogenic signaling [55]. Our results 

 

 
 

Figure 6. Rmst modulates Notch signaling pathway by neutralizing a panel of Notch-targeting miRNAs in BMP9-induced 
osteogenic differentiation. (A) Silencing Rmst reduces the expression of most Notch receptors and ligands. Exponentially growing iMADs 
were infected with Ad-GFP and Ad-simRmst for 72h. Total RNA was isolated and subjected to qPCR analysis use primers for the indicated 
genes. Each qPCR assay condition was done in triplicate. Gapdh was used as a reference gene. “*”, p<0.05, “**”, p<0.01, AdR-simRmst group 
vs. Ad-GFP group. (B) Putative target sites on Rmst for several Notch-targeting miRNAs. (C) BMP9 suppresses the expression of Notch-
targeting miRNAs in MSCs. The iMADs were infected with Ad-GFP or Ad-BMP9 for 72h. Total RNA was isolated and subjected to TqPCR 
analysis. Each qPCR assay condition was done in triplicate. Gapdh was used as a reference gene. “*”, p<0.05, “**”, p<0.01, when Ad-BMP9 
group vs. Ad-GFP group. (D) Silencing Rmst restores the expression of several Notch-targeting miRNAs in MSCs. The iMADs cells were 
infected with Ad-GFP or AdR-simRmst for 72h. Total RNA was isolated and subjected to TqPCR analysis. Each qPCR assay condition was done 
in triplicate. Gapdh was used as a reference gene. “*”, p<0.05, “**”, p<0.01, when AdR-simRmst group vs. Ad-GFP group. 
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strongly suggest that the Notch signaling-associated 

miRNAs (e.g., miR-107, miR-27b, miR-106b, miR125a 

and miR17) may be modulated by H19 in response to 

BMP9 stimulation in MSCs [72–75].  Thus, our 

previous findings demonstrate that H19-miRNA-Notch 

regulatory loop may play an important role in mediating 

BMP9 osteogenic signaling in MSCs.  

 

LncRNA Rmst was originally identified as a novel 

marker for mouse developing dopaminergic neurons, 

the dorsal midline cells of anterior neural tube, and the 

isthmic organizer [50]. It’s been recently shown that 

Rmst is indispensable for neurogenesis by binding to 

SOX2 promoter regions of neurogenic transcription 

factors, thus functioning as a transcriptional co-

regulator of SOX2 [45, 46].  RMST orthologs, from 

human to frog, are highly conserved at their promoter 

regions, first exons, and splice sites [45, 46, 50, 76].  

Silencing RMST in ReN-VM NSCs and H9-derived 

neural progenitors prevented neuronal differentiation 

[46], causing cells alternatively adopting a glia fate 

[45]. Conversely, RMST overexpression in human 

neural progenitors increased neuronal marker 

expression and a larger percentage of TUJ1- Expressing

 

 
 

Figure 7. A constitutive activation of Notch signaling rescues BMP9-induced ALP activity that is diminished by Rmst silencing. 
(A) Subconfluent iMADs were co-infected with Ad-BMP9, Ad-GFP, Ad-simRmst, and/or Ad-NICD1. Quantitative measurement of relative ALP 
activity was determined at 3, 5 and 7 days after infection. Assays were done in triplicate. “*”, p<0.05, “**”, p<0.01, when Ad-BMP9+Ad-
simRmst group vs. Ad-BMP9+Ad-NICD1+Ad-simRmst group. (B) A working model for the role of Rmst-miRNA-Notch regulatory loop in 
mediating BMP9-induced osteogenesis through Notch signaling. While BMP9 can induce osteogenic differentiation directly through Notch or 
other mediators, lncRNA Rmst provides an important delicate modulation of this process. The expression of Notch receptors and ligands is 
normally suppressed by a panel of miRNAs. BMP9 induces lncRNA Rmast, which subsequently sponges out those Notch-targeting miRNAs, 
leading to the de-suppression of Notch signaling and facilitating bone formation.  The constitutive Notch activator NICD1 can bypass the 
Rmst-miRNA loop and directly activate Notch downstream events. 
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neurons [46]. Interestingly, it was shown that RMST 

silencing protected against middle cerebral artery 

occlusion-induced ischemic stroke [77].  Another recent 

study reported that a trans-spliced tsRMST impeded 

human embryonic stem cell differentiation through 

WNT5A-mediated inhibition of the epithelial-to-

mesenchymal transition (EMT) [51]. RMST has been 

also implicated in a tumor suppressor role in triple-

negative breast cancers [52, 53]. It has been recently 

demonstrated that the dominant isoform of lncRNA 

Rmst is in circular RNA form [78].  Thus, our 

understanding about the biological functions of lncRNA 

Rmst is just a beginning. 

 

In summary, we study the role of Rmst in BMP9 

osteogenic signaling in MSCs.  We demonstrate that Rmst 

is induced by BMP9 through Smad signaling at the 

intermediate early stage of osteogenic differentiation. 

Silencing Rmst expression effectively diminishes BMP9-

induced osteogenic, chondrogenic and adipogenic 

differentiation in vitro, and significantly attenuates the 

quantity and quality of BMP9-induced ectopic bone 

formation. Mechanistically, silencing Rmst expression in 

MSCs leads to a decreased expression of Notch receptors 

and ligands. Bioinformatic analysis reveals that Rmst may 

directly bind to eight Notch-targeting miRNAs, six of 

which are downregulated upon BMP9 stimulation.  

Silencing Rmst in MSCs restores and/or enhances the 

expression of four of the eight miRNAs. A constitutively 

active Notch signaling molecule NICD1effectively rescues 

the decreased osteogenic activity caused by Rmst 

silencing.  Collectively, our findings strongly suggest that 

the lncRNA Rmst-miRNA-Notch regulatory axis may 

serve as critical mediator of BMP9-induced osteogenic 

differentiation of MSCs. 

 

 

MATERIALS AND METHODS 
 

Cell culture and chemicals 

 

HEK-293 cells were obtained from American Type 

Cell Collection (ATCC). HEK-293 derivatives 

293pTP and RAPA cell lines overexpressing human 

Ad5 pTP and/or E1 genes were previously described 

[79, 80].  The conditionally immortalized mouse 

multipotent adipose-derived cells iMADs were 

previously described [81]. All cell lines were 

maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum 

(Sigma-Aldrich, St Louis, MO, USA), containing 100 

U/ml penicillin and 100 mg/ml streptomycin at 37°C 

in 5% CO2 as described [82–86]. Unless indicated 

otherwise, all other chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO, USA) or Thermo 

Fisher Scientific (Waltham, MA, USA). 

Construction of recombinant adenoviruses Ad-

BMP9, Ad-GFP, Ad-simRmst and Ad-NICD1 

 

Recombinant adenoviruses were generated using the 

AdEasy technology as described [87–89]. The Ad-

BMP9 was previously described [54, 56, 62, 69, 90, 

91]. Briefly, the coding region of human BMP9 and 

the intracellular domain (NICD1) of human NOTCH1 

were PCR amplified and subcloned into an adenoviral 

shuttle vector, and used to generate recombinant 

adenoviral vector, resulting in pAd-BMP9, pAdR-

NICD1, which were subsequently used to generate 

recombinant adenoviruses in 293pTP or RAPA cells 

[55, 56, 70]. Ad-BMP9 also co-expresses enhanced 

green fluorescent protein (GFP), while AdR-NICD1 

co-expresses monomeric red fluorescent protein 

(RFP). Ad-GFP was used as a mock virus control 

[92–94].  

 

For the construction of siRNA expressing adenovirus, 

the three most optimal siRNA sites against mouse 

lncRNA Rmst were first selected using Dharmacon’s 

siDESIGN and/or Invitrogen’s BLOCK-iT RNAi 

Designer programs. The three siRNA cassettes were 

then constructed by Gibson Assembly into an 

adenoviral shuttle vector pAdTrace-OK, i.e., the three 

siRNA sites were engineered into the single vector,  

as described in our previously reports [95, 96]. The 

resultant shuttle vector pAdTrace-simRmst was used 

to recombine with the adenoviral backbone vector, 

resulting in pAdR-simRmst, which was subsequently 

used to generate recombinant adenovirus AdR-

simRmst. AdR-simRmst virus co-expresses RFP as 

well.  For all adenoviral infections, polybrene (8 

µg/ml) was added to enhance infection efficiency as 

previously described [97].  

 

Total RNA isolation and touchdown quantitative 

Real-Time PCR (TqRCR) analysis 

 

The cells were subjected to varied treatments. At the 

indicated time points, total RNA was isolated using the 

TRIZOL Reagent (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s instructions and 

subjected to reverse transcription reactions using 

hexamer and M-MuLV Reverse Transcriptase (New 

England Biolabs, Ipswich, MA, USA) as previously 

described [98–102]. The cDNA products were diluted 

20- to 50-fold and used as PCR templates. The qPCR 

primers were designed by using the Primer3 Plus 

program [103]. The quantitative PCR analysis was 

carried out using our previously optimized TqPCR 

protocol [104]. Briefly, the 2x SYBR Green qPCR 

reactions (Bimake, Houston, TX) were set up according 

to manufacturer’s instructions. The cycling program 

was modified by incorporating 4 cycles of touchdown 
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steps prior to the regular cycling program. Gapdh was 

used as a reference gene. All sample values were 

normalized to Gapdh expression by using the 2-∆∆Ct 

method. The qPCR primer sequences are listed in 

Supplementary Table 1. 

 

Alkaline phosphatase (ALP) assays 

 

ALP activities were assessed quantitatively with a 

modified assay using the Great Escape SEAP 

chemiluminescence assay kit (BD Clontech) and/or 

histochemical staining as described previously [67, 68, 

105]. Briefly, osteogenic marker ALP activity was 

assessed at 3, 5, and 7 days after adenovirus infection. 

For the histochemical staining, the cells were fixed with 

0.05% glutaraldehyde at room temperature for 10 min. 

After being washed with PBS, cells were stained with a 

mixture of 0.1 mg/mL of napthol AS-MX phosphate 

and 0.6 mg/mL of Fast Blue BB salt for 20 minutes. 

The stained cells were washed with PBS and recorded 

using a bright field microscope.  

 

For the chemiluminescence assay, the cells were lysed by 

the Cell Culture Lysis Buffer (Promega, Madison, WI). 

Then 5μl of cell lysate, 5ul of substrate (BD Clontech) and 

15μl of the Lupo Buffer were mixed well under a light-

proof condition and incubated at room temperature for 20 

minutes, followed by chemiluminescence reading. Each 

assay condition was performed in triplicate. The results 

were repeated in at least three independent experiments. 

ALP activities were normalized by total cellular protein 

concentrations among the samples. 

 

Matrix mineralization assay (Alizarin red S staining) 

 

The iMADs cells were seeded in 24-well cell culture 

plates, infected with the indicated adenoviruses and 

cultured in the presence of ascorbic acid (50 mg/ml) and 

β-glycerophosphate (10mM). At the indicated time points, 

mineralized matrix nodules were stained for calcium 

precipitation by means of Alizarin Red S staining as 

described [31, 106–108]. Briefly, cells were fixed with 

2.5% glutaraldehyde for 10 minutes. After being washed 

with PBS, cells were incubated with 2% Alizarin Red S at 

room temperature for 30 minutes, followed by washing 

with acidic PBS (pH 4.2). The staining of calcium mineral 

deposits was recorded under a bright field microscope. 

Each assay condition was performed in triplicate. 

 

Oil Red O staining assay 

 

Exponentially growing cells were plated onto 24-well 

culture plates and infected with different adenoviruses. 

Oil Red O staining was performed at 10 days post-

infection as described [54, 64, 91]. Briefly, cells were 

fixed with 10% formalin at room temperature for 10 

min, followed by washing with PBS. The fixed cells 

were stained with freshly prepared Oil Red O solution 

(six parts saturated Oil Red O dye in isopropanol plus 

four parts water) for 60 minutes at room temperature, 

followed by washing with PBS. The staining of lipid 

droplets was recorded under a bright field microscope. 

Each assay condition was performed in triplicate. 

 

Subcutaneous stem cell implantation and ectopic 

bone formation 

 

All animal use and care in this study followed the 

approved by the Institutional Animal Care and Use 

Committee (IACUP protocol #71108). All experimental 

procedures were carried out in accordance with the 

approved guidelines. Subcutaneous iMADs cell 

implantation procedure was performed as described 

[109–111]. Briefly, the iMADs cells were infected with 

different adenoviruses for 30h, the cells were harvested, 

resuspended in sterile PBS (80µl each injection), and 

injected subcutaneously into the flanks of athymic nude 

mice (Envigo/Harlan Research Laboratories; n=5/group, 

female, 5-6 week old; 2×106 cells per injection site). 

The animals were maintained ad lib in the biosafety 

barrier facility. At 4 weeks after implantation, the mice 

were euthanized, and the implantation sites were 

retrieved for μCT imaging and histologic evaluation. 

 

Micro-computed tomographic (μCT) analysis 

 

The retrieved specimens were fixed in 10% formalin 

and imaged using the micro-CT (μCT) component of 

the GE triumph (GE Healthcare, Piscataway, NJ, USA) 

trimodality preclinical imaging system. All image data 

were analyzed by Amira 5.3 (Visage Imaging, Inc.), and 

3-D volumetric data and bone density were determined 

as previously described [62, 66, 112].  

H & E staining and Masson's trichrome staining  

 

After being imaged, the retrieved tissues were fixed 

with 10% buffered formalin, decalcified and embedded 

in paraffin. Serial sections at 5μm of embedded 

specimens were carried out, and mounted onto treated 

slides. Then the sections of the embedded specimens 

were stained with hematoxylin and eosin (H & E). H & 

E staining and Masson’s trichrome staining were done 

as described [69, 81]. 

 

Chromatin immunoprecipitation (ChIP) analysis 

 

ChIP assay was carried out as previously described [61, 

64, 113]. Approximately 5×106 cells were used for each 

ChIP assay, and each assay condition was done in 

duplicate. Briefly, the iMADs cells were infected with 

Ad-BMP9 or Ad-GFP for 36h. The cells were 

crosslinked with 1% formaldehyde for 10 minutes and 
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quenched by 125mM glycine (final concentration). 

Cells were lyzed and collected in lysis buffer (50mM 

HEPES/KOH, pH7.5; 1mM EDTA; 150mM NaCl; 1% 

Triton X-100; 0.1% SDS; 0.1% sodium deoxycholate) 

containing proteinase inhibitors (Roche, Indianapolis, 

IN), and subjected to sonication to shear genomic DNA 

into 500-1,000bp fragments. The sonicated lysate was 

centrifuged at 15,000x g at 4°C for 10 minutes to 

remove insoluble debris. One-third of the lysate was 

incubated with 5M NaCl at 65°C to reverse the cross-

linking, followed by phenol-chloroform extraction and 

ethanol precipitation, and kept at -80°C as an input 

control for PCR analysis. The remaining two-thirds of 

the lysate were subjected to immunoprecipitation using 

Smad4 antibody (Santa Cruz Biotechnology) or mouse 

IgG at 4°C overnight, and then incubated with Protein G 

beads for 4 hours at room temperature. Immuno-

precipitants were sequentially washed with lysis buffer 

twice, followed by washing once with wash buffer 

(lysis buffer with 0.5 M NaCl). After the final wash, 

200µl of elution buffer (50 mM Tris-HCl, 10 mM 

EDTA, pH 7.5, 1% SDS) was added and rotated at 

room temperature for 15 min to elute the protein/DNA 

complexes. NaCl (5 M) was added to the recovered 

eluent mix and incubated at 65°C for 4h to reverse the 

formaldehyde cross-linking, incubated with RNase A 

for 30 minutes at 37°C, and Proteinase K for 1h at 

45°C. The DNA was extracted with phenol-chloroform, 

ethanol precipitated, and resuspended in double-distilled 

water for semi-quantitative PCR analysis and TqPCR 

analysis. 

 

Statistical analysis 

 

All quantitative studies were carried out in triplicate 

and/or performed in three independent batches. 

Microsoft Excel program (Redmond, WA, USA) was 

carried out to calculate standard deviation (S.D.). 

Statistically significant differences between samples 

were determined by one-way analysis of variance. A 

value of p<0.05 was considered statistically significant 

when one comparison was being made. 
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Supplementary Table 1. List of qPCR Primers. 

Genes/Transcript 
qPCR Primer sequences 

Accession Number 
Forward Reverse 

mouse Rmst CCACAGAGTCGGCTGCAA TTCACCGGCAAGGCAGAG NR_028262 

mouse Opn CCTCCCGGTGAAAGTGAC CTGTGGCGCAAGGAGATT NM_001204201.1 

mouse Ocn CCTTCATGTCCAAGCAGGA GGCGGTCTTCAAGCCATAC NM_001032298.3 

mouse Runx2 CCGGTCTCCTTCCAGGAT GGGAACTGCTGTGGCTTC NM_001146038 

mouse Osx GGGAGCAGAGTGCCAAGA TACTCCTGGCGCATAGGG NM_130458.3 

mouse Alp CCCCATGTGATGGCGTAT CGGTAGGGAGAGCACAGC  NM_001287172.1 

mouse Col1a1 GAGCGGAGAGTACTGGATCG GCTTCTTTTCCTTGGGGTTC NM_007742.3 

mouse Sox9 CACCTGTGCCTCTCAGAACA TGAGGAAAGCTCCAACAACC  NM_011448.4 

mouse Pparγ GAAGCCGTGCAAGAGATCA ATGAATCCTTGGCCCTCTG NM_011146.3 

mouse Gapdh ACCCAGAAGACTGTGGATGG CACATTGGGGGTAGGAACAC NM_008084.3 

mouse Notch1 CCCGCATTCCAACATCTC GGTCCTGCATCCCACATC NM_008714.3 

mouse Notch2 AGCAGGAGGGGCAGGTAG GGTTCGCTCAGCAGCATT  NM_010928.2 

mouse Notch3 CTGGCTCCAGATGCCTGT GGGGACAGCACCTCACAC NM_008716.2 

mouse Notch4 CCGTCCTGGTTTCACAGG GACTTCCGTCAGGGCAGA NM_010929.2 

mouse Jagged1 CCAACACGGTCCCCATTA TTGGCAAAGCGGACTTTC NM_013822.5 

mouse Jagged2 CACGCTGGCATGATCAAC TGTTGCAGGTGGCACTGT NM_010588.2 

mouse Dll1 CCGGTTTGTGTGTGACGA CCAGGGTCGCACATCTTC NM_007865.3 

mouse Dll3 GGGCTTCGATGTGAGGTG GAAACCAGGTGGGCAATG NM_007866.2 

mouse Dll4 GGGCCTTCCTTCTGCATT ACTCTTGGCGGGTTCACA NM_019454.3 

mmu-miR-106b CCTGCTGGGACTAAAGTGCT TACCCACAGTGCGGTAGC NR_029658.1 

mmu-miR-107 TCAGCTTCTTTACAGTGTTGCC AGCCCTGTACAATGCTGCT NR_029783.1 

mmu-miR-125a CCCTTTAACCTGTGAGGACGT GGCTCCCAAGAACCTCACC  NR_029539.1 

mmu-miR-17 CAAAGTGCTTACAGTGCAGGT GTGCCCTCACTGCAGTAGA NR_029785.1 

mmu-miR-27b AGGTGCAGAGCTTAGCTGA GCCACTGTGAACAAAGCGG NR_029531.1 

mmu-miR-34a TGGCAGTGTCTTAGCTGGT CAATGTGCAGCACTTCTAGGG NR_029751.1 

mmu-miR-449a TGTGATGGCTTGGCAGTGT TTAGCTGGTGCCGCTCAC NR_029961.1 

mmu-miR-449b AGACTCGGGTAGGCAGTGT GTGGCAGGGTAGCTGTGG NR_030602.1 

 

 


