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INTRODUCTION 
 
Prostate cancer (PCa) is the leading nondermatological 
cancer and the second most common cause of cancer 
death among men in the western countries [1]. The 
primary treatment for metastatic PCa is androgen 
deprivation therapy (ADT). However, the tumors in 
most PCa patients become refractory to androgen 
deprivation treatment, and ultimately progress to 
androgen-independent prostate cancer (AIPC) [2].  
 
Docetaxel (Doc), which was approved by the US FDA In 
2014, remains the first- line  chemotherapeutic  agent  for  

 

eligible patients with symptomatic AIPC [3]. AIPC 
patients taking Doc often achieve clinical remission with 
prolongation of life [4–6]. As a chemotherapy drug, Doc 
stabilizes microtubule structure by binding β-tubulin, 
thereby inhibiting DNA, RNA and protein synthesis, and 
thus impairing cell division [7, 8]. However, the efficacy 
of Doc is limited by chemoresistance. About 50% of 
patients respond poorly to Doc therapy, and some who 
initially respond well eventually exhibit Doc resistance 
[9–11]. It is therefore of major scientific and clinical 
interest to understand the mechanism underlying 
development of Doc resistance and to identify novel 
therapeutic targets for the treatment of AIPC. 
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ABSTRACT 
 
Docetaxel is a first-line anticancer drug widely used in the treatment of advanced prostate cancer. However, its 
therapeutic efficacy is limited by its side effects and the development of chemoresistance by the tumor. Using a 
gene differential expression microarray, we identified 449 genes differentially expressed in docetaxel-resistant 
DU145 and PC3 cell lines as compared to docetaxel-sensitive controls. Moreover, western blotting and 
immunohistochemistry revealed altered expression of S100A4, ACKR3 and CDH1in clinical tumor samples. 
Cytoscape software was used to investigate the relationship between critical proteins and their signaling 
transduction networks. Functional and pathway enrichment analyses revealed that these signaling pathways 
were closely related to cellular proliferation, cell adhesion, cell migration and metastasis. In addition, ACKR3 
knockout using the crispr/cas9 method andS100A4knockdownusing targeted shRNA exerted additive effects 
suppressing cancer cell proliferation and migration. This exploratory analysis provides information about potential 
candidate genes. It also provides new insight into the molecular mechanism underlying docetaxel-resistance in 
androgen-independent prostate cancer and highlights potential targets to improve therapeutic outcomes. 
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Microarray technology has provided a wealth of 
functional information to investigate and identify novel 
targets for diagnosis of tumor progression [12, 13], while 
expression profile analysis can reveal primary genes 
associated with PCa development and resistance to 
chemotherapy [14]. In the present study, we used these 
tools with the Doc-resistant transcriptome microarray to 
identify genes differentially expressed between Doc-
resistant prostate cancer cell lines and Doc-sensitive 
controls. The differentially expressed genes (DEGs) 
identified were then used for functional and pathway 
enrichment analyses. In addition, we used shRNA-
mediated selective knockdown of S100A4 to investigate 
the synergistic effects of S100A4 silencing combined 
with ACKR3 knockout on PCa cell proliferation and 
migration. Our aim with all of these studies was to find 
better therapeutic strategies that overcome Doc resistance 
and enhance sensitivity to this chemotherapeutic drug.  
 
RESULTS 
 
Docetaxel sensitivity testing and DEGs in Doc-
resistant PCa 
 
Cultured in increasing concentrations of Doc, at different 
time point, IC50 of DU145 and PC3 cells was determined 
by MTT assay. Results demonstrated that Doc decreased 
cell proliferation in a time and dose-dependent manner. 
The highest cytotoxicity of Doc was at 72h, and IC50 is 
20nmol/L for the PCa cells (Figure 1A and 1B). To 
identify genes differentially expressed between Doc-
resistant PCa cells (DU145R and PC3R) and their Doc-
sensitive controls, threshold |logFC| >1 and P<0.05 were 
used as criteria for comparison. A total of 1719 DEGs 
were identified in DU145R cells, while 1970 DEGs were 
identified in PC3R cells (Figure 1C and 1D). TPMID: he 
top DEGs in DU145R and PC3R were presented in 
Supplementary Tables 1 and 2. Among those, 830 
(DU145R) or 1208 (PC3R) were downregulated, and 889 
(DU145R) or 762(PC3R) were upregulated. Comparison 
of the DEGs between two Doc-resistant cell lines revealed 
they shared 216 downregulated and 88 upregulated genes 
(Figure 1E and 1F). Thereafter, the overlapping DEGs 
were clustered to differentiate the Doc-resistant cells from 
their parental Doc-sensitive cells. From the overlapping 
DEGs, we found that S100A4 and ACKR3were 
dramatically upregulated while CDH1 was downregulated 
in both Doc-resistant cell lines. The heatmap of the 
overlapping DEGs is shown in Figure1G. 
 
Functional annotation of overlapping DEGs 
 
The top five GO biological process terms associated with 
the overlapping upregulated and downregulated DEGs 
were involved in the response to hypoxia, cell migration, 
endothelial cell morphogenesis, regulation of cell 

proliferation and blood vessel remodeling (Figure 2A). In 
terms of cellular components, the DEGS were mostly 
associated with the lateral plasma membrane, cell surface 
and extracellular exosome (Figure 2B). Molecular 
function analysis indicated that the overlapping DEGs 
were mainly enriched in histone acetyltransferase 
binding, double-stranded RNA binding and CD4 receptor 
binding (Figure 2C). Subsequent KEGG pathway 
enrichment analysis revealed that the overlapping DEGs 
were primarily enriched in the rap1 signaling pathway 
and pathways involving cancer and cell adhesion 
molecules (Figure 2D). The top 5 enriched terms are 
presented in Table 1. These results suggest that the 
overlapping upregulated genes are mainly enriched in the 
regulation of cell proliferation and the TGF-signaling 
pathway, and that expression of S100A4 and ACKR3 is 
dramatically increased (Figure 2E to 2I). The expression 
patterns of S100A4 were also evaluated by qRT-PCR in 
Doc-sensitive (n=6) vs Doc-resistant (n=6) tumor 
samples from clinical PCa patients [Supplementary 
Figure 1A] as well as the cells of DU145, DU145R, PC3 
and PC3R [Supplementary Figure 1B and 1C]. Results 
are consistent with the microarray data. The overlapping 
downregulated genes were mainly associated with 
regulation of cell migration. CDH1 expression, in 
particular, was markedly decreased (Figure 2G and 2J). 
 
Modular analysis and pathway identification with 
PPI networks 
 
To further identify the core genes contributing to Doc 
resistance, protein-protein interaction (PPI) networks 
were generated using significant DU145R and PC3R 
proteins (Figure 3A and 3B). To characterize the 
properties of the hub nodes based on analysis of the PPI 
network, we initially selected first-stage nodes 
associated with the core proteins S100A4, ACKR3, and 
CDH1 to identify candidate Doc-resistant PCa markers 
(Figure 3C and 3D). These consisted of 106 nodes and 
556 edges in the DU145R network, and109 nodes and 
672edges in the PC3R network. Functional annotation 
and pathway analysis of the nodes in the two networks 
are displayed in Table 2. After performing EPC (Edge 
Percolated Component) and shortest path analyses, the 
most significant modules composed of 10 nodes were 
screened out from the PPI networks, and the hub genes 
in the networks with a connectivity degree >16 were 
identified (Figure 3E and 3F). Comparison of the hub 
genes between the two Doc-resistant cell lines revealed 
CXCL8, CXCR4 and CDH1 to be common to both. 
 
Validation of overlapping DEGs 
 
To validate the microarray data, a panel of 18 DEGs 
randomly selected from DU145R and PC3R cells were 
compared to their respective controls using qRT-PCR
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Figure 1. Cell viability of PCa cells treated with different concentrations of Doc, volcano plots and Venn diagrams of DEGs. (A) 
DU145 cells treated with different concentrations of Doc; (B) PC3 cells treated with different concentrations of Doc. Viability of DU145 and 
PC3 cells was determined by MTT assay. Error bars = SEM (n = 6). (C and D) Volcano plots of DEGs from DU145R and PC3R compared with 
their parent cell lines respectively. X-axes show the fold changes (log-scaled), and Y-axes indicate p values (log-scaled). Red and green dots 
represent upregulated and downregulated genes, respectively. Grey dots represent non-DEGs. (E and F) VennPlots for the downregulated 
and upregulated DEGs. (G) Heatmap of DEGs overlapping between the DU145R and PC3R datasets. Red represents higher expression and 
green lower expression. The criteria used to select DEGs were P<0.05 and |log2 (fold-change)|>1. DEGs, differentially expressed genes. 
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Figure 2. GO and KEGG analysis of overlapping DEGs, expression levels of three critical genes. (A–C) GO analyses. Shown are the 
top 10 biological processes (A), cellular components (B), and molecular functions (C). (D) KEGG pathway analysis. (E–G) Expression levels of 
S100A4, ACKR3 and CDH1 in Doc-resistant PCa cells (DOC-R) and Doc-sensitive controls (DOC-S). (H–J) Comparison of gene expression levels 
between Doc-resistant and Doc-sensitive cells. *P < 0.05, **P <0.01, ***P < 0.001. 
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Table 1. GO functional and KEGG pathway enrichment analysis of DEGs. 

ID Terms Count PValue Genes 

Biological process 

GO:0001666 response to hypoxia 7 1.49E-06 EGR1, CXCR4, CD24, CITED2, DDIT4, TGFB2, 
MB 

GO:0016477 cell migration 8 1.74E-06 HES1, TNS3, STYK1, FYN, CD24, THBS1, 
SDC2, TGFB2 

GO:0001886 endothelial cell 
morphogenesis 3 1.05E-03 MET, HEG1, STC1 

GO:0042127 regulation of cell 
proliferation 5 5.76E-03 PLA2G4A, STYK1, FYN, CXCL8, TGFB2 

GO:0001974 blood vessel remodeling 3 6.65E-03 EPAS1, SEMA3C, TGFB2 

Cellular components 

GO:0016328 lateral plasma membrane 3 2.23E-02 CLDN7, CLDN1, CDH1 

GO:0009986 cell surface 6 4.46E-02 SLC1A3, CXCR4, IGSF3, MET, AREG, SDC2 

GO:0070062 extracellular exosome 18 1.34E-01 LAD1, ASS1, PDLIM2, LGALS8, CDH1, 
CLDN11, LAT2, TFRC, SMPDL3B, PLSCR4, … 

GO:0005737 cytoplasm 23 1.71E-01 EGR1, TXNIP, IFIH1, HTATIP2, EPAS1, SOCS2, 
ASS1, KIF5C, UPP1, PDLIM2, … 

GO:0005615 extracellular space 10 7.44E-02 
PTHLH, SMPDL3B, TGFBR3, CXCL8, 

SEMA3C, STC1, AREG, THBS1, QSOX1, 
TGFB2 

Molecular functions 

GO:0035035 histone acetyltransferase 
binding 3 2.74E-03 EGR1, EPAS1, CITED2 

GO:0003725 double-stranded RNA 
binding 3 1.25E-02 IFIH1, DDX60, RFTN1 

GO:0042609 CD4 receptor binding 2 1.38E-02 PLSCR4, FYN 
GO:0001948 glycoprotein binding 3 1.41E-02 FYN, CDH1, THBS1 
GO:0004386 helicase activity 3 2.34E-02 IFIH1, DDX60, HELLS 
KEGG pathyways 
bta04015 Rap1 signaling pathway 5 3.72E-03 MET, LPAR3, CDH1, THBS1, DOCK4 

bta05200 Pathways in cancer 8 3.27E-03 EPAS1, CXCR4, MET, CXCL8, LPAR3, PTCH1, 
CDH1, TGFB2 

bta04514 Cell adhesion molecules 
(CAMs) 5 7.17E-03 CLDN7, CLDN1, CDH1, CLDN11, SDC2 

bta05219 Bladder cancer 3 1.71E-02 CXCL8, CDH1, THBS1 

bta05205 Proteoglycans in cancer 5 1.83E-02 MET, PTCH1, THBS1, SDC2, TGFB2 

 

(Figure 4A and 4B). The results showed that most of 
these genes had transcriptional profiles similar to those 
revealed in the microarray data. The Pearson correction 
coefficient between the microarray and qRT-PCR data 
for the 18 DEGs was 0.87. Thus, the microarray 
provided a reliable comparison of gene expression 
between Doc-resistant and Doc-sensitive prostate 
cancer. Receiver operating characteristic (ROC) 
analysis was then performed for S100A4, ACKR3, and 

CDH1. The areas under the ROC curves (AUC) for 
these three genes all indicated expression values of the 
microarray analysis for Doc-resistant PCa cell lines. 
The AUC for S100A4, ACKR3, and CDH1 were 1.000, 
0.9688 and 0.9844, respectively (P<0.01, Figure 4C to 
4E). Linear correlations among these genes are shown 
in Figure 4F to 4H. We also used a validation dataset 
containing 599 patients from TCGA to verify the 
correlation between the three genes. It showed that there 
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Table 2. The pathways enriched around the hub node in the PPI networks. 

ID Terms Count PValue Genes 
DU145R 

hsa04514 Cell adhesion molecules (CAMs) 9 6.52E-04 
ALCAM, NCAM1, ICAM1, OCLN, 

CADM1, CD274, CDH1, ITGB2, SDC2 

hsa04670 Leukocyte transendothelial 
migration 8 1.63E-03 ICAM1, OCLN, RAC2, CXCR4, MAPK13, 

ITGB2, PIK3R3, VAV1 

hsa05200 Pathways in cancer 13 2.77E-03 
BMP4, PLD1, EPAS1, STK36, MET, CDH1, 
SMAD2, TGFB2, IGF1R, RAC2, JUN, FAS, 

PIK3R3 

hsa04650 Natural killer cell mediated 
cytotoxicity 8 3.23E-03 ICAM1, RAC2, ITGB2, FAS, PIK3R3, 

NFATC2, VAV1, SYK 

hsa04664 Fc epsilon RI signaling pathway 6 5.58E-03 
PLA2G4A, RAC2, MAPK13, PIK3R3, 

VAV1, SYK 

hsa04062 Chemokine signaling pathway 9 5.89E-03 RAC2, ADCY9, CXCR4, CXCL2, GNB5, 
GNG11, CXCL6, PIK3R3, VAV1 

hsa04370 VEGF signaling pathway 5 2.41E-02 PLA2G4A, RAC2, MAPK13, PIK3R3, 
NFATC2 

hsa04510 Focal adhesion 8 2.78E-02 
IGF1R, RAC2, JUN, MET, ITGB3, PIK3R3, 

THBS1, VAV1 
hsa04350 TGF-beta signaling pathway 5 3.88E-02 BMP4, PPP2CA, SMAD2, THBS1, TGFB2 

hsa04010 MAPK signaling pathway 9 4.17E-02 PLA2G4A, RAC2, MAPK13, JUN, MRAS, 
FAS, NFATC2, CACNA2D2, TGFB2 

PC3R 

hsa04012 ErbB signaling pathway 10 9.66E-06 EGFR, CBLC, EREG, ERBB3, BTC, 
CAMK2B, AREG, EGF, NRG2, SRC 

hsa04060 Cytokine-cytokine receptor 
interaction 14 2.76E-04 

EGFR, CXCL1, CXCL5, IL6R, IL15, 
CXCL6, IL7R, TGFB2, KDR, VEGFB, 

IL23A, CXCR4, FAS, EGF 

hsa05200 Pathways in cancer 14 7.37E-04 
EGFR, FGF18, FGFR1, PTGS2, SKP2, 

BRCA2, FGF13, CDH1, BIRC3, STAT1, 
TGFB2, VEGFB, FAS, EGF 

hsa04144 Endocytosis 11 7.37E-04 EGFR, CBLC, EPN3, CXCR4, ERBB3, 
EGF, IQSEC1, SRC, SH3GL2, F2R, KDR 

hsa04630 Jak-STAT signaling pathway 9 3.53E-03 
CBLC, SPRY2, IL23A, SOCS2, JAK2, 

IL6R, IL15, IL7R, STAT1 

hsa04514 Cell adhesion molecules (CAMs) 7 2.02E-02 OCLN, CD274, CDH1, VCAN, ITGB2, 
CDH3, SDC2 

hsa04520 Adherens junction 5 3.63E-02 EGFR, FGFR1, FYN, CDH1, SRC 

hsa04510 Focal adhesion 8 4.47E-02 EGFR, VEGFB, FYN, EGF, BIRC3, 
THBS1, SRC, KDR 

hsa04810 Regulation of actin cytoskeleton 8 6.03E-02 EGFR, FGFR1, FGF18, CHRM3, FGF13, 
ITGB2, EGF, F2R 

hsa04010 MAPK signaling pathway 9 6.83E-02 EGFR, DUSP5, FGFR1, FGF18, FGF13, 
FAS, EGF, NFATC2, TGFB2 

is an inverse correlation between S100A4 and CDH1 
expression, but a positive correlation between S100A4 
and ACKR3, which is consistent with the analysis of the 
GSE33455 datasets. 

Western blot and IHC analyses 
 
Expression of S100A4, ACKR3, and CDH1 proteins in 
tumor samples from Doc-resistant and Doc-sensitive 
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Figure 3. PPI networks constructed using the DEGs from microarray data. (A) Network of significant proteins from DU145R cells. (B) 
Network of significant proteins from PC3R cells. (C) Network derived from panel A with first-stage nodes associated with the core proteins 
S100A4, ACKR3 and CDH1. (D) Network derived from panel B with first neighbors associated with the core proteins S100A4, ACKR3 and CDH1. 
(E) Significant hub proteins extracted from network C. (F) Significant hub proteins extracted from network D. Red and green intensities 
indicate the degree of upregulation and downregulation, respectively. 
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PCa patients was detected by western blotting and IHC. 
Upregulated expression of S100A4 and ACKR3 was 
detected in Doc-resistant tumor samples (Figure 5A and 
5B). The elevated S100A4 and ACKR3 levels were 
detected predominantly in the cytosol and/or at the 
plasma membranes of cells in Doc-resistant tumors, 
while only weak expression of the two proteins was 
detected in Doc-sensitive tumors (Figure 5C and 5D). 
On the other hand, CDH1 was markedly downregulated 

in Doc-resistant tumor samples as compared to Doc-
sensitive controls (Figure 5E). In addition, the effect of 
S100A4, ACKR3, and CDH1 expression on overall 
survival (OS) was assessed using the TCGA-prostate 
adenocarcinoma (PRAD) dataset (Figure 5F to 5H). 
Kaplan-Meier curves compared using log-rank tests 
showed that patients highly expressing S100A4 or. 
ACKR3 had significantly shorter OS, whereas the level 
of CDH1 expression had no significant impact on OS. 

 

 

 

Figure 4. Validation of DEGs identified in the microarray analysis. (A and B) qRT-PCR analysis of 18 DEGs in Doc-resistant DU145R 
and PC3R smples. (C–E) ROC curves for S100A4, ACKR3 and CDH1 in the microarray. (F–H) Correlation between the expression levels among 
S100A4, ACKR3 and CDH1. Expression data are represented by a log ratio calculated by comparing ΔCq from the DOC-R samples with ΔCq 
from the controls. ΔCq was calculated as the difference between Cq of the targeted genes and Cq of the endogenous control gene ACTB. 
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Figure 5. Detection of S100A4, ACKR3 and CDH1 protein expression in Doc-R PCa samples, Kaplan‑Meier curves of OS in 
patients from TCGA-PRAD. (A) Western blots for S100A4, ACKR3 and CDH1 in DU145R and PC3R cells. (C–E) Immunostaining for S100A4, 
ACKR3 and CDH1 in representative samples of Doc-R tumor tissue from PCa patients. (F–H) Kaplan-Meier analysis of OS among patients in 
TCGA-PRAD dataset exhibiting high or low S100A4, ACKR3, or CDH1 expression.  



www.aging-us.com 12763 AGING 

ACKR3 knockout combined with S100A4 silencing 
synergistically inhibits Doc-resistant PCa cell 
viability and migration 
 
To better understand the effect of upregulated S100A4 
and ACKR3 expression on Doc-resistant PCa cell 
viability and migration, ACKR3 was knocked out using 

the crispr/cas9 method in DU145R and PC3R cells 
and/or S100A4 expression of knocked down through 
transfection of targeted shRNA. After confirming the 
diminished expression of ACKR3 and S100A4 by 
western blotting (Figure 6A and 6B), MTT and SYTOX 
Green analysis were used to evaluate cell proliferation 
Wound healing assay was performed to assess cell

 

 
 

Figure 6. Cell viability and migration effects after treatment with ACKR3 knockout and/or S100A4 knockdown. Western blots 
(A) ACKR3 knockout and (B) S100A4 knockdown. (C) Photomicrographs of DU145R and PC3R cells 48 h after ACKR3 knockout and/or S100A4 
knockdown. (D and E) Relative viability rates among DU145R and PC3R cells after 24, 48 and 72 h under the indicated treatment condition. 
Viability among control cells was assigned a value of 100%. (F) Photomicrographs of migration of Doc-resistant DU145R and PC3R cells in 
wound healing assays 48 h after ACKR3 knockout and/or S100A4 knockdown. (G and H) Relative quantification of migration in wound healing 
assays under the indicated treatment condition. Migration of control cells was assigned a value of 100%. *P < 0.05, **P <0.01, ***P < 0.001. 
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migration. The results showed that ACKR3 knockout or 
S100A4 knockdown was sufficient to reduce Doc-
resistant PCa cell viability (p<0.05, Figure 6C to 6E, 
Supplementary Figures 2 and 3). Moreover, combining 
the two treatments elicited a synergistic inhibitory 
effect, reducing DU145R and PC3R cell viability to 
38% and 31% of control, respectively (p<0.01). The 
combined treatments also significantly decreased cell 
migration as compared to control (p<0.01, Figure 6F 
and 6H). These observations are consistent with the idea 
that ACKR3 and S100A4 overexpression contribute to 
the progression of AIPC. 
 
DISCUSSION 
 
PCa is a heterogeneous disease that is a major health 
concern for men worldwide. A variety of approaches 
have been taken to elucidate the mechanism(s) 
underlying its development and to identify new 
therapeutic and prognostic targets [15–17]. Although 
chemotherapy is an important treatment for AIPC, its 
benefits are often limited by its side effects and the 
emergence of drug resistance. Genome-wide analysis 
has proven to be successful in a variety of experimental 
settings, and has the potential to reveal the dynamic 
molecular behavior ongoing during tumor progression 
[18]. Results of the gene expression profile analysis of 
the microarray data reported here reveal the DEGs 
shared by two Doc-resistant PCa cell lines and establish 
their association with various genetic networks and 
signaling pathways. ACKR3, S100A4, CDH1, CXCR4, 
and CXCL8 were identified as DEGs in both DU145R 
and PC3R cells. Moreover, they act as hubs in various 
PPI networks, indicating their potentially significant 
roles. CDH1 and CXCL8 were found to be down-
regulated in both DU145R and PC3R cells. On the other 
hand, levels of CXCR4 expression were upregulated in 
PC3R cells, but downregulated in DU145R cells. CDH1 
(E-cadherin) is a calcium-dependent adhesion molecule 
that plays key roles in cell growth and differentiation, 
morphological changes, and apoptosis in normal cells 
and tissues [19–21]. E-cadherin promotes epithelial cell 
adhesion, formation of stable intercellular connections, 
and maintenance of tissue structure and function [22]. 
Downregulation of E-cadherin expression can reduce 
the adhesive force between tumor cells, enabling cells 
to detach from the primary tumor, and increasing their 
invasive and metastatic potential [23, 24]. Nevertheless, 
we did not find a significant correlation between E-
cadherin expression and OS in PCa patients. 
 
We found that levels of ACKR3 and S100A4 
expression were markedly increased in patients with 
AIPC. Moreover, Kaplan-Meier analysis showed their 
increased expression to be associated with poor OS. 
ACKR3, also known to as CXCR7, is an atypical 

chemokine receptor that belongs to the G protein-
coupled receptor (GPCR) superfamily. Considerable 
evidence indicates that GPCRs do not operate as 
isolated proteins, but interact with other proteins that 
influence their trafficking and signal transduction 
properties within the plasma membrane [25–27]. 
ACKR3 is upregulated in a variety of pathological 
conditions related to infection, inflammation, and 
ischemia [28]. Altered expression of ACKR3 has also 
been detected in liver, prostate, kidney, and breast 
cancers [29, 30]. Several in vivo and in vitro studies 
have found that high levels of ACKR3 expression 
promote cell proliferation, invasive migration, tumor 
growth, and metastasis [31–33]. Higher expression of 
ACKR3 is also associated with poorer outcomes in 
terms of disease-free survival, and there is a positive 
correlation between high ACKR3 levels and cancer cell 
metastasis [34]. Several studies describe an association 
among the ACKR3-CXCR4 axis, disease progression 
and poor OS among cancer patients [35–38].  
 
S100A4 belongs to the S100 family of EF hand 
calcium-binding proteins and has been shown to 
promote metastasis in a model system of breast cancer 
[39]. Given the heterogeneous properties of Doc-
resistant PCa, investigation of the role of S100A4 in 
different PCa cell lines remains of great interest. Our 
study demonstrated that levels of S100A4 expression 
are significantly higher in Doc-resistant DU145R and 
PC3R cells than in their Doc-sensitive controls, which 
was consistent with the previous report [40]. The 
increased expression of S100A4 correlated positively 
with PCa progression, which was consistent with 
observations in other tumor types [41], and with poorer 
OS among patients. Like ACKR3, therefore, S100A4 
may also play a key role in Doc-resistant PCa cell 
growth, invasion, and metastasis. 
 
To further investigate the influence of S100A4 and 
ACKR3 on Doc-resistant PCa cell function, we 
combined ACKR3 knockout with S100A4 knockdown 
in DU145R and PC3R cells. We found that suppression 
of ACKR3 and S100A4 have synergistic inhibitory 
effects on Doc-resistant PCa cell viability and 
migration. ACKR3 is reportedly activated via β-
arrestins and directly promotes Akt and MAPK activity, 
ERK phosphorylation, and activation of the 
JAK2/STAT3 pathway [42]. There is controversy 
regarding the involvement of ACKR3 in chemotaxis, 
with some reporting that ACKR3 itself is sufficient to 
induce migration of different cell types [43, 44], while 
others report indicated that S100A4 correlates with 
cancer development and plays an important role in 
cancer pathogenesis and metastasis [45]. Thus, the 
functions of ACKR3 and/or S100A4 in PCa progression 
await further clarification. 
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In summary, our findings demonstrate for the first time 
that ACKR3 and S100A4 are over expressed in Doc-
resistant PCa. These two mediators exert synergistic 
effects that contribute to PCa progression and are 
predictive of a poor prognosis in patients with Doc-
resistant PCa. Because the molecular mechanisms 
underlying the effects of ACKR3 and S100A4 in Doc-
resistant PCa remain largely unknown, further studies 
exploring their mechanisms of action are needed. 
Nevertheless, we believe that our study is a valuable 
addition to the current research into PCa and provides 
additional perspective on AIPC. 
 
MATERIALS AND METHODS 
 
Cell treatments  
 
The DU145 and PC3 human PCa cell lines were 
purchased from the American Type Culture Collection 
(ATCC; Manassas, Virginia USA). Cells were cultured 
at 37°C under 5% CO2 in Dulbecco's modified Eagle’s 
medium supplemented with10% fetal calf serum and 
1% penicillin streptomycin (Gibco). Doc was purchased 
from R&D Systems, Sigma-Aldrich, and Enzo Life 
Science. Confluent cells were treated with Doc (1, 10, 
20, 50 or 100nmol/L) for 24 h, 48 h and 72 h, 
respectively. Cells viability was measured by MTT 
assay. To generate Doc-resistant cells, DU145 and PC3 
cells (1×106 respectively) were incubated with 
docetaxel (10 nmol/L) for 24 hours, then Doc was 
removed and cells were incubated in complete DMEM 
medium. Cells were treated again immediately after cell 
growth was recovered. The total cycles of treatment 
were 20 with the time period of 6 months [46, 47].  
 
Gene expression profile datasets and DEG 
identification   
 
The resultant Doc-resistant DU145R and PC3R cells 
compared with their respective controls DU145 and 
PC3were used for affymetrix microarray. Total tumor 
RNA was extracted using Trizol reagent (Takara, Dalian, 
China) and concentrations were determined by a 
spectrophotometer (NanoDrop, Nyxor Biotech). All the 
processes were carried out according to the 
manufacturers’ instructions. Enrichment of total RNA 
from samples was carried out using the RNeasy Micro kit 
(Qiagen, Germantown, MD, USA), and samples’ quality 
and quantity were assessed on a spectrophotometer. 
Hybridization was performed in Affymetrix Human 
Genome U133Plus2.0 array. CEL files in different 
databases were converted to expression measures and 
normalized using the affypackage in R [48]. The DEGs 
were subsequently calculated using the Limma package, 
based on the Benjamini and Hochberg procedure [49]. 
Genes differentially expressed between Doc-resistant and 

Doc-sensitive samples were defined using threshold 
|logFC| >1 and P<0.05 was used as criteria for 
comparison. Venn diagrams were generated using the 
VennDiagram R package. 
 
GO and KEGG pathway analysis of DEGs 
 
DAVID (Database for Annotation, Visualization and 
Integrated Discovery http://david.abcc.ncifcrf.gov/) [50, 
51] was used for Gene Ontology (GO) enrichment 
analysis. The DEGs in the Doc-resistant DU145 and 
PC3 human PCa cell lines were screened for functional 
enrichment. GO analysis was used to predict the degree 
of enrichment and the potential functions of the DEGs 
in biological processes, cellular components and 
molecular functions. In addition, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis was used for systematic analysis of differences 
in gene functions. The false discovery rate, or q‑value, 
was adjusted to 0.05, and P<0.05 was considered the 
cut-off criterion. 
 
Western blot analysis 
 
Preparation of total cell lysates and the procedures for 
western blot analyses was essentially as described by 
Day et al [52]. Protein samples were separated on 10% 
polyacrylamide resolving gels and transferred onto 
nitrocellulose membranes for 2h at 250 mA. After 
incubating the membranes for 1h at 25°C in 5% (w/v) 
Marvel/PBS/3% (v/v) Tween-20 (PBST) to block 
nonspecific protein binding, the membranes were 
incubated overnight at 4°C with ACKR3, CDH1 and 
S100A4monoclonal antibodys (1:1000 dilution; 
Invitrogen, California, USA). The membranes were 
then washed three times for 10 min each in TBST and 
incubated for1h at 25°C with horseradish peroxidase-
conjugated secondary antibody (Amersham Life 
Sciences, Buckinghamshire, UK). After another three 
10-min washes in PBST, bands were detected using 
enhanced chemiluminescence (ECL+ reagents, 
Amersham). Densitometric quantification of band 
intensities was performed using Kodak one-dimensional 
image analysis software. 
 
Gene validation using qRT-PCR 
 
A panel of 18 randomly selected DEGs compared with 
their respective controls was evaluated using 
quantitative real-time PCR performed by QPK-201 
SYBR Green master mix (Toyobo, Osaka, Japan) and 
an ABI 7300 system from Applied Biosystems. The 
primers used were obtained from Invitrogen (Beijing 
China). The thermocycling protocol entailed an RT step 
at 50°C for 20 min, followed by a DNA polymerase 
activation step at 95°C for 2 min and 50 PCR cycles 

http://david.abcc.ncifcrf.gov/
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(95°C for 20 s, 60°C for 30 s). All reactions were 
conducted in triplicate. The fold-change in expression 
of each gene was calculated using the comparative CT 
method. Expression data are represented by a log ratio 
calculated by comparing ΔCq from the Doc-resistant 
samples with ΔCq from the controls. ΔCq was 
calculated as the difference between Cq of the targeted 
genes and Cq of the endogenous control gene ACTB. 
 
Cell viability assay 
 
The Doc-resistant DU145R and PC3R cells were 
transfected with S100A4-targeted shRNA (sh-S100A4) 
(Invitrogen, Shanghai, CN) and/or ACKR3 was stably 
knocked out using the crispr/cas9 method. Cell viability 
was assessed by incubating the cells in 100 μl/well 
MTT solution (0.5 mg/mL in PBS) for 3 h (at 37°C, 
protected from light), after which the supernatants were 
carefully removed and 150 μl of DMSO were added to 
each well. The cells were then shaken for 10 min in the 
dark. Absorbance was measured at 450 nm using a 
Microplate Reader (Bio-Rad 680). The cell proliferation 
and cytostatic rates were analyzed using GraphPad 
Prism 4. Untreated cells were used as controls. 
 
Immunocytochemistry 
 
Immunohistochemistry (IHC) was carried out with 4-μm-
thick sections of formalin-fixed, paraffin-embedded, Doc-
resistant and Doc-sensitive tumor tissues from patients 
who had received transurethral prostatic resection before 
the start of Doc treatment. Following deparaffinization 
and rehydration of the tissue sections, antigen retrieval 
was performed by microwaving in 10 mM citrate buffer 
(pH 6.0). Primary anti-S100A4 antibody (Beijing 
Zhongshan Golden Bridge Biotechnology Co., Ltd., 
Beijing, China) was applied at 1:50 dilution. Peroxidase-
conjugated, anti-rabbit secondary antibody was then 
applied at 1:500 dilution. The labeling was visualized 
using diaminobenzidine (DAB), and sections were 
counterstained with hematoxylin. After mounting, the 
sections were observed under an Olympus BX51 
microscope at a magnification of 200×. At least four 
sections of tumor tissue were used for quantitative IHC.  
 
Wound healing assay 
 
To assess the effect of ACKR3 knockout and/or 
S100A4 knockdown on PCa cell motility, DU145Rand 
PC3R cells were transfected for 4hwith S1004A-
targeted shRNA or non-targeting control shRNA 
(Invitrogen, Shanghai, CN) and/or ACKR3 was 
knocked out using the crispr/cas9 method. For scratch 
assays, DU145R or PC3R cells (1×106 cells per well) 
were seeded into 6-well plates and grown to 70% 
confluency, after which they were washed in sterile 

phosphate buffered saline (PBS) and ACKR3 was 
knocked out and/or S100A4 was knocked down as 
indicated above. The cells were then treated with 20 
nmol/L Doc before the cell monolayer was physically 
wounded by scratching the surface with a pipette tip 
(1000 µl) as uniformly and straight as possible. Images 
of cells invading the scratch were then captured 0, 8, 16, 
24 and 48 h later using a phase contrast microscope (IX 
70 Olympus Optical Co., Germany). The pictures were 
evaluated by measuring the areas of the wounds using a 
Leica image analysis system (Leica, Mannheim, 
Germany). Migration rates, expressed as percent scratch 
closure, were calculated using the following formula: % 
scratch closure= a-b/a, where “a” is the initial distance 
between edges of the wound, and “b” is the distance 
remaining cell-free during cell migration to close the 
wound. The experiments were repeated at least two 
times in triplicate wells. 
 
Statistical analysis 
 
All statistical analyses were carried out using SPSS 18.0 
software. Data are shown as the mean± SD. Two-tailed 
Student’s t-tests were used to assess differences between 
means. Values of P<0.05 were considered significant.  
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 

 
 

Supplementary Figure 1. Expression patterns of S100A4 were evaluated by qRT-PCR. (A) Samples from clinical PCa patients. (B) 
DU145 vs DU145R. (C) PC3 vs PC3R. 
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Supplementary Figure 2. Cell viability of DU145R after treatment with ACKR3 knockout and/or S100A4 knockdown. Cell 
viability was measured at 48 h of treatment and measured by sytox assay, 488 and 530 nm wavelengths were used for excitation and 
emission, respectively. *P < 0.05, **P <0.01, ***P < 0.001. 

 

 
 

Supplementary Figure 3. Cell viability of PC3R after treatment with ACKR3 knockout and/or S100A4 knockdown. Cell viability 
was measured at 48 h of treatment and measured by sytox assay, 488 and 530 nm wavelengths were used for excitation and emission, 
respectively. *P < 0.05, **P <0.01, ***P < 0.001. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and  2. 
 
Supplementary Table 1. Top DEGs in DU145R. 

Supplementary Table 2. Top DEGs in PC3R.  


