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INTRODUCTION 
 
Ovarian cancer (OC) is a deadly disease that affects 
women globally. The worldwide incidence of OC is 
currently 225,500 new diagnoses each year [1–2]. High-
grade OC generally grows rapidly, metastasizes early, 
and has a very aggressive disease course and high rate 
of chemotherapy resistance [3]. Thus, metastasis and 
resistance represent major hurdles that must be over-
come. Cancer expands clonally and originates from a 
single clonal state; this expansion is accompanied by 
genetic changes that lead to functional differences, 
resulting in different stages and characteristics of 
tumour development [4–5]. 

 

Copy number variations (CNVs) are DNA fragments 
ranging in size from 1 kilobase (kb) to several megabases 
(Mb) that arise due to duplication or deletion events. A 
growing number of studies have reported that CNVs are 
correlated with the genetic and phenotypic diversity of 
tumours and are frequently associated with the activation 
of oncogenic drivers or the deletion of tumour suppressor 
factors [6–9]. Previous studies using either conventional 
metaphase chromosome-based comparative genomic 
hybridization [10–11] or array-based high-resolution 
genomic technology to identify genome-wide CNVs in 
OC [12–19] have identified regions of frequently 
increased copy number along chromosomes 1, 3, 7, 8, 17 
and 20 and reduced copy number along chromosomes 1, 
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ABSTRACT 
 
Ovarian cancer (OC) metastasis presents major hurdles that must be overcome to improve patient outcomes. 
Recent studies have demonstrated copy number variations (CNVs) frequently contribute to alterations in 
oncogenic drivers. The present study used a CytoScan HD Array to analyse CNVs and loss of heterozygosity 
(LOH) in the entire genomes of 6 OC patients and human OC cell lines to determine the genetic target events 
leading to the distinct invasive/migratory capacities of OC. The results showed that LOH at Xq11.1 and Xp21.1 
and gains at 8q21.13 were novel, specific CNVs. Ovarian cancer-related CNVs were then screened by 
bioinformatics analysis. In addition, transcription factors-target gene interactions were predicted with 
information from PASTAA analysis. As a result, six genes (i.e., GAB2, AKT1, EGFR, COL6A3, UGT1A1 and 
UGT1A8) were identified as strong candidates by integrating the above data with gene expression and clinical 
outcome data. In the transcriptional regulatory network, 4 known cancer-related transcription factors (TFs) 
interacted with 6 CNV-driven genes. The protein/DNA arrays revealed 3 of these 4 TFs as potential candidate 
gene-related transcription factors in OC. We then demonstrated that these six genes can serve as potential 
biomarkers for OC. Further studies are required to elucidate the pathogenesis of OC. 
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4, 13, 16, 18 and X. In addition, many high-level 
amplifications have been identified as predictive bio-
markers, and numerous patient cohort studies have 
allowed clinicians to accurately characterize genetic 
changes that predict clinical outcomes [19–20] and 
precisely compare the genetic alterations between primary 
and metastatic lesions [15] or histotype-specific OC [21].  
 
In the present study, we carried out an integrated analysis 
of ovarian cancer using, for the first time, a newly 
developed, high-resolution genome-wide CNV targeted 
array to identify CNV-driven genes with bioinformatic 
tools. The identified CNV-related differentially expressed 
genes may contribute to the distinct invasive/migratory 
capacities of OC and serve as potential biomarkers that 
can improve the accuracy of clinical interpretations and 
the effectiveness of therapeutics for OC.  
 
RESULTS 
 
Comparisons of CNV and LOH frequency between 
metastatic OC and normal ovarian epithelial tissues  
 
All 4 samples showed chromosomal aberrations. There 
were, on average, 38.75 chromosomal arm aberrations 
per specimen among the ovarian tumours and 40.5 
aberrations per specimen among the normal tissues 
(P<0.05). There were ≥40 chromosomal arm aberrations 
in 100% (20/20) of the normal tissues and 25% (1/4) of 
the ovarian tumours. There was a similar percentage of 
LOH between the two groups (Table 1). 
 
The genome-wide distributions of CNVs are shown in 
Figure 1. Most of the imbalances in both groups 
involved LOH. Recurrent, common genomic 
aberrations between the two groups were observed at 
several chromosomal intervals. Most notably, CNVs at 
7q, 8q, 9q, 12q, 13q, 14q, 16q, 18q, 20q, Xp and Xq 
were observed in the two groups. The most common 
CNV regions in the OC samples compared with the 
normal samples involved both LOH regions, including 
Xq11.1 and Xp21.1, and amplifications, including 
8q21.13, 8q11.21, and 8q23.3. Of these regions, the 
LOH at Xq11.1 and Xp21.1 and gains at 8q21.13 were 
novel, specific CNVs. 
 
Validation of the CNV data in HO-8910 and HO-
8910PM cell lines 
 
To verify the different biological behaviours of the 
cellular models in vitro, a cell migration assay was 
performed. The results showed that the migration 
distances of the HO-8910PM and HO-8910 cell lines at 
24 h were significantly different, with distances of 
189.22 ± 6.56 µm and 102.31±4.35 µm, respectively (t 
= 17.91, p <0.01) (Figure 2A). The difference in the 

number of cells permeating the septum between the 
HO-8910PM (60.21 ±1.78 cells) and HO-8910 
(42.79±2.35 cells) groups was significant (t = 25.95, p < 
0.01) (Figure 2B). 
 
In the HO-8910 versus HO-8910PM comparison, 
although the CNVs of both HO-8910 and HO-8910PM 
cells overlapped significantly, large regions differed 
between the two subclones. Segments of gain at 1p36.11, 
1p34.3, 1p33, 1p32.1, 1q23.1, 1q32.3, 2q35, 3p26.2, 
5p12, 8q21.13, 10p11.1, 10q23.33, 12q23.1, 12q23.3, 
12q24.32, 17q12 and 20q12 appeared only in HO-
8910PM cells (named “HO-8910PM-specific gain”), 
whereas segments of loss at 1p36.13, 1p13.3, 1q25.1, 
2q22.3, 2q23.1, 2q24.2, 4q12, 5p12, 5q31.3, 6q16.2, 
8q22.1, 8q24.11, 10p12.32, 10p12.1, 10p11.23, 10q26.11, 
13q21.31, 14q11.2, 14q13.1 and 21q21.1 appeared only in 
HO-8910PM cells (named “HO-8910PM-specific loss”). 
The CNV profiles are shown in Figure 2C.  
 
Screening of differentially expressed genes and 
enrichment analysis in HO-8910PM cells 
 
Functional analysis by the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) 
indicated that the proteins encoded by the “HO-
8910PM-specific gain” genes (479 genes) are involved 
in the negative regulation of chondrocyte 
differentiation, respiratory chain complex IV assembly, 
myelination, the regulation of myelination, axon 
ensheathment and other processes (Figure 3A). A total 
of 479 “HO-8910PM-specific gain” genes were 
uploaded into the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database to conduct KEGG analysis. 
The significantly enriched KEGG terms were pathways 
in melanoma, the ECM-receptor interaction, focal 
adhesion, ABC transporters, adherens junctions, and 
others (Figure 3B). The proteins encoded by the “HO-
8910PM-specific loss” genes (400 genes) displayed 
significant enrichment for xenobiotic glucuronidation, 
the negative regulation of cellular glucuronidation, 
flavonoid glucuronidation, glucuronosyl-transferase 
activity, cellular glucuronidation, and other terms 
(Figure 3C). The 400 genes were uploaded for KEGG 
analysis. The significantly enriched KEGG terms were 
pathways in ascorbate and aldarate metabolism, pentose 
and glucuronate interconversions, porphyrin and 
chlorophyll metabolism, other types of O-glycan 
biosynthesis, drug metabolism, and other terms  
(Figure 3D). 
 
Construction of the protein-protein interaction (PPI) 
network and cluster identification 
 
Among the “HO-8910PM-specific gain” and “HO-
8910PM-specific loss” genes enriched in the KEGG 
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Table 1. Chromosomal arms affected by CNVs and LOH and the frequencies of CNVs and LOH in tissues. 

Group Sample ID 
Chromosomal arm Total number  Gain  Loss LOH 

NO. Average NO. Average NO. Average NO. Average NO. Average 

Cancer LXM 39 38.75 206 178.5 187 141.75 19 36.75 216 197.25 

 WXL 38  103  102  1  198  

 YLH 40  152  147  5  178  

 ZLQ 38  253  131  122  197  

Normal GRY 41 40.5 167 186.5 42 39.5 125 147 165 155.5 

 NDY 40  206  37  169  146  
 

database (p>0.05), 71 were shared. To obtain protein 
interaction data, a human PPI dataset from the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
database was applied to the 71 genes. The MCODE 

algorithm in Cytoscape was used to identify highly 
interconnected regions or regions of high density in the 
network. In total, 54 nodes and 112 edges occurred in 
the PPI network. GAB2 [22], AKT1 [23], EGFR [24], 

 

 
 

Figure 1. Illustration of the copy number state of all samples. Chromosomes 1 through 12 are shown in the upper panel (from left to 
right), chromosomes 13 through 22 are shown in the lower panel, and chromosomes X and Y are shown in the lower right panel. Six samples 
were included (LXM, WXL, YLH, and ZLQ: OC; and GRY and NDY: normal epithelial OC). Colour indicates copy number status (blue, 
duplication; red, deletion; purple, LOH); greater colour saturation indicates greater CNV. 
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CTNNB1 [25], HRAS [26], ITGB7 [27], COL6A1 [28], 
COL6A3 [29], UGT1A1 [30], UGT1A10 [31], UGT1A3 
[32], UGT1A4 [33], UGT1A6 [34], UGT1A7 [35], 
UGT1A8 [36], and UGT1A9 [37] were the top 16 genes 
with the highest connectivity degree (Figure 4). 
 
Assessment of candidate gene expression and patient 
outcomes 
 
To evaluate the prognostic values of the 16-gene 
signature selected by the PPI, the Kaplan-Meier plotter 
(KM plotter) was applied. Progression-free survival 
(PFS) for patients with OC was determined according to 
the low and high expression of the hub genes. The 
results showed that high GAB2, AKT1, EGFR, and 
COL6A3 expression were associated with poor PFS for 
OC patients (P<0.05). Additionally, high UGT1A1 and 
UGT1A8 expression were associated with improved 
PFS for OC patients (P<0.05) (Figure 5). However, the 

results also showed that the expression levels of 
CTNNB1, HRAS, ITGB7, COL6A1, UGT1A10, 
UGT1A3, UGT1A4, UGT1A6, UGT1A7, and UGT1A9 
did not correlate with PFS (P>0.05). 
 
Prognostic significance of GAB2, one of the genes of 
the 16-gene signature in relation to current clinical 
covariates 
 
To investigate the prognostic significance of the 16-
gene signature in association with stage and grade in 
all validation datasets, we chose GAB2, for which the 
most statistically significant differences had been 
identified, for univariate and multivariate Cox regres-
sion analyses. GAB2 was a stronger predictor of PFS 
than grade and stage in both the univariate and 
multivariate analyses (HR 1.473, 95% CI 1.229-1.766, 
P <0.01; and HR 1.423, 95% CI 1.989-2.047, p = 
0.003 respectively; Table 2). 

 

 
 

Figure 2. Different biological behaviours and CNVs in OC cell lines. The migration distance in the HO-8910 cell line was less than that 
in the HO-8910PM cell line (p <0.01) (A). Cells were incubated on migration wells for 48 h, and the number of cells that migrated to the lower 
side of the filter was counted (B). The results are shown as the mean ± standard deviation (SD) (p <0.01 compared to the HO-8910 cell line). 
(C) Circos plot of the segmented CNVs in HO-8910PM (inner race) and HO-8910 (outer race) cell lines. Coloured bands expanding towards the 
centre or periphery of the diagram represent copy number losses or gains, respectively (red, gain; blue, loss). 
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TFs associated with the 6-gene signature 
 
Four candidate gene-related TFs associated with OC, 
namely, RFX1, ATF3, CREB, and LHX3, were 
predicted with a PASTAA analysis (p<0.01). The TF-
target gene regulatory network was constructed by 
introducing the TF and target gene into Cytoscape 
software (Figure 6A). Relative to the corresponding 
expression in HO-8910 cells, RFX1, ATF3, and CREB, 
of a total 345 candidate TFs, were upregulated exten-
sively in HO-8910PM cells, but there was no significant 
difference in LHX3 expression between the two cell 
lines (Figure 6B). 
 
DISCUSSION 
 
Previous studies [38–40] have demonstrated hetero-
geneity among OCs. The aim of the present study was 

to compare overall CNVs and LOH across the entire 
genome using the limiting dilution method [41] to 
isolate and establish heterogeneous subclones of ovarian 
cancer tissues and cell lines. The results showed that the 
most common CNV regions in the OC samples 
compared with the normal samples were LOH regions, 
including Xq11.1 and Xp21.1, and amplification 
regions, including 8q21.13, 8q11.21, and 8q23.3 [42]. 
Among the CNVs, LOH at Xq11.1 and Xp21.1 and 
gains at 8q21.13 were novel, specific CNVs. These 
results suggest that unknown DNA repair genes might 
be involved in tumour metastasis [43]. However, the 
HO-8910-derived subclones differed extensively from 
the normal tissue. Different OC histotypes represented 
genetic disparities. We hypothesized that heterogeneity 
may preferentially evolve due to initial alterations in 
DNA followed by alterations in chromosomal copy 
number. In the present study, we analysed CNVs in

 

 
 

Figure 3. Functional enrichment analysis of “HO-8910PM-specific gain” and “HO-8910PM-specific loss” genes identified in 
CNV regions. (A) GO-based annotation was used for the functional enrichment analysis of genes with shared “HO-8910PM-specific gains” 
(479 genes). (B) KEGG pathway analysis of genes with shared “HO-8910PM-specific gains” (479 genes). (C) GO-based annotation was used for 
the functional enrichment analysis of genes with shared “HO-8910PM-specific loss” (400 genes) through DAVID. (D) KEGG pathway analysis 
of genes with shared “HO-8910PM-specific loss” (400 genes). Colour represents the -log of the P value for the significance of enrichment. 
Only annotations with significant P values < 0.05 are shown. 



www.aging-us.com 183 AGING 

invasive/migratory models. Among the subclones, the 
HO-8910 and HO-8910PM cell lines, as a pair, serve as 
in vitro research models of OC metastasis. Two cell 
lines were validated in our previous studies [44–45]. 
Accordingly, the CNV observed at 8q21.13 between 
HO-8910PM cells and metastatic OC tissue might be 
cellular-phenotype related.  

CNVs play important roles in the pathogenesis of various 
types of cancer, such as the CNVs of BRCA, which have 
been found to be associated with ovarian cancer [46] and 
breast cancer [47]. In the present study, 16 genes signature 
[48] with associated copy numbers and differential 
expression were acquired, of which 6 gene showed the 
same trends in CNV and were regarded as ovarian 

 

 
 

Figure 4. PPI network based on 71 genes. There are 54 nodes and 112 edges in the network. Nodes represent genes, and edges 
represent the interactions between genes. 
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cancer-related CNV-driven genes. GAB2 overexpression 
was associated with poor PFS for OC patients, which was 
in accordance with previous studies. Overexpression of 
GAB2 in ovarian cancer cells promotes tumour growth 
and angiogenesis by upregulating the expression of 
CXCL1, CXCL2 and CXCL8, which are IKKβ-
dependent [49]. Gab2 inhibits E-cadherin expression and 
enhances the expression of Zeb1, a transcription factor 
involved in epithelial-to-mesenchymal transition (EMT), 
and cell migration and invasion through the activation of 
the PI3K pathway [50]. Co-targeting the IKKβ and PI3K 
pathways downstream of GAB2 might be a promising 
therapeutic strategy for ovarian cancer. AKT1 and EGFR 
play major roles in tumour progression and metastasis in 
ovarian cancer [51–52]. Davies found that AKT1 (E17K) 
mutations were effective therapeutic targets for AKT 
inhibitors [53], although combinations with other 
targeted agents may be required where activating onco-
genic mutations of other proteins were present in the 
same tumour [54]. Furthermore, alterations in EGFR 
have been found to perturb enzyme efficacy and 

proliferation in ovaries and impact susceptibility to OC 

[55]. COL6A3 was shown to be upregulated in ovarian 
cancer [56]. Sherman [57] found that the expression of 
COL6A3 was correlated with cisplatin resistance in 
ovarian cancer cell lines. Furthermore, highly or 
moderately differentiated ovarian tumours expressed 
lower levels of COL6A3 than poorly differentiated 
tumours, which indicated that the expression of COL6A3 
was associated with the grade of the ovarian tumour [57]. 
There are no reports to date on the relationship between 
COL6A3 and the metastasis of ovarian cancer. COL6A3 
may be a new biomarker for the metastasis of OC. 
However, UGT1A1 and UGT1A8 over-expression were 
associated with improved PFS in OC patients. UGT1A1, 
which has three different variants (UGT1A1*6, 
UGT1A1*27 and UGT1A1*28), mediates the glucu-
ronidation of SN-38 and CYP3A4, which results in 
several pharmacologically inactive oxidation products. 
Homozygosity for UGT1A1*6 or heterozygosity for 
UGT1A1*6/*28 was associated with a high risk of severe 
absolute neutrophil count decrease or diarrhoea. In 

 

 
 

Figure 5. The expression of six genes predicts the prognosis of OC patients. The prognostic values of the six genes in OC patients 
were determined (P < 0.05). 
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Table 2. Univariate and multivariate Cox proportional hazard regression analyses in all combined validation datasets.  

Variable 
Univariate analysis Multivariate analysis 

HR 95% CI P value HR 95% CI P value 
pathology 0.604 0.424-0.860 0.005 0.748 0.618-0.904 0.057 
Stage 1.467 1.190-1.806 <0.01 1.347 1.088-1.688 0.006 
Grade 0.724 0.545-0.962 0.026 0.795 0.597-1.058 0.115 
GAB2 1.473 1.229-1.766 <0.01 1.423 0.989-2.047 0.003 

Current clinicopathological factors in ovarian cancer including pathology, stage and grade analyzed in association with the 
GAB2 gene signature in all combined validation datasets. (HR) hazard ratio; (CI) confdent interval. 
 

addition to UGT1A1*28, UGT1A1*6 might be a key 
candidate for determining the dose of combination 
chemotherapy with irinotecan and cisplatin [58]. The 
presence of UGT1A1*28 results in an increased risk of 
ovarian cancer. UGT1A1*28 is associated with mucinous 
carcinoma and may have a role in the formation of 
specific histologic sub-groups. It is a potential marker to 
be considered when planning ovarian cancer chemo-
therapy [59]. There are no reports to date regarding 
UGT1A8 in ovarian cancer. There is one study of 
recombinant human UDP-glucuronosyltransferases 
(UGTs), including UGT1A1, but Zhou [60] found that 
UGT1A8 gene polymorphisms can affect the activity of 
the UDP glucuronosyltransferase enzyme, which may 
influence the elimination of mycophenolate mofetil in 
different patients. The 6 CNV-driven genes identified in 

the present study may be potential markers for ovarian 
cancer. 
 
In the transcriptional regulatory network, RFX1, ATF3, 
CREB, and LHX3 were predicted as OC candidate 
gene-related TFs in the PASTAA analysis. Only RFX1, 
ATF3, and CREB showed two-fold increases in 
expression in HO-8910PM/HO-8910 cells, which was 
validated with protein/DNA arrays. Consistent with 
these results, Subbiah reported that CREB, an important 
TF for neurotrophin activity, employed signalling 
pathways mediated by PI3-kinase and p38 MAPK, 
whereas Akt, the downstream component of the PI3-
kinase pathway, is known to regulate the covalent 
modification of cytosolic proteins, such as glycogen 
synthase and the proapoptotic protein BAD, in

 

 
 

Figure 6. The target genes and their predicted TFs. (A) The clusters identified in the PPI network containing the target genes and their 
predicted TFs. (B) The transcriptional activities of four TFs. 



www.aging-us.com 186 AGING 

pheochromocytoma (PC12) cells [61]. The 
phosphoinositide 3-kinase protein kinase B (PI3K-Akt) 
signalling pathway was involved in the formation and 
progression of many malignancies due to genetic 
alterations in their components or the activation of 
upstream cell surface receptors [62]. Future studies are 
needed to explore the implications of each of signalling 
pathway on CREB-responsive genes important for cell 
cycle regulation, survival, and differentiation in OC. It 
has been observed that COL6A3 acts as an oncogene in 
cancer and that the antagonism of COL6A3 could be 
developed as an effective therapeutic treatment for 
gastric cancer [63]. The number of cells that 
expressed COL6A3 relative to normal cells, Akt and 
PI3K were markedly decreased. COL6A3 gene 
silencing inhibits gastric cancer cell proliferation, 
migration, and invasion and promotes apoptosis through 
the PI3K-Akt signalling pathways [64]. The present 
need to be confirmed before the clinical application of 
COL6A3 and the CREB and PI3K-Akt signalling 
pathways in patients with OC. However, the association 
between other hub genes and OC has not been widely 
reported and needs further investigation. 
 
In summary, we systematically analysed the functions 
of altered genes in OC cell line models with distinct 
invasive/migratory capacities. Data on copy number 
diversity were integrated with clinical outcomes and 
DNA/protein expression to facilitate the search for 
potential therapeutic targets. We hypothesize that clone-
specific functional and genetic profiling will be helpful 
methods for identifying new molecular pathways 
underlying cancer and new biomarkers for clinical 
applications. This information will not only reveal the 
heterogeneity of OC at different developmental stages 
but also elucidate other factors that contribute to cancer-
related deaths, such as genes that promote invasion/ 
migration.  
 
MATERIALS AND METHODS 
 
Patients 
 
The samples analysed in this study were tissue bank 
samples from 4 OC patients with lymph node metastasis 
and samples of normal ovarian surface epithelia from 2 
non-OC patients the Fujian Maternity and Children 
Health Hospital (Fujian, China). Tissues were collected 
after the time of surgery. Four patients with metastatic 
OC who received surgical treatment between May 2013 
and January 2015 were selected. Metastatic OC was 
identified intraoperatively and postoperatively. The 
patients’ ages ranged between 55 and 60 years. The 
postoperative pathology revealed 2 serous adeno-
carcinomas, a mucinous adenocarcinoma, and a serous 
cystadenocarcinoma. Normal ovarian epithelial tissue 

was obtained from two patients that had undergone 
bilateral appendage removal due to other benign 
gynaecological diseases. The ages of these 2 patients 
were 39 years and 47 years. All participants provided 
written informed consent, and all study protocols were 
approved by the Ethics Committee of the Fujian 
Maternity and Children Health Hospital (Fujian, China) 
(approval number 2013004). All methods of data 
collection and analysis were performed in accordance 
with relevant guidelines and regulations and with 
appropriate quality control.  
 
CNV assay  
 
Tumour samples were obtained from each patient, and 
DNA was extracted using a QIAamp DNA Blood Midi 
Kit (Qiagen, Duesseldorf, Germany) following the 
manufacturer’s instructions. The CNVs were detected 
with a CytoScan HD microarray platform (Affymetrix, 
Santa Clara, CA, USA) and a high-density chip that 
contained 2,636,550 probes. All samples passed initial 
quality control. The array data were analysed using the 
Chromosome Analysis Suite (ChAS) software package 
[65], and annotations were performed with the Genome 
Reference Consortium (GRC) human reference genome 
version GRCh37 (hg19). The data were filtered such 
that only those regions larger than 50 kb comprising at 
least 25 contiguous markers were retained. 
 
Data analysis 
 
To calculate the CNV, the data were normalized to 
baseline reference intensities using 270 HapMap 
samples and data from 90 healthy normal individuals 
included in the software. The Hidden Markov Model 
(HMM) (available within the software package) was 
used to determine the copy number states and their 
breakpoints. The thresholds of log2 ratio ≥1.5 and ≤-1.5 
(as suggested by the software) were used to categorize 
the altered regions as CNV gains (amplifications) and 
copy number losses (deletions), respectively.  
 
To prevent the detection of false-positive CNVs arising 
due to inherent microarray “noise”, only alterations that 
involved at least 25 consecutive probes and that were 
>50 kb in length were considered in the analysis of 
gains or losses in our study. Amplifications and 
deletions were analysed separately. The detected CNVs 
were evaluated separately in terms of frequency and 
length. To exclude aberrations representing common, 
normal CNVs, all the identified CNVs were compared 
with those reported in the Database of Genomic 
Variants (DGV, http://projects.tcag.ca/variation/). 
 
To identify genes involved in CNVs, the UCSC (http:// 
genome.ucsc.edu), Ensemble (http://www.ensembl. org), 

http://projects.tcag.ca/variation/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
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and BioGPS databases (http://biogps.org) were queried. 
The gene annotations and overlaps were determined 
using the human genome build 19 (hg19) and several 
widely used online databases (Ensembl: 
http://www.ensembl.org; UCSC: http://genome.ucsc.edu; 
and NetAffx: http://www.affymetrix.com). 
 
For the LOH analysis, the LOH algorithm in the 
genotyping console 2.0 was used. Regions of LOH/copy 
number LOH (cnLOH) that were >3 Mb were identified 
and analysed further. 
 
Pathway and functional enrichment analyses  
 
To investigate the biological characteristics of the 
overlapping genes in the detected CNV regions, GO and 
KEGG pathway enrichment analyses were performed 
using DAVID [66, 67]. The cut off criterion was set as P 
< 0.05. 
 
Cell lines and cell cultures 
 
The OC cell line HO-8910 and its metastatic equivalent, 
HO-8910PM [68], were purchased from the Type 
Culture Collection Center of the Chinese Academy of 
Science (Shanghai, China). All cell lines were cultured 
in Dulbecco’s modified Eagle’s medium (DMEM) 
(Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, 
United States) supplemented with 10% foetal bovine 
serum (Gibco), 1% penicillin and 1% streptomycin (100 
IU/ml) in a 37°C incubator with 5% CO2. 
 
Cell scratch assay 
 
The horizontal migration of cells was assessed with a 
scratch assay performed according to a previous report 
[69] with slight modifications. Cells were seeded at a 
density of 5.0 × 105 cells/well and imaged at 40× 
magnification with an Olympus IX70 inverted fluo-
rescence microscope (Olympus Corporation, Japan) at 0 
and 24 h post-scratching. Image-Pro Express C software 
5.1 (Olympus Corporation) was used to measure the 
change in cell distance between scratches. The average 
horizontal migration rate was calculated using the 
following formula: (width at 0 h - width at 24 h) / width 
at 0 h × 100.  
 
Transwell chamber assay 
 
The invasive capacity of the cell lines was determined 
using a Matrigel invasion chamber assay. Cells were 
seeded at a density of 5.0×105 cells/well. The number of 
cells on the underside of the filter was determined by 
counting cells in five random fields from three filters 
for each treatment at 200× magnification with an 
inverted microscope (Olympus Corporation). 

PPI network construction and cluster identification  
 
PPI networks may represent molecular complexes. The 
PPI network of the genes was constructed using the 
STRING database (https://string-db.org). Upon entering 
a single protein name, multiple names or an amino acid 
sequence in the STRING website, the STRING resource 
can construct a network of protein interactions. The 
network view summarizes the network of the predicted 
associations for a particular group of proteins. The 
network nodes represent proteins, and edges represent 
the predicted functional associations. Additionally, in 
the legend section, a list of inputs is shown, and the 
predicted associations are shown in a list below the 
input, sorted by score. Subsequently, the results can be 
visualized using Cytoscape software. The cutoff 
criterion of the confidence score was set as > 0.7. In 
addition, the molecular complex in the global PPI 
network was obtained with MCODE. The screening 
options were set as follows: degree cutoff = 2, node 
score cutoff =0.2, k-core = 2, and max. depth= 100. 
 
Survival analysis 
 
The KM plotter is a web tool that predicts the effect of 
genes on survival (http://kmplot.com/analysis/index. 
php?p=background). After entering the genes of interest 
into the website, we divided the patients into two groups 
according to the expression level of each gene and 
statistically analysed survival rate. Univariate and 
multivariate Cox proportional hazard regression analyses 
were performed to evaluate independent prognostic 
factors associated with survival. The gene signature, 
pathology, tumour grade, and FIGO stage were employed 
as covariates. The hazard ratio (HR) with 95% CIs and 
the log-rank P value were calculated and shown.  
 
Prediction of TFs 
 
The relevant TFs of the differentially expressed genes 
were predicted based on the PASTAA analysis [70]. 
The p value calculated by the hypergeometric test was 
used to assess the significance of the overlap between 
each OC gene and the predicted target of the TF. Next, 
a TRAP analysis was performed to predict the affinity 
relationship between the gene and the relevant TF. The 
TFs and the differentially expressed genes were 
introduced into Cytoscape software to construct a gene-
TF coexpression network. 
 
Nuclear and cytoplasmic protein extraction 
 
Nuclear and cytoplasmic proteins were extracted from 
adherent cells at 70–90% confluence according the 
instructions provided with the NuCLEARTM Extraction 
Kit (Sigma, United States). In summary, the cells were 

http://biogps.org/
http://www.ensembl.org/
http://genome./
http://www.affymetrix.com/
https://string-db.org/cgi/
http://kmplot.com/analysis/index.php?p=background
http://kmplot.com/analysis/index.php?p=background
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rinsed with fresh phosphate-buffered saline (PBS), the 
appropriate amounts of reagents were added to the 
particular packed-cell volume, the cells were lysed, and 
the cytoplasmic and nuclear proteins were isolated by 
gradient centrifugation. Protein concentrations were 
quantitated with a BCATM assay kit from Pierce (United 
States). 
 
Protein/DNA arrays 
 
HO-8910 and HO-8910PM cell cultures were screened 
for TFs using the TranSignal Protein/DNA Array 
(Panomics, United States) following the manufacturer’s 
protocol. Briefly, proteins were isolated as described 
above, and nuclear extracts (25 μg) were incubated with 
the provided biotin-DNA probe mix for 30 minutes. 
Protein-DNA complexes were isolated with 2% agarose 
gel electrophoresis. The proteins were eliminated from 
the complex, and the biotin-DNA was hybridized to the 
membranes containing the consensus binding sequences 
of the TFs. Next, the membranes were incubated with 
streptavidin-alkaline phosphatase conjugate. Signals of 
the hybridized probes were visualized using the 
chemiluminescent imaging system provided with the 
TranSignal Protein/DNA Array Kit and exposed to X-ray 
film [71]. Using the expression in HO-8910 cells as the 
benchmark, a two-fold increase or decrease in expression 
in HO-8910PM/HO-8910 cells was considered sig-
nificant. Experiments were performed in duplicate. 
 
Statistical analysis  
 
Statistical analysis of the data was performed with SPSS 
17.0 software (SPSS, Chicago, Illinois, USA). The data 
are expressed as the means ± standard errors of the 
mean (SEM). The significance of differences in values 
was evaluated through analysis of variance (ANOVA) 
or an unpaired two-tailed Student’s t-test. A P value < 
0.05 was considered to indicate a significant difference. 
All experiments were repeated at least three times.  
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