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INTRODUCTION 
 
Hepatocellular carcinoma (HCC) is the most prevalent 
malignancy in the liver with a high incidence and morta- 

 

lity rate globally [1]. It is the fifth most commonly 
diagnosed cancer in men, the ninth in women, and the 
second leading cause of cancer death worldwide in 2012 
[2]. HCC had a poor prognosis as the ratio of mortality 
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ABSTRACT 
 
Liver fibrosis biomarker, Type IV collagen, may function as hepatocarcinogenesis niche. However, among the six 
isoforms, the isoforms providing tumor microenvironment and their regulatory network are still unclarified. Based 
on bioinformatics analysis of hundreds of HCC transcriptome datasets from public databases, we found that 
COL4A1/2 expressions were significantly correlated with hepatocarcinogenesis, progression, and prognosis. The 
expressions of COL4A1/2 were significantly upregulated in the preneoplastic and HCC tissues compared with 
normal tissues. Moreover, the overexpression of COL4A2 was highly correlated with shorter progression-free 
survival in HCC patients. Bioinformatics analysis also generates an interactive regulatory network in which 
COL4A1/2 directly binding to integrin alpha-2/beta-1 initiates a sequentially and complicated signaling 
transduction, to accelerate cell cycle and promote tumorigenesis. Among those pathways, the PI3K-Akt pathway is 
significantly enriched in cooperative mutations and correlation analysis. This suggests that the key activated 
signaling is PI3K-Akt pathway which severing as the centerline linked with other pathways (Wnt and MAPK 
signaling) and cell behaviors signaling (cell cycle control and cytoskeleton change). Switching extracellular matrix 
collagen isoform may establish pro-tumorigenic and metastatic niches. The findings of COL4A1/2 and related 
signaling networks are valuable to be further investigated that may provide druggable targets for HCC intervention. 
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to incidence is 0.95 [2] and the 5-year survival rate of 
advanced HCC was less than 5% [3]. The advanced 
fibrosis, mainly cirrhosis and hepatitis, caused by the 
Hepatitis B virus (HBV) and hepatitis C virus (HCV) 
were the most common cause for HCC [4–6]. Moreover, 
other factors such as alcohol consumption, obesity, 
aflatoxin exposure, and nonalcoholic fatty liver disease 
could also contribute to the development of HCC [4]. 
The understanding of the etiology and the molecular 
mechanisms of HCC leads to the development of drugs 
including sorafenib, regorafenib, nivolumab, and 
lenvatinib, which have been approved by the FDA in 
unresectable HCC treatment [7–10]. However, these 
drugs are not satisfying, due to the rapid drug resistance 
development and toxicities [9, 11–13]. Therefore, there 
is an urgent need for further understanding of the 
pathological mechanism of HCC and developing 
combination therapies that target different signaling 
mechanisms to reduce the drug resistance of HCC 
treatment. 
 
The tumor microenvironment is an important part of 
tumor structure and function, and it plays a key role in 
the initiation and progression of carcinogenesis [14, 15]. 
Therefore, a better understanding of the molecular 
mechanism of the tumor microenvironment may 
provide new and valuable targets for cancer prevention, 
management, and risk assessment. As the major 
structural component of the tumor microenvironment, 
type IV collagen (Col IV) forms a ‘chicken-wire’ 
meshwork together with laminins, proteoglycans and 
entactin/nidogen. Also, Col IV has been found as a 
useful marker for evaluating liver preneoplastic lesions 
(fibrosis and cirrhosis), for its swift increase with 
fibrotic progression [16–18]. Moreover, the Col IV 
serum level was found to be a marker for evaluating 
primary and metastatic liver cancer, and recurrence risk 
of HCC after liver resection [19]. Recently, Col IV has 
shown the ability to promote liver metastasis of lung 
cancer by regulating the chemokine CCL7 signals [20, 
21]. Therefore, Col IV may play a key role in 
hepatocarcinogenesis. However, the underlying 
mechanism still needs to be elucidated. Moreover, there 
are six Col IV isoforms, α1 (IV)-α6 (IV) which are 
encoded by COL4A1-COL4A6 genes, and the  
regulatory role of each isoform in HCC has yet to be 
discovered. 
 
To address the above questions, the sequencing data of 
HCC were collected and analyzed from GEO and 
TCGA databases. The result showed that among the six 
Col IV isoforms, only COL4A1 and COL4A2 were 
significantly upregulated from liver preneoplastic 
lesions (cirrhosis and dysplasia) to HCC. Subsequently, 
the COL4A1 and COL4A2 network genomic alterations, 
biological function, and regulatory network in HCC 

were analyzed by using cBioPortal and LinkedOmics. 
Thus, this study revealed the expression and  
regulatory network of COL4A1 and COL4A2 in hepato-
carcinogenesis, which might be novel targets for HCC 
diagnosis and treatment. 
 
RESULTS 
 
Transcriptional levels of COL4As in the carcinogenic 
process from preneoplastic lesions (cirrhosis and 
dysplasia) to HCC 
 
Six COL IV isoforms (COL4As) have been identified in 
mammalian cells. We initially assessed the 
transcriptional levels of COL4As in multiple HCC 
studies from GEO and TCGA databases. The mRNA 
expression levels of COL4A1 and COL4A2 were 
significantly upregulated in patients with liver cirrhosis 
and HCC tissues in two datasets. In the Mas Liver 
(GSE14323), COL4A1 was overexpressed in liver 
cirrhosis (fold change = 4.233, p = 2.78E-13) and HCC 
(fold change =3.759, p = 1.40E-12), while COL4A2 was 
higher expressed in liver cirrhosis (fold change = 2.487, 
p = 7.88E-14) and HCC (fold change =3.492, p = 
1.01E-10) versus normal tissues (Figure 1A and 
Supplementary Figure 1B). In the Wurmbach liver 
(GSE6764), COL4A1 was increased in cirrhosis (fold 
change =2.997, p = 7.24E-6), liver cell dysplasia (fold 
change =2.140, p = 7.46E-6), and HCC (fold change 
=3.711, p = 1.16E-10). COL4A2 was also increased in 
cirrhosis (fold change =3.412, p = 2.02E-6), liver cell 
dysplasia (fold change =2.223, p = 1.35E-4), and HCC 
(fold change =3.154, p = 7.07E-7) compared to normal 
tissues (Supplementary Figure 1A and 1C). Apart from 
this, COL4A1 and COL4A2 were in the top 5% over-
expression gene rank of liver cirrhosis and HCC in both 
datasets (Supplementary Figure 1B, 1C). In comparison, 
COL4A3-COL4A6 were not significantly changed in 
HCC versus normal tissues (Figure 1A and 
Supplementary Figure 1A). Further analysis of 371 
HCC patients in TCGA consistently showed different 
effects of COL4A1-COL4A6 in hepatocarcinogenesis 
(Figure 1B). Moreover, the mRNA levels of both 
COL4A1 and COL4A2 were significantly increased in 
subgroups of HCC patients classified by ethnicity, 
gender, age, tumor grade, and disease stages compared 
to normal people (Figure 2A–2L). Additionally, the 
expressions of COL4A1 and COL4A2 in HCC and 
normal individuals were evaluated by 
immunohistochemistry staining (The Human Protein 
Atlas). The COL4A1 and COL4A2 proteins were more 
highly expressed in HCC tissues than in the normal 
liver tissues, and were located especially in the HCC 
tissue lacunar (Figure 3). Thus, COL4A1 and COL4A2 
expressions may serve as potential diagnostic indicators 
in HCC. 
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The cooperative genomic alterations of COL4A1 and 
COL4A2 networks in HCC 
 
We then analyzed the cooperative genomic alterations  
of COL4A1 and COL4A2 networks by using  
cBioPortal for liver hepatocarcinoma (TCGA, 
provisional). 
 
COL4A1 was altered in 41 of 371 (11%) HCC patients, 
and COL4A2 was altered in 37 of 371 (10%) HCC 
patients (Figure 4A). The genomic alterations included 
amplification (3.8% for both COL4A1 and COL4A2), 
mRNA up-regulation (5.6% for COL4A1, 4.6% for 

COL4A2), and mutation (2.1% for COL4A1, 1.6% for 
COL4A2) (Table 1). Thus, mRNA up-regulation and 
amplification are the most genomic alteration types for 
both COL4A1 and COL4A2 in HCC. 
 
Moreover, the expression levels of COL4A1 and 
COL4A2 were highly correlated in 371 HCC patients 
(Figure 4A). Therefore, the correlation coefficient 
between COL4A1 and COL4A2 in HCC was calculated 
via cBioPortal. The results showed that COL4A1 was 
strongly correlated with COL4A2 (r = 0.96), possibly 
because they shared the same bidirectional promoter 
(Figure 4B, 4C). 

 

 
 

Figure 1. COL4As expression in hepatocellular carcinoma (HCC). The transcription levels of COL4A1 and COL4A2 were significantly 
upregulated in preneoplastic lesion (cirrhosis) and HCC tissues compared to normal tissues. (A) Dot plot showing the COL4As mRNA levels in 
GEO dataset (GSE14323). Normal (n=19): normal liver; Cirrhosis (n=41): HCV cirrhosis without HCC; Cirrhosis HCC (n=17): HCV cirrhosis with 
HCC; HCV-HCC (n=36): HCC by HCV infection. Data are mean ± SD. *, P < 0.05, **, P < 0.01, ***, P < 0.001 (Student’s t-test). (B) Box plot 
showing the COL4As mRNA levels in The Cancer Genome Atlas (TCGA) (GEPIA). Normal: n=160; Tumor: n=369. The significance test method 
was one-way ANOVA, using disease state (Tumor or Normal) as variable for calculating differential expression. 
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Further, to identify the altered biological function of 
COL4A1 and COL4A2 networks in HCC, the most 
frequently altered neighbor genes (a total of 50) were 
collected and evaluated by analyzing GO and KEGG  

in the DAVID database. The COL4A1/COL4A2 
neighboring genes with alteration frequencies >10% (16 
out of a total of 94) in HCC were listed in Figure 4D  
and Table 1. Similar to COL4A1 and COL4A2, mRNA 

 

 
 

Figure 2. Relationship between the mRNA levels of COL4A1/2 and the clinic pathological features of patients with HCC, 
stratified based on ethnicity, gender, age, tumor grade, and disease stages (UALCAN). (A, G) Box plot showing the relative 
transcript level of COL4A1 and COL4A2 in normal and primary tumor (HCC) tissues. (B, H) Box plot showing the relative transcript level of 
COL4A1 and COL4A2 in normal samples of any ethnicity, and HCC tissues of Caucasian, African-American or Asian. (C, I) Box plot showing the 
relative transcript level of COL4A1 and COL4A2 in normal tissues of any gender, and HCC tissues of male or female. (D, J) Box plot showing the 
relative transcript level of COL4A1 and COL4A2 in healthy individuals of any age, and HCC tissues of 21–40, 41–60, 61–80, or 81–100 yrs.  
(E, K) Box plot showing the relative transcript level of COL4A1 and COL4A2 in normal tissues, and HCC tissues with grade 1, 2, 3 or 4. (F, L) Box 
plot showing the relative transcript level of COL4A1 and COL4A2 in normal tissues, and HCC tissues in stage 1, 2, 3 or 4. Data are mean ± SE. *, 
P < 0.05; **, P < 0.01; ***, P < 0.001, ****, P < 0.0001 (t-test). 
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up-regulation and amplification were the main alteration 
types for a majority of these neighboring genes. The 
most frequently altered neighbor genes of COL4A1/ 
COL4A2 were PTK2 (46.4%), ACTN2 (24.1%), and 

THBS3 (20.1%). Analysis of significantly enriched GO 
results indicated that the proteins encoded by these genes 
localized primarily to the extracellular exosome, plasma 
membrane, and extracellular region (Figure 5A), where

 

 
 

Figure 3. The COL4A1 and COL4A2 proteins were expressed higher in HCC tissues than in the normal liver tissue. (A–B) 
Immunohistochemistry staining showing the protein expression of COL4A1 (A) and COL4A2 (B) in liver normal tissues and liver carcinoma. 
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they were mainly involved in the extracellular matrix 
organization, cell adhesion, and integrin-mediated 
signaling pathway (Figure 5B). These proteins also 
served as structural constituents of protein binding, 
integrin binding, protein complex binding, and collagen 
binding (Figure 5C). Moreover, KEGG analysis showed 
enrichment in focal adhesion, PI3K-Akt pathway, ECM-
receptor interaction, and pathway in cancer (Figure 5D). 
Thus, the biological interaction network of COL4A1 and 
COL4A2 alterations is involved in the extracellular 
matrix (ECM) and several ECM-receptor activated 
pathways. 
 
The biological function of COL4A1 and COL4A2 in 
HCC 
 
Next, the genes which correlated with COL4A1 and 
COL4A2 and differentially expressed in HCC were 
collected and analyzed by LinkedOmics to further 
examine the biological function of COL4A1 and 
COL4A2 in HCC. COL4A1 displayed a positive 
correlation with 7111 genes and negative with 3128 
genes; whereas 6680 genes were positively correlated 

with COL4A2, whereas 2714 genes in the opposite 
(FDR < 0.01, Figure 6A and 6B). The top 20 most 
positively and negatively correlated genes for COL4A1 
and COL4A2 were exhibited in the heatmap (Figure 
6C–6F). This result implied a similar effect of COL4A1 
and COL4A2 in the transcriptome. Specially, 
COL4A1/COL4A2 were highly correlated with PXDN (r 
= 0.8937 / 0.8904) and SPARC (r = 0.8882 / 0.9124), 
reflecting significant changes in the extracellular matrix 
of HCC (Figure 6D). Further, GO term analysis 
indicated that the COL4A1 and COL4A2 correlated 
genes were located prominently in the extracellular 
matrix, membrane region, and cell-substrate junction, 
where they served as structural constituents in the 
extracellular matrix. They also involved in extracellular 
structure organization, angiogenesis, and cell-substrate 
adhesion (Figure 7A–7C). Moreover, KEGG analysis 
result showed that these genes took part in activating 
actin cytoskeleton, PI3K-Akt, cGMP-PKG, and cell 
adhesion pathway (Figure 7D). Thus, these results 
further demonstrated that the biological interaction 
network of COL4A1 and COL4A2 is involved in ECM-
receptor activated pathways. 

 

 
 

Figure 4. COL4A1 and COL4A2 genomic alterations, correlation, and signaling pathway in HCC (cBioPortal). (A) Heat map 
showing the genomic alteration types and expression of COL4A1 and COL4A2 in HCC tissues (n=371). The genomic alterations are highlighted 
in different markers. One column represents one individual. (B) Correlation analysis showing the significant positive correlation between 
COL4A1 and COL4A2. (C) COL4A1 and COL4A2 shared a bidirectional promoter, which was regulated by the downstream activating element. 
(D) Network showing the COL4A1/COL4A2 (with a bold border) and their neighboring genes with alteration frequencies >10% in HCC. PTK2 (in 
darker red) was the most frequently altered neighbor gene (46.4%). The brown connection shows that these genes are involved in the same 
biological component, such as a complex. The blue connection shows that the first gene causes a state change, such as a phosphorylation 
change, within the second gene. 
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Table 1. The most frequently altered neighbor genes of COL4A1 and COL4A2 in HCC(cBioPortal). 

Gene symbol Amplification Homozygous deletion Up-regulation Down-regulation Mutation Total alteration 
COL4A1 3.80% 0.00% 5.60% 0.00% 2.10% 11.00% 
COL4A2 3.80% 0.30% 4.60% 0.00% 1.60% 9.90% 
PTK2 16.10% 0.30% 41.00% 0.50% 2.10% 46.40% 
ACTN2 8.60% 0.00% 15.50% 0.00% 1.60% 24.10% 
THBS3 13.70% 0.00% 13.70% 0.00% 1.60% 20.10% 
COL22A1 16.40% 0.00% 1.10% 0.00% 3.20% 19.30% 
P4HB 6.20% 0.30% 11.80% 0.30% 0.30% 15.80% 
ACTG1 6.20% 0.00% 9.90% 0.00% 0.30% 15.30% 
LAMB3 9.40% 0.00% 3.50% 0.00% 1.90% 13.90% 
ITGA10 9.90% 0.00% 2.10% 0.00% 1.90% 13.10% 
LAMC1 9.10% 0.00% 3.20% 0.00% 1.60% 12.90% 
LAMC2 9.10% 0.00% 1.90% 0.00% 1.60% 12.60% 
ITGB4 5.60% 0.00% 4.80% 0.00% 2.40% 12.60% 
PLOD3 0.80% 0.00% 11.50% 0.50% 0.30% 12.60% 
COLGALT2 9.40% 0.00% 0.50% 0.00% 1.30% 11.00% 
MSR1 0.30% 7.00% 3.50% 0.00% 0.30% 10.20% 
 

COL4A1 and COL4A2 network of kinase, miRNA, or 
transcription factor targets in HCC 
 
To discover the specific targets network of COL4A1 and 
COL4A2 in HCC, the most correlated kinases, miRNA, 
and transcription factors were collected and analyzed by 
GSEA. As summarized in Table 2, for COL4A1 and 
COL4A2 in HCC, the most correlated kinase-targets 
network were PRKG1, PTK2B, MAPK7, and 
CAMK2A; the most correlated microRNA-targets 
network were MIR-140, MIR-204/MIR-211, MIR-7, 
MIR-23A/MIR-23B, MIR-130A/MIR-301/MIR-130B, 
MIR-519E, MIR-518C, and MIR-9; the most correlated 
transcript factor-target networks were V$SRF_Q6, 
V$RSRFC4_Q2, CTGYNNCTYTAA_UNKNOWN, 
V$MEF2_01, V$AML1_Q6, V$HEN1_01 and 
V$EVI1_04 (v7.4 TRANSFAC). The target genes of 
these transcript factors, kinases, and microRNAs in HCC 
were listed in Supplementary Table 1. Furthermore, 
KEGG analysis showed that these genes involved in 
pathways in cancer, PI3K-Akt signaling pathway, focal 
adhesion, MAPK signaling pathway, regulation of actin 
cytoskeleton, microRNAs in cancer, proteoglycans in 
cancer, and cGMP-PKG signaling pathway (Figure 8). 
Thus, COL4A1 and COL4A2 may involve in 
hepatocarcinogenesis by activating the above-mentioned 
transcript factors-target networks, the kinase-target 
networks, and the microRNA-target networks. 
 
COL4A2 overexpression was positively correlated 
with shorter progression-free survival in HCC patients 
 
To demonstrate the direct association of COL4A1 and 
COL4A2 with HCC, the COL4A1 and COL4A2 

genomic altered or unaltered HCC patients were 
collected to evaluate their clinical features. As shown in 
Figure 9A, the mRNA level of COL4A1 and its 
associated genes, such as COL4A2, PXDN, and SPARC, 
were higher in the COL4A1-altered group than in the 
COL4A1-unaltered group. Similarly, the COL4A2 and 
its correlated genes, such as COL4A1, PXDN, and 
SPARC, were overexpressed in the COL4A2-altered 
patients compared to the COL4A2-unaltered patients 
(Figure 9B). Additionally, the overexpressed COL4A1 
or COL4A2 could activate pathways in cancer including 
notch, platelet activation, cGMP-PKG, PI3K-Akt, focal 
adhesion, actin cytoskeleton, and ECM-receptor 
interaction (Figure 9C), which was consistent with the 
above biological pathways activated by COL4A1 and 
COL4A2 (Figure 7D). Furthermore, compared to the 
COL4A2-unaltered group, the COL4A2-altered group 
was significantly associated with shorter progression-
free survival (P = 0.0271, Figure 9D). Therefore, it 
strongly suggested that COL4A2 overexpression might 
promote HCC progression after initial treatment. 
 
DISCUSSION 
 
Tumor microenvironment including inflammatory cells, 
stroma, and the extracellular matrix is critically 
important for tumor initiation and progression [15]. 
COL IV is a major structural component of the tumor 
microenvironment, which was steep increased during 
liver preneoplastic lesion, such as fibrosis and cirrhosis 
[18]. Thus, COL IV may involve initiating hepato-
carcinogenesis. To investigate the different role of each 
isoform of COL IV in hepatocarcinogenesis, the HCC 
expression profile was analyzed using public 
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sequencing data in GEO and TCGA, in which among 
the six COL IV isoforms, only COL4A1 and COL4A2 
was significantly upregulated from preneoplastic lesions 
(cirrhosis and dysplasia) to HCC. Then, the COL4A1 
and COL4A2 network genomic alterations, biological 
function, and regulatory network were further analyzed 
to provide deep insights into the function of COL IV in 
hepatocarcinogenesis. 

In this study, the transcriptional levels of COL4A1 and 
COL4A2 in approximately 500 clinical samples from 
two GEO datasets and one TCGA dataset were 
significantly increased in cirrhosis and HCC. Both 
COL4A1 and COL4A2 were found in the top 5% of the 
over-expression-gene-rank of liver cirrhosis and the top 
3% of HCC. Moreover, they were strongly correlated 
with clinic pathological features of patients with HCC 

 

 
 

Figure 5. Biological function of COL4A1 and COL4A2 signaling network alterations in HCC. The histogram showing the biological 
function of the top 50 most frequently altered neighbor genes of COL4A1 and COL4A2 in HCC. (A) Cellular components. (B) Biological 
processes. (C) Molecular functions. (D) KEGG pathway analysis. (E) Network showing the KEGG pathway of Focal adhesion. The altered genes 
are highlight in red. 
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Figure 6. The genes correlated with COL4A1 and COL4A2 and differentially expressed in HCC (LinkedOmics). (A, B) The volcano 
plot showing the genes correlated with COL4A1 and COL4A2 and differentially expressed in HCC. (C, E) The heatmap showing the top 20 
genes positively or negatively correlated with COL4A1 or COL4A2. (D, F) The same correlated genes for COL4A1 and COL4A2 in top 20 
positively or negatively correlated genes. 
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based on ethnicity, gender, age, tumor grade, and disease 
stages. Thus, COL4A1 and COL4A2 may be helpful in 
the diagnose of HCC. As the detection of early HCC is 
still not systematic, more than 60% of patients are 
diagnosed with advanced HCC [22]. On the other hand, 
HCC patients have a better prognosis with a 5-year 
survival rate of more than 70% if diagnosed at an early 
stage [23]. Therefore, extensive researches have been 
conducted on identifying the makers for early HCC, 
many markers, such as AFP-L3 [24], DCP [25], GPC3 
[26, 27], OPN [28], GP73 [29], SCCA [30], annexin A2 
[31], suPAR [32], MDK [33], AXL [34], and TRX [35] 
were screened and undergoing further assessment in 
phase II studies. Considering the high heterogeneity in 
HCC patients, it is necessary to combine multiple 
markers for the detection of early HCC. Thus, combining 
the above markers with COL4A1 and COL4A2 will 
improve the diagnose reliability of early HCC. 
 
The accumulation of cooperative genomic alterations 
enables the cells to grow rapidly and develop into 
tumors [36, 37]. The mRNA up-regulation and 
amplification were the most genomic alteration types for 
COL4A1/COL4A2 network genes in HCC. Among the 
altered genes, PTK2, encoding a cytoplasmic protein 
tyrosine kinase which was found concentrated in the 
focal adhesions, was the most frequently altered in HCC 

(46.4%). Upon activation, PTK2 regulates a variety of 
cellular functions, including cell adhesion, survival, 
proliferation, and migration [38–41]. Multiple studies 
demonstrated that PTK2 was overexpression and 
hyperphosphorylation in HCC [42–44], and the recent 
studies described that PTK2 activated CSC properties 
and tumorigenicity of HCC cells, leading to HCC 
recurrence and sorafenib resistance [44]. Therefore, 
COL4A1 and COL4A2 may mediate the initiation and 
progression of HCC by activating PTK2. Moreover, the 
functional analysis of altered genes of COL4A1/COL4A2 
network showed that these genes involved in PI3K/Akt 
signaling pathway, which was the one classical 
downstream signal of PTK2. Accumulated evidence 
showed that overactivated PI3K/Akt/mTOR signaling 
pathway frequently occurs in HCC, which was highly 
correlated with poor prognosis and poor overall survival 
[45, 46]. All these evidences indicated that activation of 
PTK2-PI3K/Akt/mTOR pathway by COL4A1 and 
COL4A2 may contribute to hepatocarcinogenesis. This 
result was further confirmed by the significant correla-
tion between COL4A2 overexpression and shorter 
progression-free survival. However, due to the present 
insufficient data between COL4A1 dominant mutations 
and progression-free survival, the correlation between 
COL4A1 and hepatocarcinogenesis needs to be explored 
further. 

 

 
 

Figure 7. Biological function of COL4A1 and COL4A2 correlated genes in HCC. GO term and KEGG analysis by GSEA were conducted 
to clarify the biological function of COL4A1 and COL4A2 correlated genes. (A) Cellular components. (B) Biological processes. (C) Molecular 
functions. (D) KEGG pathway analysis. The column represents the Normalized Enrichment Score (NES), and the color of the column 
represents the FDR. 
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Table 2. The transcript factor, microRNA, and kinase regulatory network of COL4A1 and COL4A2 in HCC 
(LinkedOmics). 

Type Gene Set Size 
Leading 

edge 
number 

Enrichment 
Score (ES) 

Normalized 
Enrichment 
Score (NES) 

FDR 

Transcript 
factor  

V$SRF_Q6 231 94 0.55044 1.6597 0.00565 
V$RSRFC4_Q2 198 83 0.51218 1.5405 0.00674 

CTGYNNCTYTAA_UNKNOWN 81 30 0.5617 1.6209 0.00698 
V$MEF2_01 134 51 0.54747 1.6178 0.00707 
V$AML1_Q6 248 110 0.49829 1.5057 0.00736 
V$HEN1_01 182 70 0.50724 1.5007 0.00739 
V$EVI1_04 218 101 0.49922 1.5135 0.00746 

GKCGCNNNNNNNTGAYG_UNKNOWN 52 17 -0.20659 -1.2159 0.44429 
V$PPARG_01 40 14 -0.21978 -0.96831 0.76375 

microRNA AAACCAC, MIR-140 100 55 0.51847 1.5346 0.01111 
ACCAAAG, MIR-9 458 210 0.49907 1.5234 0.01114 

AAAGGGA, MIR-204, MIR-211 211 102 0.51606 1.5365 0.01145 
GTCTTCC, MIR-7 149 61 0.51346 1.5208 0.01147 

AATGTGA, MIR-23A, MIR-23B 389 198 0.50816 1.5423 0.01158 
TTGCACT, MIR-130A, MIR-301, MIR-130B 365 220 0.5123 1.5697 0.01165 

GGCACTT, MIR-519E 113 72 0.5321 1.5528 0.01183 
TCCAGAG, MIR-518C 138 65 0.53458 1.5672 0.01187 

Kinase Kinase_PRKG1 30 15 0.7136 1.9136 0 
Kinase_PTK2B 6 3 0.87902 1.7424 0.03337 
Kinase_MAPK7 30 13 0.64928 1.7218 0.03881 

Kinase_CAMK2A 52 23 0.59432 1.6769 0.04961 
 

 
 

Figure 8. The transcript factor, microRNA, and kinase targets network of COL4A1 and COL4A2 in HCC (LinkedOmics). COL4A1 
and COL4A2 may involve in hepatocarcinogenesis by regulating the transcript factors-target networks (V$SRF_Q6, V$RSRFC4_Q2, 
CTGYNNCTYTAA_UNKNOWN, V$MEF2_01, V$AML1_Q6, V$HEN1_01, V$EVI1_04), the kinase-target networks (PRKG1, PTK2B, MAPK7, and 
CAMK2A), and the microRNA-target networks (MIR-140, MIR-204/MIR-211, MIR-7, MIR-23A/MIR-23B, MIR-130A/MIR-301/MIR-130B, MIR-
519E, MIR-518C, and MIR-9). 
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Furthermore, to get a systematic regulatory network of 
COL4A1/COL4A2 in HCC, the GSEA was conducted to 
identify the networks of transcription factors, kinases, 
and miRNAs. The above networks showed a strong 
correlation between COL4A1/COL4A2 and PI3K/Akt, 
cGMP-PKG, MAPK and other pathways in cancer. 
Among the networks of transcription factors, SRF was 
the most significant one with the highest enrichment 
score. Several studies indicated that dysregulated SRF 

could trigger HCC formation and progression, and SRF 
was also involved in EMT transition which led to 
sorafenib resistant in HCC [47–50]. Thus, COL4A1 and 
COL4A2 may involve in hepatocarcinogenesis via SRF 
transcript factor. Moreover, the other kinase networks 
including PRKG1, MAPK7, and CAMK2 were 
associated with COL4A1 and COL4A2, which may also 
be the potential targets for HCC treatment. However, the 
studies focused on the relationship between these 

 

 
 

Figure 9. Collagen VI mutation and overexpression positively correlated with the progression-free survival of HCC patients. 
(A–B) Scatter plot comparison of mRNA levels (COL4A1, COL4A2, PXDN, and SPARC) between genomic altered and unaltered groups  
(A: COL4A1, B: COL4A2). (C) Column plot illustration of activated signaling pathways in COL4A1/COL4A2 genomic altered HCC samples.  
(D) Kaplan-Meier survival analysis of HCC patients with or without altered COL4A2 DNA sequences. 
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kinases and HCC are still insufficient, and further 
studies are needed. Among the networks of miRNAs, 
MIR-9, MIR-7, MIR-140, and MIR-204 displayed a role 
in inhibiting the proliferation, progression, metastasis, 
sorafenib resistant of HCC [51–55], which may be 
promising targets for HCC management. 
 
This study analyzed the expression and regulatory 
network of COL IV in hepatocarcinogenesis. Our 
finding suggested that the increased expression of 
COL4A1 and COL4A2 may involve in HCC initiation 
and progression by activating PTK2–PI3K/Akt 
signaling pathway. Last but not least, SRF, a tumor-
associated transcription factor, may also involve in 
hepatocarcinogenesis induced by COL4A1 and 
COL4A2. 
 
MATERIALS AND METHODS 
 
Ethics statement 
 
This study was approved by the Academic Committee  
of No. 2 Affiliated Hospital, Guangzhou Medical 
University, Guangzhou, China, and the investigation was 
conducted according to Declaration of Helsinki 
principles. All the datasets were collected from the 
publishing literature, so all written informed consent was 
obtained. 
 
Analysis of gene expression profile in preneoplastic 
lesions and HCC using GEO data 
 
To analyze the expression profile of six COL IV 
isoforms in preneoplastic lesions and HCC, GEO 
datasets (access #: GSE14323 and GSE6764) were 
downloaded, evaluated, and normalized by different R 
packages, such as GEOquery and limma [56, 57]. The 
expression profile was mapped by Graphpad Prism [58]. 
The mRNA levels of six COL IV isoforms in 
preneoplastic lesions and HCC tissues were compared 
with that in the normal tissues, using the Student’s t-test 
to calculate p-value. P ˂ 0.05 were considered different 
significantly (*, P < 0.05, **, P < 0.01, ***, P < 0.001, 
****, P < 0.0001). 
 
Oncomine analysis 
 
The mRNA expression fold change and Over-expression 
Gene Rank of COL4A1 and COL4A2 in HCC were 
analyzed by using the Oncomine database. Oncomine 
(www.oncomine.org) is the current world’s largest 
microarray database with 715 datasets (86733 samples) 
[59, 60]. The datasets used here were Mas Liver and 
Wurmbach Liver, which matched the GSE14323 and 
GSE6764 datasets in GEO [61, 62]. The mRNA levels 
of COL4A1 and COL4A2 in preneoplastic lesions 

(cirrhosis) and HCC tissues were compared with that in 
the normal tissues. Student’s t-test was performed to 
generate a p-value. 
 
UALCAN analysis 
 
The relationship between the mRNA levels of 
COL4A1/COL4A2 and the pathological clinic features of 
patients with HCC on ethnicity, gender, age, tumor 
grade, and disease stages was analyzed by using 
UALCAN. UALCAN (http://ualcan.path.uab.edu) is a 
web portal to facilitate gene expression analysis of 
cancer subgroups and cancer survival analyses [63]. The 
mRNA levels of COL4A1 and COL4A2 in HCC samples 
were compared with that in the normal tissues. P ˂ 0.05 
were considered different significantly (*, P < 0.05, **, 
P < 0.01, ***, P < 0.001, ****, P < 0.0001). Student’s t-
test was performed to generate a p-value. 
 
GEPIA (Gene Expression Profiling Interactive 
Analysis) database 
 
The expression profile of six COL IV isoforms in HCC 
was further examined by using GEPIA database. GEPIA 
web provides a server to analyze the gene expression 
profiling between cancer and normal tissues [64]. The 
significance test method was one-way ANOVA, using 
disease state (Tumor or Normal) as variable for 
calculating differential expression. 
 
cBioPortal for cancer genomics 
 
The cooperative genomic alterations of COL4A1 and 
COL4A2 network were analyzed by using cBioPortal. 
The cBioPortal for Cancer Genomics 
(http://cbioportal.org) is an integrated website for 
analyzing complex cancer genomics and clinical profiles 
[37]. The liver hepatocellular carcinoma (TCGA, 
Provisional) including 373 samples with mRNA data was 
selected for further analysis. The genomic profiles 
included mutations, putative CNA, and mRNA 
expression. The overview of COL4A1 and COL4A2 
genomic alterations was shown in the tab OncoPrint. The 
50 most frequently altered neighbor genes of COL4A1 
and COL4A2 were visualized in the tab Network. GO and 
KEGG pathway of the 50 most frequently altered 
neighbor genes were analyzed by using DAVID [65]. 
 
LinkedOmics analysis 
 
The correlated genes of COL4A1 and COL4A2 in HCC 
were analyzed by using LinkedOmics. The LinkedOmics 
database (http://www.linkedomics.org/ login.php) is a 
web-portal for multi-omics and clinical data analysis of 
32 cancer types with 11158 samples from TCGA [66]. 
The genes correlated with COL4A1 and COL4A2 in 

http://ualcan.path.uab.edu/
http://cbioportal.org/
http://www.linkedomics.org/%20login.php
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HCC were visualized in the LinkFinder module. The GO 
(CC, BP and MF), KEGG pathways, kinase-target, 
miRNA-target and transcription factor-target analysis of 
the COL4A1 and COL4A2 correlated genes were 
visualized in the LinkInterpreter module. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 

Supplementary Figure 1. COL4As expression in hepatocellular carcinoma (HCC). The transcription levels of COL4A1 and COL4A2 
were significantly upregulated in preneoplastic lesions (cirrhosis and dysplasia) and HCC tissues compared to normal tissues. (A) Dot plot 
showing the COL4As mRNA levels in GEO dataset (GSE6764). Normal (n=10): normal liver; Cirrhosis (n=13): cirrhotic liver tissue; dysplasia1 
(n=10): low-grade dysplastic liver tissue; dysplasia2 (n=7): high-grade dysplastic liver tissue; HCC1(n=18): early HCC; HCC2 (n=8): advanced 
HCC; HCC3 (n=9): very advanced HCC. Data are mean ± SD. *, P < 0.05, **, P < 0.01, ***, P < 0.001 (Student’s t-test). (B) Box plot showing the 
fold change of COL4A1 and COL4A2 in preneoplastic lesion (cirrhosis) and HCC tissues compared to normal tissues in GSE14323 dataset (Mas 
Liver, Oncomine). (C) Box plot showing the fold change of COL4A1 and COL4A2 in preneoplastic lesion (cirrhosis) and HCC tissues compared 
to normal tissues in GSE6764 dataset (Wurmbach Liver, Oncomine). Student’s t-test was performed to generate a p-value. 
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Supplementary Table 
 
Supplementary Table 1. Significantly enriched transcript factor, microRNA, and kinase networks of COL4A1 and 
COL4A2 in hepatocellular carcinoma (LinkedOmics). 

Geneset LeadingEdgeGene 

V$SRF_Q6 
COL1A2;COL1A1;FLNA;VCL;MYL9;KCNMB1;PLN;PPP1R12A;RARB;NFATC4;ZEB1;BDNF;
SLC7A1;THBS1;FOS;ABL1;ACTN1;PTCH1;PPP2R3A;NR4A1;DUSP5;ITGA7;ATP1A2;MYLK;

PLCB3 

V$RSRFC4_Q2 THBS2;ZFPM2;TGFB3;RASGRP3;TWIST1;PDGFRA;ATP2A3;ATP1B2;MITF;PIK3R3;PTCH1;
NR4A1;ITGA7 

CTGYNNCTYTAA
_UNKNOWN MRVI1;MECOM;ITGA3;IRAK4 

V$MEF2_01 ZFPM2;MEF2C;DLL4;PDGFRA;ANK3;FOS;ITGB6;ITGA7 

V$AML1_Q6 COL4A1;COL4A2;VIM;PGF;CBL;ITGA10;ANK3;NOTCH2;ATP2A2;NR4A1;TPM1;PXN;COL9
A2;PTPN7 

V$HEN1_01 PDGFB;DLL4;CREB3L1;DLL1;HIF1A;BDNF;ANK1;PDGFA;ROCK1;ANK2;DUSP7;BCL2L2;M
AP3K3;STAT3 

V$EVI1_04 CACNA1C;HSPB2;TWIST1;ITGA8;TGFB2;WNT2B;BMPR2;FZD2;NFATC4;BDNF;NOTCH2;P
TCH2;PTCH1;TPM1;IL2RG;PDGFC 

PRKG1 MRVI1;ADCY3;PRKG1;PDE5A;TRPC6;ARHGEF6;RGS2;RAP1B 
PTK2B NOS3 
MAPK7 MEF2C;ETS1;RPS6KA2;HIF1A;RUNX1;NFKB1;FOS;SGK1;MEF2A;DAPK1;PML;NR4A1 
CAMK2A VIM;ADCY3;ETS1;FLNA;PLN;ITGB1;CD44;PLCB3;SMAD2 
MIR-140 CACNA1C;PDGFRA;ANK2;BCL2L2;SOX4;ACTN4;GYS1;E2F3;GIT1;WNT1 

MIR-9 
COL4A2;PDGFRB;SLC9A1;MMP16;CXCR4;TLN1;MYH9;NFKB1;RALGDS;CREB5;NOTCH2;
RET;ANK2;PIK3R3;COL9A1;VAV3;WNT4;KITLG;MAP3K3;CCDC6;NCOA1;PAK2;PDGFC;RP

S6KA4;ATP1B1 

MIR-204, MIR-211 NTRK2;ITPR1;BCL2;ANGPT1;TGFBR2;CREB5;WNT4;KITLG;EZR;SOX4;MAP3K3;ATF2;RPS
6KA5;ATP2B1;YWHAG 

MIR-23A, MIR-23B 
MEF2C;RUNX1T1;PLAU;PLCB4;PPP1R12A;CXCL12;PTGER4;ZEB1;PPP2R5E;GLS;SLC7A1;T
GFBR2;TGFA;SGK1;KITLG;MAP3K5;SSH2;SPRY2;MAP3K3;PPP1CB;CCDC6;CRK;DUSP5;A

DRA2B;NCOA1;MAP4K4;COL4A5;MARCKS;YWHAG;STK4;CASP7 
MIR-519E CXCR4;DLL1;PPP2R2A;ARHGEF12;MYLK;SP1;FGD1;MAP3K7;RBL2 
MIR-7 GLI3;DDIT4;PRKCB;PIK3CD;SP1;ERBB4;PFN2 
MIR-518C DLL4;PPP1R12B;TWIST1;ANK2;ITGB3;ATP2A2;SPRY2 
MIR-130A, MIR-
301, MIR-130B 

ZFPM2;ZEB2;MAP3K12;KIT;DLL1;ITPR1;PDGFRA;WNT2B;BMPR2;TGFBR2;CREB5;ARHGE
F12;SOX4;NCOA1;ERBB4;WNT1 

 


