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INTRODUCTION 
 

The prevalence of diabetes is increasing worldwide, 

resulting in a dramatic increase in diabetic 

complications. Diabetic nephropathy (DN) is a 

complication of diabetes, and around 40% patients with 

diabetes ultimately develop DN [1]. Methylglyoxal 

(MGO), a reactive glucose metabolite, is produced in 

the glycolytic pathway, which is positively correlated 

with blood glucose levels [2, 3]. MGO is considered a 

main endogenous precursor for advanced glycation end 

products (AGEs) [4]. In fact, MGO is elevated in 

patients with diabetes and those with renal failure [5, 6]. 

Numerous studies have demonstrated that interactions 

between AGEs and their receptor (RAGE) evoke 

oxidative stress and the expression of inflammatory 

cytokines and fibrotic factors, leading to alterations in 

the renal structure and loss of renal function in diabetes 
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ABSTRACT 
 

Dipeptidyl peptidase 4 (DPP4) inactivates incretin hormone glucagon-like peptide-1. DPP4 inhibitors may exert 
beneficial effects on diabetic nephropathy (DN) independently of glycemic control; however, the mechanisms 
underlying are not fully understood. Here, we investigated the mechanisms of the beneficial effects of DPP4 
inhibition on DN using DPP4-deficient (DPP4-def) rats and rat mesangial cells.  
Blood glucose and HbA1c significantly increased by streptozotocin (STZ) and no differences were between WT-
STZ and DPP4-def-STZ. The albumin level in urine decreased significantly and the albumin/creatinine ratio 
decreased slightly in DPP4-def-STZ. The glomerular volume in DPP4-def-STZ significantly decreased compared 
with that of WT-STZ. Advanced glycation end products formation, receptor for AGE (RAGE) protein expression, 
and its downstream inflammatory cytokines and fibrotic factors in kidney tissue, were significantly suppressed 
in the DPP4-def-STZ compared to the WT-STZ with increasing glyoxalase-1 (GLO-1) expression responsible for 
the detoxification of methylglyoxal (MGO). In vitro, exendin-4 suppressed MGO-induced AGEs production by 
enhancing the expression of GLO-1 and nuclear factor-erythroid 2 p45 subunit-related factor 2, resulting in 
decreasing pro-inflammatory cytokine levels. This effect was abolished by GLO-1 siRNA. 
Our data suggest that endogenously increased GLP-1 in DPP4-deficient rats contributes to the attenuation of 
DN partially by regulating AGEs formation via upregulation of GLO-1 expression.  
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[7–9]. RAGE knockout mice were resistant to the 

development of DN induced by streptozotocin (STZ) 

[10], suggesting that suppression of the AGE-RAGE 

axis in the kidneys might be a potential therapeutic 

target for treatment of DN.  

 

Glucagon like peptide-1 (GLP-1) is a 30 amino acid 

long peptide hormone released from the lumen of 

digestive tract. It is known as an incretin hormone 

because of its role in enhancing the secretion of insulin 

[11–13]. Therefore, increasing the endogenous level of 

GLP-1 could be a plausible therapeutic approach for 

improving the glycemic control of type 2 diabetes. 

GLP-1 is rapidly metabolized by dipeptidyl peptidase-4 

(DPP4) and has an exceedingly short half-life. 

Numerous studies on both human and animal models 

have shown that the activity of circulating DPP4 is 

increased in obesity and diabetic condition. Its 

inhibition has potentially beneficial effects in diabetes 

and diabetic disorders, including diabetic nephropathy 

[14–16]. Beyond its effect on glycemic control, 

accumulating evidence indicates a broader range of 

physiological roles including those in the regulation of 

autophagy, elevation of anti-inflammatory effects, as 

well as in the promotion of metabolic reprogramming of 

carbohydrate or lipid metabolism [17, 18].  

 

DPP4 is known as adenosine deaminase complexing 

protein 2 or CD26 and is responsible for degrading 

incretin hormones, such as GLP-1 [19]. DPP4 also plays 

a pathogenic role in fibrosis development in various 

organs, particularly the kidney and liver [20–22]. DPP4 

inhibition improves metabolic control by GLP-1-

mediated insulin secretion in the pancreas and 

suppresses gluconeogenesis in the liver [22]. 

Accumulating evidence suggests that DPP4 inhibitors 

may prevent the onset and progression of DN beyond 

the effect by glycemic control [23, 24]. In addition, 

Matsui et al. recently showed that DPP4 deficiency 

attenuates DN partly by suppressing AGE-RAGE-

induced oxidative stress [25]. However, the molecular 

mechanism by which DPP4 inhibition regulates the 

AGE-RAGE axis in DN remains poorly understood. In 

the current study, we investigated whether increased 

GLP-1 in DPP4-deficient rats attenuates DN by 

regulating AGEs formation and the mechanisms 

underlying this attenuation both in vitro and in vivo. 

 

RESULTS  
 

DPP4 deficiency attenuates albuminuria and 

recovers the altered glomerular structure in  

STZ-induced diabetic rats  

 

The blood glucose level was measured every week after 

STZ administration and the rats with blood glucose levels 

of more than 300 mg/dL were used for the experiments. 

Blood glucose and HbA1c levels were significantly 

increased in WT-STZ diabetic rats and there were no 

differences between WT and DPP4 deficient rats (Figure 

1A, 1B). To investigate whether DPP4 deficiency affects 

the development of DN in STZ diabetic rats, we first 

examined urine albumin, BUN, and creatinine levels. 

Albumin in urine was significantly decreased in DPP4-

def-STZ rats compared with that in WT-STZ rats. The 

albumin/creatinine ratio (ACR) was increased by STZ, 

and ACR showed reduction trend in DPP4-deficient 

diabetic rats compared to that in WT-STZ rats (Figure 

1C, 1D). Since BUN and creatinine are biomarkers for 

renal dysfunction, we also measured their levels in the 

serum. Similarly, BUN levels slightly increased in WT-

STZ diabetic rats but did differ significantly between 

WT-STZ and DPP4-def-STZ rats (Figure 1E). Creatinine 

levels were similar among all groups (Figure 1F).  

 

Water intake and urine volume were significantly 

elevated in both wild type (WT) and DPP4 deficient 

diabetic rats. The water intake was significantly 

decreased in the DPP4-def-STZ rats, and urine volume 

were also reduced, although not significant (Table 1).  

 

Glomerular matrix expansion is a hallmark of DN in the 

kidney [26, 27]. Therefore, we also examined whether 

DPP4 deficiency affects the expansion of the 

glomerular area in STZ-induced diabetic rats using 

hematoxylin and eosin or Periodic Acid–Schiff staining 

(Figure 2A). The kidney weight significantly increased 

in diabetic rats but was not significantly different 

between WT-STZ and DPP4-def-STZ (Table 1). The 

glomerular volume and glomerular tuft area were 

significantly increased in diabetic WT-rats, whereas 

these increases were remarkably reduced in DPP4 def-

STZ rats (Figure 2B).   

 

Expression of TGF-β, fibronectin, and inflammatory 

cytokine is decreased in the kidney of DPP4-deficient 

diabetic rats 

 

To examine whether there is a change in the expression 

of inflammatory factors and fibrotic factors in the 

kidney of DPP4-deficient diabetic rats, we evaluated the 

expression of tumor necrosis factor (TNF)-α, interleukin 

(IL6), and monocyte chemoattractant protein (MCP)-1 

as inflammatory cytokines, and TGF-β and fibronectin 

(FN) as fibrotic factors. We found that the levels of 

TNF-α, IL6 and MCP-1 were significantly increased in 

WT diabetic rats. However, this increase was 

significantly inhibited in DPP4-def-STZ rats (Figure 

3A–3C, Supplementary Figure 1). Consistently, TGF-β 

and FN expression was also increased in WT-STZ rats 

compared to that in WT-CON rats and was significantly 

inhibited in DPP4-def-STZ rats (Figure 3D–3F). 
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Interestingly, the expression levels of TNF-α, IL6, 

MCP-1, and TGF-β were comparable with the 

respective levels in DPP4-def-CON rats (Figure 3, 

Supplementary Figure 1). 

 

AGE and RAGE expression is decreased and GLO-1 

expression is increased in the kidney of DPP4-

deficient diabetic rats 

 

 AGEs is a risk factor for the development of DN 

through their receptor, RAGE [28]. The interaction of 

AGE and RAGE induces the expression of pro-

inflammatory cytokines and fibrotic factors [29, 30]. 

Thus, we first evaluated whether AGE formation is 

increased in diabetic rats. AGE formation dramatically 

increased in WT-STZ rats and this increase was 

ameliorated in DPP4 def-STZ rats (Figure 4A). In line 

with AGEs formation, the expression of RAGE was 

significantly increased in WT-STZ rats, but this 

increase was blocked in DPP4-def-STZ rats (Figure 

4B). DPP4 deficiency itself also decreased RAGE 

expression compared to WT-CON (Figure 4B). GLO-1 

catalyzes MGO produced from high glucose into S-

lactoylglutathione, thereby reducing AGEs formation of 

DN risk factor [29]. Therefore, we examined the mRNA 

and protein expression levels of GLO-1 in the kidney 

tissues of diabetic rats. GLO-1 mRNA and protein 

expression were significantly decreased in the WT-STZ 

rats compared to in those in control rats, whereas the 

expression of GLO-1 was significantly increased in 

DPP4-def-STZ rats (Figure 4C, 4D). 

 

Ex-4 treatment reduces MGO-induced AGE 

formation and RAGE expression and increases 

GLO-1 expression in rat mesangial cells 

 

We first checked whether DPP4 affects GLO-1 

expression. Recombinant DPP4 treatment of rat 

mesangial cells did not induce GLO-1 protein 

expression (Supplementary Figure 2). Serum GLP-1 

levels were significantly increased in DPP4-deficient 

rats compared to those in WT rats (Figure 5). Therefore, 

we investigated whether GLP-1 contributes to the 

decrease in AGEs formation. We examined the effect of 

Ex-4, a GLP-1 receptor agonist, on MGO-induced 

AGEs formation in rat mesangial cells. MGO treatment 

increased AGEs formation by approximately 1.8-fold 

compared to that in the control without MGO treatment. 

However, AGEs formation was suppressed in the 

presence of Ex-4 (Figure 6A), and the final products of 

MGO detoxification system, D-lactate, significantly 

increased (Supplementary Figure 3). In addition, RAGE  

 

 
 

Figure 1. DPP4 deficiency attenuates albuminuria in STZ-induced diabetic rats. Both wild-type and DPP4-deficient rats were 

administered with IP injection at 30 mg/kg/day STZ three times. All samples were collected and evaluated as described in Materials and 
Methods. (A) Blood glucose level after 4 h fasting, (B) HbA1c level, (C) Albuminuria level, (D) Albumin/creatinine ratio. (E) Serum BUN level, 
(F) Serum creatinine level. WT-CON: wild-type control, WT-STZ: wild-type-STZ, DPP4-def-CON: DPP4-deficient control, DPP4-def-STZ: DPP4-
deficient-STZ. Data are shown as the means ± SEM. *p < 0.05, ** p < 0.01 and WT-CON, #p < 0.05 and WT-STZ, n = 7–8 per group. 
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Table 1. Effect of DPP4 deficiency on physiological parameters of STZ-induced diabetic rats. 

Characteristic WT-CON WT-STZ DPP4-def-CON DPP4-def -STZ 

Food intake (g/g per day) 0.032±0.01 0.100 ± 0.01** 0.054 ± 0.01**, ## 0.093 ± 0.01** 

Water intake (ml/g per day) 0.097 ±0.01 0.413 ± 0.01**  
 0.104± 0.01 ##                  0.327 ± 0.01**, ## 

Urine volume (ml/g per day) 0.028±0.003
 

0.286 ± 0.017** 0.029 ± 0.002 ## 0.243 ± 0.019* 

Body weight (g) 305.75± 4 223.71 ± 6** 279.86 ± 6**, ## 207.43 ± 8** 

Triglyceride (mg/dL) 39.49±1.693 107.51 ±19.933
**

 26.30± 1.589**, ## 32.61 ±4.571, ## 

Cholesterol (mg/dL) 248.43±7.525 253.05 ±10.934 205.29 ±2.634**, # 239.72±4.527 

Kidney weight (g) 6.90± 0.08 11.01 ± 0.24
* 

6.86 ± 0.21 10.41 ± 0.57* 

Metabolic cage study was conducted at 35-37 days since over 300 mg/dL of blood glucose after last STZ injection; other 
parameters collected at 42 days since over 300 mg/dL of blood glucose after last STZ injection. Data are shown means ± SEM; 
WT-CON: wild type control, WT-STZ: wild type-STZ, DPP4-def-CON: DPP4 deficient control, DPP4-def-STZ: DPP-4 deficient-

STZ.  *p < 0.05, **p < 0.01 and WT-CON, 
#
P < 0.05, 

##
P < 0.01 and WT-STZ n= 7-8 per group.  

 

protein expression was significantly increased by MGO 

treatment but reduced to basal levels following Ex-4 

treatment. However, Ex-4 itself did not affect RAGE 

expression (Figure 6B). In rat mesangial cells exposed to 

MGO, the GLO-1 mRNA and protein expression levels 

were reduced by around 30% and 40%, respectively; 

however, these reductions were significantly reversed by 

Ex-4 treatment as shown in Figure 6C, 6D. Since Nrf-2 

directly regulates the transcription of GLO-1 [31], we 

also investigated whether Ex-4 affects Nrf-2 expression 

and its activation. Ex-4 treatment led to increased Nrf-2 

protein expression and induced its translocation from the 

cytosol into the nucleus in the presence of MGO (Figure 

6E–6H), indicating that Ex-4 treatment induces Nrf-2 

activation. 

 

Ex-4 treatment reduces the MGO-induced 

expression of inflammatory cytokines in rat 

mesangial cells 

 

AGEs bind RAGE and induce reactive oxygen species 

production and inflammatory cytokine expression [8]. 

As Ex-4 treatment reduced MGO-induced AGEs 

formation, we evaluated whether Ex-4 reduces MGO- 

induced expression of inflammatory cytokines. In line 

with RAGE expression, Ex-4 itself did not affect 

inflammatory cytokine expression (Figure 7A–7C). 

However, when we treated rat mesangial cells with 

MGO, the expression of TNF-α, MCP-1, and IL-6 

mRNA was remarkably elevated but decreased by Ex-4 

treatment (Figure 7A–7C). 

 

 
 

Figure 2. DPP4 deficiency recovers the structure of glomerulus impaired by STZ. Kidney samples were collected at 42 days, since 
over 300 mg/dL of blood glucose after STZ injection as described in the Materials and Methods. The glomerular volume was measured using 
the ImageJ software for at least 15 images from each kidney section. (A) Representative image of glomerulus by H&E staining and by PAS 
staining, (B) Glomerular volume. WT-CON: wild-type control, WT-STZ: wild-type-STZ, DPP4-def-CON: DPP4-deficient control, DPP4-def-STZ: 
DPP4-deficient-STZ. Data are shown as the means ± SEM. *p< 0.05 and WT-CON, #p < 0.05 and WT-STZ, n = 7–8 per group.  
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Effect of Ex-4 on the reduction of AGEs formation 

and inflammatory cytokine expression is abolished 

in the knockdown of GLO-1 in rat mesangial cells 

 

To investigate whether Ex-4 directly inhibits AGEs 

formation by regulating GLO-1, we knocked down 

GLO-1 in rat mesangial cells using siRNA GLO-1 as 

confirming knockdown at the protein level (Figure 

8A). AGEs formation was significantly induced by 

MGO treatment in scrambled siRNA transfected cells 

and further increased in GLO-1 siRNA transfected 

cells (Figure 8B). Ex-4 treatment suppressed MGO-

induced AGEs formation, but was less effective in the 

knockdown of GLO-1 and the increased level was 

comparable to that by MGO treatment in the 

scrambled control (Figure 8B). In agreement with 

these data, the expression of inflammatory cytokines, 

such as TNF-α, IL-6, and MCP-1, showed similar 

trends as AGEs formation between the scrambled 

control and GLO-1 siRNA-transfected cells treated 

with MGO (Figure 8C–8E). All cytokines were highly 

increased under GLO-1 knockdown conditions 

compared to under scrambled conditions, and the 

suppressive effect of Ex-4 against cytokine expression 

was inhibited in the knockdown of GLO-1 (Figure 8C–

8E). 

 

DISCUSSION 
 

Numerous studies on both human and animal models 

showed that circulating DPP4 activity is increased [32, 

33] and its inhibition has a potential beneficial effects in  

diabetes and diabetic disorders [19, 22]. DPP4 

inhibitors (such as linagliptin and DA-1229) suppressed 

TGF-β/Smad-mediated renal fibrosis [34, 35] and 

prevented podocyte damage without lowering the blood 

glucose in diabetic condition [24, 36], [37]. DPP4 

deficiency also protects kidney from acute ischemia

 

 
 

Figure 3. The expression of inflammatory cytokines and fibrotic factors are reduced in STZ-induced diabetic rats. (A) The 

kidney tissues were fixed in formalin and then subjected to immunofluorescence detection of TNF-α (arrow heads pointing to dark-brown 
dots indicating TNF-α expression). n = 5 per group, (B) IL6 protein level (C) MCP1 protein level (D) TGF-β mRNA level, (E) TGF-β protein level 
with a representative blot, (F) Fibronectin (FN) mRNA level in kidney tissues. Data are shown as the means ± SEM *p < 0.05 vs. WT-CON; #p < 
0.05 vs. WT-STZ. n = 5–8 per group. 
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reperfusion injury, indicating that DPP4 deficiency 

contributes to the attenuation of DN [38]. Recently, 

Matsui T. et al reported that the levels of renal AGE-

modified protein, oxidative stress and ICAM-1 gene 

mRNA expression were decreased and reduced 

proteinuria in DPP4 deficient diabetic rats [25]. 

However, the underlying mechanism by which AGE-

modified proteins are suppressed has not been 

investigated. In the current study, we showed that the 

endogenously increased GLP-1 in vivo due to DPP4 

deficiency upregulated GLO-1 expression and increased 

MGO detoxification, resulting in reduced AGEs 

formation.  

 

Histological analysis showed that the glomerular 

volume and mesangial matrix expansion were increased 

in diabetic rats and significantly reduced in DPP4-

deficient diabetic rats. However, our biochemical 

analysis of the serum and urine did not significantly 

reflect these histological improvements such as 

creatinine and ACR, but showed a reduction in the 

albumin level in urine and decreased triglyceride in 

serum. Similarly, Moellmann et al. reported that 

overexpression of a GLP-1 mutant, resistant to DPP4, 

showed renoprotective effects, such as reduced glycosuria 

and inflammation without reducing proteinuria in the 

kidney of STZ-induced diabetic mice [39]. In contrast, 

Matsui et al. showed deceased fibrosis and improved 

kidney functions in DPP4-deficient rats, including 

reduced ACR [25]. These discrepancies among different 

studies, including ours, may be due to the variance in 

severity of renal pathology of recruited animals. 

 

 
 

Figure 4. Increased of AGE formation, RAGE and GLO-1 expression are inhibited in the kidney of DPP4 deficient diabetic rats. 

Kidney samples were collected at 42 days, since over 300 mg/dL of blood glucose after STZ injection as described in Materials and Methods 
section. AGEs formation was evaluated using antibody against AGEs in the kidney section. Brown color indicates AGEs formation in staining. 
(A) AGEs formation, (B) RAGE protein level with representative blot (C) GLO1 mRNA level (D) GLO-1 protein level with a representative blot in 
tissues. WT-CON: wild-type control, WT-STZ: wild-type-STZ, DPP4-def-CON: DPP4-deficient control, DPP4-def-STZ: DPP4-deficient-STZ. Data 
are shown as the means ± SEM. *p < 0.05 and WT-CON, #p < 0.05 and WT-STZ, n = 7–8 per group.   
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Hyperglycemia elevates MGO production from 

glycolysis, which is a by-product of glycolysis and 

main source of AGEs formation [40]. AGEs 

accumulation induces expression of its receptor 

(RAGE). Indeed, RAGE expression is strongly 

correlated with the plasma levels of AGEs [41]. 

Activation of AGE-RAGE signaling is considered one 

of the main mechanisms involved in the development 

 

 
 

Figure 5. Circulating plasma GLP-1 level is increased in DPP4-deficient rats. Plasma GLP-1 concentration was measured using rat-

specific GLP-1 ELISA kit within 3 h after collecting blood from wild-type and DPP4-deficient rats at 8 weeks of age. Data are shown as the 
means ± SEM. *p < 0.05 and WT, n = 4–6 per group.  

 

 
 

Figure 6. Ex-4 treatment reduces MGO-induced AGEs formation and RAGE expression by upregulating GLO-1 enzyme and 
recovers the decrease in MGO–induced GLO-1 expression in rat mesangial cells. Rat mesangial cells were treated either with 1 mM 

MGO, 10 nM Ex-4, or both for 10 h after synchronization with 1% fetal bovine serum for 13-16 h. AGEs formation was measured as described 
in Materials and Methods. (A) AGEs formation, (B) RAGE protein level with representative blot, (C) GLO-1 mRNA level, and (D) GLO-1 protein 
level with a representative blot (E) Nrf-2 protein level with a representative blot in total protein extracts, (F) Representative blot of Nrf-2 
protein in cytosol and nuclear fractions in rat mesangial cells. 1: CON; 2: MGO; 3: Ex-4; 4: MGO + Ex-4 (G) Nrf-2 protein level in cytosol 
fraction. (H) Nrf-2 protein level in nuclear fraction. Data are shown as the means ± SEM. *p < 0.05 and CON, #p < 0.05 and MGO, n = 4–7. 
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of DN [28, 42]. Hou et al. showed that elevated 

RAGE amplifies AGEs-induced monocyte 

perturbation and contributes to the monocyte-

mediated systemic inflammatory response in chronic 

kidney disease [41]. Increased production of AGEs 

and its interaction with its receptor (RAGE) also 

evoke oxidative stress generation, inflammatory 

cytokines and fibrotic factors expression, thereby 

leading to alterations in the renal structure and loss of 

renal function in diabetic conditions [9, 10]. 

 

 
 

Figure 7. Ex-4 treatment reduces MGO-induced inflammatory cytokine expression in rat mesangial cells. Rat mesangial cells 
were treated either with 1 mM MGO, 10 nM Ex-4, or both for 10 h after synchronization with 1% fetal bovine serum for 13-16 h. (A) TNF-α 
mRNA level, (B) MCP-1 mRNA level, (C) IL6 mRNA level in rat mesangial cells. Data are shown as the means ± SEM. *p < 0.05 and CON, #p < 
0.05 and MGO, n = 3–4.  

 

 
 

Figure 8. AGEs formation and inflammatory cytokines are further increased in the knockdown of GLO-1. Rat mesangial cells 

were transfected either with siRNA control or siRNA GLO-1 and, then, treated with 0.75 mM MGO and 10 nM Ex-4 for 4 h. (A) siRNA GLO-1 
transfection efficacy. (B) AGEs formation level in the knockdown of GLO-1 and mRNA expression levels of inflammatory cytokines including 
(C) TNF-α (D) MCP-1, and (E) IL-6. Data are shown as the means ± SEM. *p < 0.05 vs. siRNA CON, #p < 0.05 vs. siRNA CON + MGO, †p < 0.05 vs. 
siRNA GLO-1 + CON, ‡p < 0.05 vs. siRNA CON + MGO + Ex-4. n = 5–6. 
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To reach similar hyperglycemic states between WT and 

DPP4-deficient rats, we maintained the rats until having 

similar blood glucose and HbA1c levels, indicating 

physiologically similar induction levels of AGEs 

formation. Our data showed that AGEs formation in the 

kidney was significantly reduced in the DPP4-deficient 

diabetic rats compared to that in WT diabetic rats. Since 

DPP4 protein levels were not significantly different 

between WT-CON and DPP4-def-CON rats (data not 

shown) and serum GLP-1 levels were significantly 

increased in DPP4-deficient rats, the reduction in AGE 

formation may be attributed to the increased GLP-1 

levels. Although DPP4 deficiency itself improves the 

physiological parameters (body weight and triglyceride) 

monitored in the current study, we did not observe any 

alteration in the renal structure as well as differences in 

the inflammatory cytokine and GLO-1 expression levels 

between WT and DPP4 deficient rats under normal 

physiological conditions. Moreover, recombinant DPP4 

treatment itself did not induce GLO-1 protein 

expression either with or without MGO. These data 

suggested that increased GLP-1 expression might be a 

main contributor in the regulation of GLO-1 expression 

and AGE formation. However, Kaifu K et al. recently 

reported that AGE treatment failed to stimulate the NF-

kB signaling pathway in tubular cells isolated from 

DPP4 deficient rats unlike in tubular cells isolated from 

control rats, suggesting an autocrine effect of DPP4, 

such as the decrease in RAGE protein expression under 

DPP4 deficiency, as shown in our current study [43].   

 

In response to AGEs formation, the RAGE protein level 

was increased significantly in the WT diabetic rats. 

Interestingly, RAGE protein was barely detectable in 

DPP4-deficient rats but was significantly induced by 

STZ treatment. These data revealed a clear correlation 

between AGEs production and RAGE expression in in 

vivo. Additionally, our in vitro study using rat 

mesangial cells, exposed to MGO, recapitulated this 

observation in diabetic rats. Ex-4 treatment suppressed 

RAGE protein expression induced by MGO, as 

observed in DPP4-deficient diabetic rats. Similar to our 

data, those reported in other studies showed that Ex-4 

attenuates rat mesangial cell dysfunction caused by 

high-glucose exposure through the AMPK pathway and 

suppresses renal AGE-modified protein formation in 

STZ-induced diabetic rats [25, 44]. Moreover, RAGE 

knockout mice were resistant to the development of DN 

induced by STZ [10]. Taken together, these data 

suggested that AGE and RAGE signaling activation is 

regulated by GLP-1/Ex-4.   

 

AGE/RAGE-mediated inflammatory cytokines and 

fibrotic factors expression play an important role in the

 

 
 

Figure 9. Schematic diagram in STZ-induced diabetic nephropathy showing GLP-1/Ex-4 increases detoxification of 
methylglyoxal (MGO) through the regulation of glyoxalase-1. Hyperglycemia-induced MGO accumulation under diabetic condition 

activates the AGEs-RAGE signaling pathway, which results in diabetic nephropathy through upregulation of the expression of inflammatory 
cytokines and fibrotic factors. In contrast, GLP-1/Ex-4 enhances detoxification of MGO, producing D-lactate through the regulation of 
glyoxalase-1 expression. GLP-1: Glucagon like peptide-1, Ex-4: Exendin-4, Nrf-2: Nuclear factor-erythroid 2 p45 subunit-related factor-2, AGEs: 
Advanced glycation end products, RAGE: Receptor AGE.   
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development of DN [45]. Our results showed that the 

mRNA expression levels of TNF-α and MCP-1 were 

significantly increased in the WT-STZ rats compared to 

in the WT-CON rats but their expression levels were 

significantly suppressed in the DPP4-def-STZ rats. 

Consistently, DPP4 deficiency decreased the expression 

levels of fibrotic factors (TGF-β and fibronectin) 

elevated by STZ administration. In addition, TNF-α, IL-

6, and MCP-1 expression was significantly inhibited by 

Ex-4 treatment in rat mesangial cells exposed to MGO, 

suggesting that GLP-1/Ex-4 might inhibit inflammatory 

cytokine and fibrotic factor expression by suppressing 

AGEs formation. 

 

The formation of AGEs and the upregulation of their 

downstream cytokines have been suggested as potential 

mechanisms involved in the development of DN [46, 

47]. Thus, reducing MGO levels may be beneficial in 

preventing the pathogenesis of DN. Endogenous MGO 

levels can be reduced by a detoxification process 

involving the glutathione-dependent GLO pathway. 

MGO spontaneously reacts with glutathione, thereby 

forming a D-lactoylglutathione, which is subsequently 

metabolized to D-lactate by GLO-1 and GLO-2 [48]. 

Our current results showed that GLO-1 protein and 

mRNA expression in the kidney tissues was 

significantly decreased in the WT-STZ rats compared to 

in the WT-CON rats, but its expression significantly 

recovered to the level of control group in DPP4-

deficient rats. Ex-4 treatment inhibited MGO-induced 

AGEs formation and inflammatory cytokine expression, 

whereas these inhibitory effects of Ex-4 were abolished 

in GLO-1 knockdown cells. These results suggested that 

GLP-1/Ex-4 increases MGO detoxification by 

upregulating GLO-1 expression. Consistent with our 

data, overexpression of GLO-1 in apolipoprotein E-null 

mice prevented albuminuria in the STZ-induced 

diabetic condition [49], whereas knockdown of GLO-1 

induced DN even in non-diabetic mice [50]. Moreover, 

GLO-1 overexpression completely prevented DN 

without altering the hyperglycemic condition [49].  

 

Recently, it was reported that MGO-induced AGEs 

formation is reduced by nuclear factor-erythroid 2 p45 

subunit-related factor-2 (Nrf-2)-mediated upregulation of 

GLO-1 expression [51, 52]. Ex-4 has been reported to 

activate Nrf-2 in a pancreatic beta-cell line [53]. 

Similarly, our data also showed that Ex-4 treatment 

increases Nrf-2 protein expression and induces its 

translocation from cytosol to nucleus in the presence of 

MGO. Taken together, these data suggested that GLO-1 

expression may be upregulated via activation of Nrf-2 by 

GLP-1/Ex-4. 

 

In conclusion, our results showed that STZ-induced 

diabetic hyperglycemia impaired kidney structure and 

function through AGEs-RAGE mediated pro-

inflammatory cytokines and fibrotic factor expression. 

Endogenously increased GLP-1 expression in DPP4-

deficient rats decreased AGEs formation by 

upregulating GLO-1, contributing to the recovery of the 

impaired kidney structure and function by 

downregulating pro-inflammatory cytokine and fibrotic 

factor expression as shown in Figure 9.  

 

MATERIALS AND METHODS 
 

Animals 

 

DPP4 deficient (def) rats were purchased from Rat 

Resource and Research Center at the University of 

Missouri. Six-week-old male Fischer 344 wild-type 

(WT) rats were purchased from Charles River 

Laboratories (Wilmington, MA, USA). The rats were 

randomly divided into four experimental groups as 

follows: wild-type control (WT-CON), wild-type STZ 

(WT-STZ), DPP4 deficiency-control (DPP4-def-CON), 

and DPP4 deficiency-STZ (DPP4-def-STZ). To induce 

diabetes, 8-week-old rats in all STZ groups were 

administered 30 mg/kg /day STZ (Streptozotocin, 

Sigma, S0130) intraperitoneally (i.p) after 4 hours (h) 

fasting in the morning 3 times. As a control, the same 

volume of citrate buffer (pH 4.5) was injected. All 

animal care and treatments were conducted in 

accordance with the guideline for the animal use and 

care committee of the Gachon University and Lee Gil 

Ya diabetes and cancer institute.  Blood glucose from 

the tail vein blood was measured every week until the 

end of the experiment using a glucose analyzer (One 

Touch®Ultra, Lifescan Johnson and Johnson, Milpitas, 

CA) after 4 h of fasting in the morning. The level of 

hemoglobin A1c (HbA1c) in blood was assessed before 

STZ injection and at the end of experiments using a 

DCA System HbA1c Reagent Kit (SIEMENS, New 

York, USA). At 42 days since over 300 mg/dL of blood 

glucose after the last STZ injection, we collected blood 

and kidney (L/R) samples right after measuring body 

weight for further analysis. The tissue samples were 

stored at -80℃ until use. The levels of cholesterol and 

triglyceride in serum were determined by commercially 

available kits (#AM203, ASAN HDL-Cholesterol; 

#AM157K, ASAN TG-s, ASAN) according to 

manufacturer’s instructions.  

 

Measurement of biochemical parameters in blood 

and urine  

 

 The rats were placed in individual mouse metabolic 

cages for 24 h at 35–37 days since over 300 mg/dL of 

blood glucose after the last STZ injection. Food intake, 

water intake, and urine volumes were measured. The 

blood urea nitrogen (BUN), creatinine and micro-
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albumin were measured in serum collected at end of 

experiment or urine from metabolic cage using a 

biochemical analyzer (Beckman, USA).  

 

Renal histological assessment  

 

The rats were sacrificed and rapidly fixed in 10% 

formalin buffer and embedded in paraffin. Next, 3-

µm sections were stained with hematoxylin and eosin 

to observe alterations in the kidney structure or 

Periodic acid-Schiff to assess basement membrane 

thickening and glomerular volume. Glomerulus 

images were acquired by light microscopy at 200x 

magnification. Glomerular volumes were analyzed 

with the ImageJ program (NIH, Bethesda, MD, USA) 

for up to 15 glomeruli in each rat. To assess AGEs or 

the protein expression level of anti-tumor necrosis 

factor (TNF)-α, we also stained the sections with a 

specific antibody for AGEs (#ab23722, Abcam, 

Cambridge, UK) or TNF-α  (sc-1350, Santa Cruz)  

and then visualized the sections using the DAB 

substrate chromogen system (K346811, Dako, 

Glostrup, Denmark).  

 

Measurement of plasma GLP-1  

 

Blood samples were collected from 8-week-old WT 

and DPP4-deficient rats. Plasma GLP-1 levels were 

measured within 3 h of collecting the blood with a Rat 

ELISA kit (MBS2501740, MyBioSource, San Diego, 

CA, USA) according to the manufacturer’s 

instructions.    

 

Cell culture 

 

Rat mesangial cells were obtained from American Type 

Culture Collection (ATCC, CRL-2573, Manassas, VA, 

USA) and cultured in Dulbecco's modified Eagle's 

medium containing 15% fetal bovine serum, 1% 

penicillin-streptomycin and G418 (0.4 mg/mL) 

according to ATCC recommendations. 

 

Measurement of AGEs formation  

 

Rat mesangial cells were treated with 1 mM MGO, 10 

nM Ex-4, or both for 10 h after synchronization with 

1% fetal bovine serum for 13–16 h. AGEs formation 

was performed as previously described [51, 54]. Briefly, 

the cells were incubated in a mixture of chloroform and 

methanol (2:1 v/v) overnight followed by 

homogenization in 0.1 N NaOH and centrifugation at 

8000g for 15 min at 4°C. AGEs formation in the 

supernatant was analyzed at an excitation/emission 

wavelength of 370/440 nm against 0.1 N NaOH as a 

blank and 1 mg/mL of bovine serum albumin in 0.1 N 

NaOH as a reference.   

Treatment of recombinant DPP4 peptide 

 

Rat mesangial cells were seeded into 6-well plates at 5 

× 104 cells/well and treated with 1 mM MGO, 500 

ng/mL DPP4 (#954-SE-010, R&D systems, MN, USA), 

or both for 10 h after synchronization with 1% fetal 

bovine serum for 13–16 h. 

 

D-Lactate assay 

 

Rat mesangial cells were seeded into 6-well plates at 5 × 

104 cells/well and treated with 1 mM MGO, 10 nM Ex-4, 

or both for 10 h after synchronization with 1% fetal 

bovine serum for 13–16 h. The D-lactate level was 

measured using D-Lactate assay kit (#ab83429, Abcam, 

Cambridge, UK) according to the manufacturer’s 

instructions. 

 

Small interfering RNA  

 

Rat mesangial cells were seeded into 6-well plates at 5 

× 104 cells/well and then transfected with either 

siRNA control (SN-1002, Bioneer, South Korea) or 

siRNA GLO-1 using Lipofectamine RNAi MAX 

(Thermo Fisher Scientific, Waltham, MA, USA) for 24 

h according to the manufacturer’s instructions. The 

cells were treated with 0.75 mM MGO and 10 nM Ex-

4 for 4 h and then harvested for further analysis.   

 

Western blotting 

 

Total protein was isolated using mammalian protein 

extract buffer (28-9712-79, GE Life Sciences, Little 

Chalfont, UK) containing protease inhibitor cocktail 

(P8340, Sigma, St. Louis, MO, USA). The cytosol and 

nuclear fraction were prepared as described previously 

[55, 56]. An equal amount of protein was separated by 

sodium dodecyl sulfate polyacrylamide gel 

electrophoresis and transferred on polyvinylidene fluoride 

membranes. The membrane was blocked with blocking 

buffer for 1 h and then incubated serially with appropriate 

primary and secondary antibodies. Signals were detected 

by using an enhanced chemiluminescent detection system 

(Millipore, Billerica, MA, USA). The band density was 

quantified with the ImageJ program and normalized to 

actin, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and Lamin A/C. The antibodies used were as 

follows: anti-actin (#8457, Cell Signaling Technology, 

Danvers, MA, USA), anti-GAPDH (#MAB374, 

Millipore), anti-RAGE (sc-365154, Santa Cruz 

Biotechnology, Dallas, TX, USA), anti-DPP4/CD26 

(5E8) (sc-8422, Santa Cruz), anti-glyoxalase-1 (sc-

101537, Santa Cruz), anti-transforming growth factor 

(TGF)-β (#3711, Cell Signaling Technology), anti-Lamin 

A/C (#4777, Cell Signaling Technology, Danvers, MA, 

USA), anti-nuclear factor-erythroid 2 p45 subunit-related 
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factor-2 (Nrf-2) (ab137550, Abcam), anti-monocyte 

chemoattractant protein 1 (MCP-1) (ab25124, Abcam), 

and anti-interleukin 6 (IL-6) (ab9324, Abcam).  

 

Gene expression analysis by RT-qPCR  

 

Total RNA was isolated from rat kidney tissue or rat 

mesangial cells using RNAiso reagent (Takara, Shiga, 

Japan). The cDNA was synthesized with 2 μg of total 

RNA using the PrimeScript 1st strand cDNA synthesis 

kit (6110A, Takara) according to the manufacturer’s 

instructions. Quantitative real-time PCR was performed 

using Applied Biosystem Prism 7900HT Real-Time PCR 

(Foster City, CA, USA) as previously reported [51]. The 

primers used are listed in Supplementary Table 1. 

 

Statistical analysis 

 

Data are expressed as the means ± SEM. Statistical 

analysis was performed by one-way analysis of variance 

followed by Tukey’s post-hoc multiple comparison tests 

for more than two groups.  An unpaired 2-tailed t-test 

was used to analyze two groups. Significance was 

considered when p values < 0.05.  
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SUPPLEMENTARY MATERIALS 
 

 

 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The expression of inflammatory cytokines are reduced in STZ-induced diabetic rats. (A) TNF-α mRNA 
level, (B) MCP-1 mRNA level in kidney tissues. Data are shown as the means ± SEM *p < 0.05 vs. WT-CON; #p < 0.05 vs. WT-STZ. n = 5–8 per 
group. 

 

 

 

Supplementary Figure 2. Recombinant DPP4 protein treatment does not alter the expression of GLO-1 in rat mesangial cells. 
Rat mesangial cells were treated either with 1 mM MGO, 500 ng/mL recombinant DPP4, or both for 10 h after synchronization with 1% fetal 
bovine serum for 13-16 h. GLO-1 protein level with a representative blot. Data are shown as the means ± SEM. P = 0.09 and CON, n = 3. 

 



www.aging-us.com 609 AGING 

 
 

Supplementary Figure 3. D-lactate level in rat mesangial cells. Rat mesangial cells were treated either with 1 mM MGO, 10 nM Ex-4, 
or both for 10 h after synchronization with 1% fetal bovine serum for 13-16 h. The D-lactate level was measured using the D-lactate assay kit, 
according to the manufacturer’s instructions. Data are shown as the means ± SEM. *p < 0.05 and CON, #p < 0.05 and MGO, n = 5. 
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Supplementary Table 
 

 

Supplementary Table 1. Primer Sequences. 

Gene name Direction Sequence 5′-3′  

RAGE 
Forward  5′-GTG GGG ACA TGT GTG TCA GAG GGA A-3′ 

Reverse  5′-TGA GGA GAG GGC TGG GCA GGG ACT-3′ 

GLO-1 
Forward  5′-ATG CGA CCC AGA GTT ACC AC-3′ 

Reverse  5′-CCA GGC CTT TCA TTT TAC CA-3′ 

TNF-α 
Forward  5′-CAG CCG ATT TGC CAT TTC A-3′ 

Reverse  5′-AGG GCT CTT GAT GGC AGA GA-3′ 

IL-6 
Forward  5′-TCT CTC CGC AAG AGA CTT CCA-3′ 

Reverse  5′-ATA CTG GTC TGT TGT GGG TGG-3′ 

MCP-1 
Forward  5′-GTG CTG ACC CCA ATA AGG AA-3′ 

Reverse  5′-TGA GGT GGT TGT GGA AAA GA-3′ 

TGF-β  
Forward  5′-AGT CCT TTA GGG CGG TCA AT-3′ 

Reverse  5′-TGG GAC TGA TCC CAT TGA TT-3′ 

Fibronectin 
Forward  5′-GTG GCT GCC TTC AAC TTC TC-3′ 

Reverse  5′-AGT CCT TTA GGG CGG TCA AT-3′ 

Cyclophilin  
Forward  5′-TGC CAT CGC CAA GGA GTA G-3′ 

Reverse  5′-TGC ACA GAC GGT CAC TCA AA-3′ 

GAPDH  
Forward  5′-TGG TCT ACA TGT TCC AGT ATG ACT-3′ 

Reverse  5′-CCA TTT GAT GTT AGC GGG ATC TC-3′ 
 


