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INTRODUCTION 
 

Skeletal muscle represents the most abundant tissue 

constituent of the human body, accounting for 

approximately 40% of total body mass in healthy 

individuals [1]. Many key physiological processes are 

dependent on skeletal muscle, including locomotion,  

 

whole-body substrate metabolism and temperature 

regulation [2], and its maintenance is thus critical for 

physical function and health [3]. This is particularly 

relevant to chronological aging, where the progressive 

loss of skeletal muscle mass and strength that 

accompanies advancing age (termed ‘sarcopenia’ [4]) 

associates with decreased functional capacity [5], 
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ABSTRACT 
 

Resistance exercise (RE) remains a primary approach for minimising aging muscle decline. Understanding 
muscle adaptation to individual contractile components of RE (eccentric, concentric) might optimise RE-based 
intervention strategies. Herein, we employed a network-driven pipeline to identify putative molecular drivers 
of muscle aging and contraction mode responses. RNA-sequencing data was generated from young (21±1 y) and 
older (70±1 y) human skeletal muscle before and following acute unilateral concentric and contralateral 
eccentric contractions. Application of weighted gene co-expression network analysis identified 33 distinct gene 
clusters (‘modules’) with an expression profile regulated by aging, contraction and/or linked to muscle strength. 
These included two contraction ‘responsive’ modules (related to ‘cell adhesion’ and ‘transcription factor’ 
processes) that also correlated with the magnitude of post-exercise muscle strength decline. Module searches 
for ‘hub’ genes and enriched transcription factor binding sites established a refined set of candidate module-
regulatory molecules (536 hub genes and 60 transcription factors) as possible contributors to muscle aging 
and/or contraction responses. Thus, network-driven analysis can identify new molecular candidates of 
functional relevance to muscle aging and contraction mode adaptations. 
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metabolic disease [6], reduced quality of life [7] and 

ultimately increased mortality rates [8]. Given the 

worldwide aging population is projected to almost double 

by 2050 [9], promoting healthy skeletal muscle across the 

lifespan remains a major public health priority.  

 

Resistance exercise (RE) training offers the most 

effective lifestyle intervention for enhancing muscle mass 

and strength in youth [10] and older age [11]. 

Nonetheless, older muscle displays blunted hypertrophic 

and functional gains following chronic RE training [12, 

13], the molecular mechanisms of which are 

incompletely defined (e.g. [14, 15]). Traditional RE 

involves repeated episodes of lengthening (eccentric, 

ECC) and shortening (concentric, CON) contractions, 

which can each be distinguished by their distinct 

mechanical (ECC) and metabolic (CON) characteristics 

[16]. It is thus plausible that poorer adaptation of aging 

muscle to RE may be due at least in part to unique 

molecular and/or functional responses to individual 

contraction modes. Consistent with this we have recently 

demonstrated, via classical differential expression 

analysis, age-related and mode-dependent transcriptional 

responses of muscle to contraction [17]. Notably, 

although both young and older muscle showed large 

overlap of CON vs. ECC transcriptional changes, older 

muscle exhibited: (i) a CON-specific downregulation of 

mitochondrial genes and upregulation of blood vessel 

development- and cell adhesion-related genes, and; (ii) an 

ECC-specific response without clear ontological 

functional relevance [17], perhaps reflecting some 

mechanically-mediated stochasticity [18].  

 

Whilst these findings provide insight on the 

transcriptional basis of muscle adaptation to aging and 

contraction mode, muscle is a complex organ comprised 

of highly coordinated and diverse molecular systems that 

cannot be surmised by changes in expression of single 

molecules. Additionally, although reductionist 

approaches highlight that individual genes/ subsets of 

genes can be central to muscle regulation (e.g. highly 

connected ‘hub’ genes and transcription factors 

governing classes of genes), key molecular drivers of 

adaptation do not necessarily display evidence of 

differential regulation in isolation [19]. As such, standard 

differential gene-level analyses overlook such biological 

complexity, and meaningful information captured by a 

transcriptomic experiment can remain hidden [20]. 

Moreover, the (usually large) lists of differentially 

expressed genes remain difficult to prioritise 

downstream, due to the relationships between statistical 

significance, fold change and biological significance 

often being discordant [20]. Thus, although the utility of 

traditional differential gene expression analyses is 

invaluable, such approaches often lead to a drowning in 

information but starvation of knowledge [21].  

Co-expression network analysis is an alternative 

approach for encompassing the complexity of entire 

molecular systems whilst probing putative individual 

molecules that govern, for example, muscle adaptation 

to age and exercise. Such an approach accounts for the 

intrinsic organisation of the transcriptome by placing 

focus on the co-regulation of genes as a function of 

expression similarity [22]. Groups of genes displaying a 

tightly coordinated expression pattern can then be 

further analysed using established network-centric 

methods to sequentially deduce the pathways and key 

molecular drivers modulating a given phenotypic 

response. Accordingly, co-expression network analysis 

represents a biologically-motivated data reduction 

scheme that can provide novel understanding of 

complex biological phenomena beyond that attained via 

standard differential gene-level analysis alone [21, 23]. 

Indeed, recent meta-analyses highlight the potential 

utility of network analyses for understanding human 

aging [24]. However, its application to individual 

tissues, and particularly muscle, is limited. In the 

present work, we thus establish a co-expression network 

analysis pipeline for advanced data-driven insight into 

novel molecules regulating human muscle adaptation to 

aging and individual contraction modes. Additionally, 

we elucidate functionally relevant molecular networks 

by establishing their association to end-point 

physiological measures of muscle strength.  

 

RESULTS 
 

RNA-sequencing dataset 

 

The current work utilised our RNA-sequencing dataset 

originally presented in [17], containing whole-

transcriptome gene expression data generated from the 

skeletal muscle (m. vastus lateralis) of young (18-30 y) 

and older (65-75 y) individuals at baseline (BL) as well 

as 5 h following isolated unilateral CON and contralateral 

ECC leg extension exercise. After appropriate processing 

of the raw RNA-sequencing data (see ‘methods’), 

normalised expression values for 12044 genes across 36 

samples (6 young BL; 6 young post-ECC; 5 young post-

CON; 7 older BL; 5 older post-ECC; 7 older post-CON) 

were obtained for downstream analyses.  

 

Gene co-expression network generation 

 

As an initial step in our network-driven pipeline, we 

modelled interactions among genes in our dataset by 

constructing a gene co-expression network using the 

underlying methods of weighted gene co-expression 

network analysis (WGCNA) [25]. In particular, a signed 

gene-wise network was assembled in order to sustain a 

greater distinction between gene ‘activation’ and 

‘repression’ [21]. Application of signed-WGCNA 
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subsequently returned an approximately scale-free gene 

co-expression network comprising 56 distinct groups of 

genes (i.e. network ‘modules’, labelled M1 - M56), 

based on the similarity of their expression pattern 

changes across all samples. Modules ranged in size 

from 18 genes (M56) to 1172 genes (M52) with the 

mean and median module sizes being 215 and 88 genes, 

respectively. The expression profiles of genes within a 

given module were condensed into a single 

representative profile of module gene expression, 

defined as the module eigengene (calculated as the 1st 

principle component of module gene expression). The 

module eigengene were then utilised for subsequent 

downstream analyses at the module level (where 

appropriate; see ‘methods’). Notably, only two genes 

were unable to be non-trivially clustered into a 

particular module and were thus assigned to the module 

‘M0’. Gene Ontology (GO) enrichment analysis of 

module gene sets together with hierarchical clustering 

of module eigengene (based on their correlation) 

highlight that, overall, the network portrays a logically 

organised set of modules which are diverse in aspects 

fundamental to the innate maintenance/ function of 

skeletal muscle (Figure 1). Lists of all genes comprising 

each module can be viewed in Supplementary Table 1, 

with all enriched GO terms for each network module 

provided in Supplementary Table 2. 

 

Molecular networks, ‘hub’ genes and transcriptional 

regulators of older muscle 

 

To explore molecular changes that might underpin 

muscle adaptation to aging per se, we subsequently 

established gene modules with composite expression 

altered by age in the basal state. Accordingly, we 

applied differential analyses to the module eigengene 

and identified three network modules with an aging-

dependent expression profile (FDR < 5%). Two of these 

modules represent molecular networks downregulated 

in older muscle, comprising genes enriched for plasma 

membrane/ ECM (M7) and angiogenesis/ cell signalling 

(M20) GO terms (Figure 2A and 2B). The third age-

related module (M41) represents a molecular network 

upregulated with aging, containing genes involved in 

the regulation of gene expression/ transcription (Figure 

2C). A complete list of differentially regulated network 

modules is given in Supplementary Table 3. 

 

Next in our analysis pipeline we sought to identify genes 

that might represent key molecular candidates of muscle 

aging. We therefore applied two further biologically-

motivated data reduction techniques to each age-related 

molecular network, namely: (i) hub gene identification, 

by filtering module genes for those of highest 

intramodular connectivity [26], and; (ii) transcriptional 

regulator prediction, by analysing module genes for 

enriched transcription factor binding sites (TFBS) [27]. 

In doing so, we deduce a vastly refined set (vs. 1396 

genes across all age-related modules) of 95 putative 

molecules (84 hub genes and 11 transcriptional 

regulators) that may be key drivers of aging-induced 

muscle dysregulation. For example, among the ~6% of 

genes in M20 (containing 695 genes) identified as 

modular hubs were a number of caveolin and G protein-

related genes whilst SOX9, a transcription factor 

important for musculoskeletal development and 

angiogenesis, was the sole predicted transcriptional 

regulator of such a pathway (Figure 2B). Full lists of hub 

genes and predicted transcriptional regulators for each 

pertinent module are given in Supplementary Table 4. 

 

Molecular networks associated with basal muscle 

function 

 

To determine possible molecular networks of functional 

relevance in the context of human age, we established 

network modules whose expression profile (i.e. 

eigengene) correlated to muscle strength (maximal 

voluntary isometric contraction, MVC) at baseline in 

either an age-dependent or age-independent manner. 

Notably, we found four modules displaying age-

dependent association with muscle strength at baseline 

(age-eigengene interaction, P < 0.05), such that their 

relationship with MVC in older muscle was the direct 

converse of that in younger muscle (Figure 2D). These 

included two ribosomal-related pathways (M40, M44) 

related positively to baseline MVC in younger muscle 

but negatively in older muscle. A further nine modules 

were found to associate with basal muscle strength 

irrespective of age (P < 0.05; partial correlation 

analyses with age as a covariate) (Figure 2D). These 

were mainly modules positively correlated with baseline 

MVC and enriched for cell adhesion- and extracellular 

matrix (ECM)-related GO terms (M11, M12, M27, 

M43, M47, M48).  

 

Our hub gene and predictive transcription factor analyses 

were then used to identify key age-(in)dependent 

molecular drivers of basal muscle strength. Interestingly, 

the two ribosomal-related molecular networks showing 

age-dependent association with basal muscle strength 

(i.e. M40, M44) also show some commonality in 

enriched TFBS, namely for PPARG. Moreover, several 

hub genes identified within these two networks hold a 

shared relevance to mechanistic target of rapamycin 

(mTOR) signalling (RPL41, RPS13, RPS21, RPS29 
(M40), RPL13A and RPL18 (M44)) [28] and too display 

strong evidence of an age-dependent link to basal muscle 

strength (based on their ‘gene significance’ (GS) to basal 

muscle strength; see ‘methods’). Some common 

regulatory themes also appear among modules showing 

age-independent association with baseline muscle 



www.aging-us.com 743 AGING 

strength. For example, within each of the six cell 

adhesion-/ ECM-related modules that positively correlate 

with basal muscle strength irrespective of age, the hub 

gene ranked highest by its GS to basal MVC 

(independently of age) collectively form a set featuring 

several prominent membrane-associated genes, that is; 

ANXA2P3 (M12), ANXA5 (M47), CNN3 (M48), FBN1 

(M27), SCARA5 (M11), THY1 (M43). Three of these 

modules (M12, M47, M48) also contain genes under the 

predicted control of KLF4, a zinc-finger transcription 

factor important for cell-cell binding. Other cell 

adhesion-related modules were similarly enriched with 

TFBS for zinc-finger transcription factors (SP1 (M27), 

ZFX (M43)), as was module M19 (SP1 and ZFX) – the 

single module negatively correlated with basal MVC 

independent of age, containing genes involved in ‘DNA 

 

 
 

Figure 1. Higher-order functional organisation of the co-expression network. Network modules (labelled ‘Mi’) are hierarchically 
clustered based on their eigengene correlations (using average linkage and ‘1 – correlation’ as a distance metric). Modules closer together in 
the dendrogram therefore have a more similar expression profile. Also given is the size of each module (depicted as a bar chart), a summary 
of each module’s enriched Gene Ontology (GO) Biological Process (BP)/ Molecular Function (MF) terms, and a summary of each module’s GO 
Cellular Component (CC) terms (provided as a heatmap, where red shading denotes that a module is enriched with GO terms related to a 
given CC). 
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binding’ (Figure 2D). Complete lists of module-strength 

correlations can be found in Supplementary Table 3, with 

corresponding GS scores for hub genes provided in 

Supplementary Table 4. 

 

Contraction mode-related molecular networks in 

young and older muscle 

 

We next applied our network-driven analysis pipeline to 

determine candidate molecular signatures of young and 

older muscle acutely (5 h) after isolated CON or isolated 

ECC exercise. Differential analyses of the module 

eigengene identified a total of twenty-one modules with 

an expression profile ‘responsive’ to contraction (i.e. 

altered vs. baseline) in an age- and/or contraction mode-

(in)dependent manner (FDR < 5%; Figure 3). Two 

modules also displayed age-specific suppression post-

CON when comparing absolute post-exercise expression 

patterns (M9 and M55, both related to mitochondrial 

biogenesis/ metabolism) (Supplementary Table 3). 

 

Irrespective of contraction mode, younger muscle alone 

displayed downregulation of a molecular network 

enriched for ‘transcription’ GO terms (M15), containing 

genes under the predicted control of several forkhead 

box transcription factors (FOXI1, FOXQ1, FOXA1, 

FOXD3). Whilst no CON-unique network modules 

were found in younger muscle, ECC contraction 

distinctly associated with the upregulation of a 

‘cytoskeletal protein binding’ pathway (M17) and the 

downregulation of molecular pathways related to the 

plasma membrane/ ECM (M7) and the regulation of 

transcription (M49). Thus, downregulation of gene 

pathways involved in controlling transcription occurred

 

 
 

Figure 2. Age-related molecular networks and candidate molecules in resting muscle. Panels (A–C) Network modules displaying a 

divergent co-expression pattern between ages at baseline. Box inserts show the top ranked hub gene, and all identified enriched 
transcription factor binding sites (TFBS) for each module. Data are mean ± SEM. *FDR < 5%. Panel (D) Network modules that significantly 
associate (P < 0.05) with baseline maximal voluntary isometric contraction (MVC) in either an age-dependent or age-independent manner. 
Orange shading denotes a positive relationship and purple indicates a negative relationship. Also shown is each module’s top ranked hub 
gene, the hub gene ranked highest among the module genes by gene significance to MVC at baseline (i.e. within the upper quartile of module 
genes ranked by their gene significance to baseline MVC (shown in orange/ purple shaded boxes)), and enriched TFBS. Red dots/ connecting 
red lines indicate whether a given TFBS is enriched in the genes of one or more MVC-related module. 
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in younger muscle after both CON and ECC (M15) and 

ECC alone (M49). Nonetheless, the predicated 

transcriptional regulators of these pathways were 

entirely distinct, perhaps indicating separate molecular 

regulation of gene expression in younger muscle by 

isolated ECC contraction vs. contraction per se (i.e. 

irrespective of contraction mode) (Figure 3).  

 

Older muscle also presented several ECC- and CON-

specific network module expression changes, that were 

not found in younger muscle (Figure 3). For example, 

ECC contraction upregulated a myeloid cell 

differentiation-related molecular network (M42), whose 

associated hub genes include an RNA helicase (DDX5, 

top hub gene) and several nuclear pore complex 

interacting protein family members (NPIPB3, NPIPB4, 

NPIPB5). Interestingly, older muscle displayed a post-

CON upregulation of several ECM-related modules 

(M43, M45, M47) and downregulation of a number of 

mitochondrial-/ energy metabolism-related modules (M9, 

M29, M30, M36), two of which appear under the 

putative control by the PAX4 transcription factor (M29, 

M36). Additionally, the hub genes of module M36 were 

almost exclusively sarcomeric structure genes (i.e. 

myosin light/ heavy chain, troponin and tropomyosin 

genes). 

 

In addition to the above, several network modules were 

identified to represent pathways of age-independent 

contractile regulation (M8, M12, M18, M21, M37, 

M52) (Figure 3). Among these included two network 

modules with an expression profile upregulated 

uniquely by ECC contraction in both young and older 

muscle, enriched with genes involved in cell adhesion 

(M12) and cellular regulation (M52). A further two 

such modules also display age-independent 

upregulation, but instead do so irrespectively of 

contraction mode (i.e. increased post-CON and post-

ECC) (M8, M37). Whilst the gene sets of these two 

particular modules show no ontological functional 

enrichment, the top hub gene of each (FLNC (M8), a 

sarcomeric Z-disc protein involved in striated muscle 

(dys)function and; ARHGDIA (M37), a Rho-GTPase 

inhibitor) putatively serves to function in cytoskeletal 

organisation/remodelling. 

 

Molecular networks associated with acute post-

exercise functional responses 

 

Both acute ECC and CON contractions induced variable 

declines in MVC 5 h post-exercise, in both young and 

older individuals. We therefore investigated potential 

relevance of contraction-regulated modules (as shown 

in Figure 3) to the acute post-exercise functional 

response, by correlating each of their specific post-

exercise eigengene patterns with the corresponding 5 h 

post-exercise muscle strength responses (% MVC 

decline from baseline) (e.g. we correlate post-ECC 

eigengene patterns with ECC-induced strength declines 

across age for a module upregulated by ECC per se, 

 

 
 

Figure 3. Molecular networks and candidate molecules of the aging muscle contractile response. Modules shown are those with 

a co-expression profile responsive to ECC and/or CON contraction in young adults, older adults or both. Red and blue shading denote 
significant post-exercise upregulation and downregulation relative to baseline (BL), respectively (FDR < 5%). Also provided is each such 
module’s top ranked hub gene, and their enriched transcription factor binding sites (TFBS). Red dots/ connecting red lines indicate whether a 
TFBS is enriched in the genes of one or more contraction-induced module. 
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etc.). Whilst none of the young- or older-specific, 

contraction-regulated modules had a post-exercise 

eigengene pattern that correlated with the respective 

contraction-induced MVC decline, significant 

correlation were found for two of the network modules 

(M12 and M18) regulated by contraction irrespectively 

of age (Figure 4). M12 is a cell adhesion-related 

module, which is upregulated by ECC contraction and 

has a post-ECC eigengene pattern (absolute and delta 

change) that positively associates with ECC-induced 

MVC declines (Figure 4A and 4B). M18 is a 

‘transcription factor activity’-related module, which is 

downregulated by both CON and ECC contraction and 

has a post-contraction eigengene response (absolute and 

delta change) that negatively associates with 

contraction-induced strength declines (i.e. pooled ECC- 

and CON-induced MVC decrements) (Figure 4D and 

4E). We then explored whether any hub genes within 

these two modules (6 for M12, 5 for M18) might also be 

highly relevant to the acute post-exercise functional 

response of muscle. None of the hub genes within 

module M18 fell among the highest ranked module 

genes based on their individual association (i.e. GS) 

with acute contraction-induced (post-ECC and -CON) 

declines in muscle strength (Figure 4E). However, for 

module M12, 3 of the 6 hub genes were among the top 

module genes when ranked by their individual 

association with ECC-induced strength declines and 

were exclusively Annexin A2 genes (Figure 4C), with 

known functions in regulating muscle repair. 

 

DISCUSSION 
 

Establishing molecular causes of and countermeasures 

to poor skeletal muscle aging remains an important goal 

to ensure optimal human health and performance across 

the life course. Resistance training currently offers the 

most effective lifestyle countermeasure to

 

 
 

Figure 4. Molecular networks and candidate molecules related to the acute post-exercise muscle functional response. Panels 
(A, B, D and E) Scatterplots showing relationships between post-exercise declines in MVC (% decline from baseline) and contraction-induced 
eigengene expression patterns (for exact post-exercise eigengene expression values (A, D) and changes (Δ) in eigengene expression from 
baseline to post-exercise (B, E)). Panels (C) and (F): corresponding module visualisations for M12 (Panel C) and M18 (Panel F). Of note, larger, 
annotated nodes in panels (C) and (F) highlight module hub genes: red shading depicts individual hub genes highly linked to the % decline in 
MVC (i.e. within the upper quartile of module genes ranked by their gene significance to the post-exercise decline in MVC). Module 
visualisations were generated using Cytoscape (v3.5.1) [56]. *P < 0.05 and †P < 0.1 with |r| > 0.5 in all cases, using Pearson’s or Repeated 
Measures correlation where appropriate. 
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mitigate age-related muscle loss and dysfunction, yet 

associated muscle mass and strength gains remain 

blunted in older vs. younger individuals [12, 13]. To 

gain new insights into potential molecular drivers of 

muscle aging and contraction responses, we employed 

an advanced network-driven pipeline through which we: 

(i) define molecular networks regulated by aging and/or 

contraction; (ii) establish primary candidate targets of 

age- and contraction mode-(in)dependent muscle 

adaptation, and; (iii) predict molecular networks and 

molecular targets of potential functional relevance to 

human age and acute contraction responses. 

 

Network analysis for identifying molecular 

signatures of muscle adaptation 

 

In our previous work we utilised traditional differential 

expression analysis to examine the impact of age and 

contraction mode on muscle transcriptomic responses to 

RE [17]. Here, we extend the insight gained from 

transcriptomic datasets by establishing an analysis 

pipeline that defines molecular interaction networks 

regulated by aging and/or contraction via WGCNA; an 

advanced co-expression network tool for integrating gene-

level data into a higher-order, systems-level framework 

[29]. We identify several gene patterns that are consistent 

with those observed through our traditional differential 

expression analysis [17], for example the CON-specific 

suppression of mitochondrial genes and upregulation of 

cell adhesion-related genes in older muscle. Unlike our 

standard differential gene-level analysis, however, 

network analysis was also able to provide ontological 

insight for ECC-specific signatures. Notably, older muscle 

alone showed a post-ECC upregulation of a myeloid cell 

differentiation pathway. Since immune cells of the 

myeloid lineage have a significant role in directly (i.e. 

acting on muscle) and indirectly (via angiogenesis and 

fibrosis regulation) enhancing muscle regeneration [30], 

this network might represent an interesting molecular 

feature unique to aging muscle that ensures recovery of 

post-ECC muscle damage is comparable to that of 

younger adults [31]. Our findings thus corroborate the 

increased power of network-based analysis for detecting 

new, biologically-relevant transcriptional signatures of 

skeletal muscle beyond that possible from standard 

differential gene-level analysis alone [23]. 

 

Unravelling potential molecular drivers of muscle 

adaptation to aging and exercise 

 

A major advantage of network analysis is the ability to 

systematically reduce an entire transcriptome to a handful 

of predicted molecular regulators of physiological 

adaptation [22]. On the premise that key mechanistic 

candidates likely include centrally located ‘hub’ genes 

[26] and/or transcription factors strongly enriched for 

regulatory binding sites in a given set of co-expressed 

genes [27], we established a refined list of 536 molecular 

hubs from the 8135 genes across all age-/ contraction-

regulated and strength-related modules, along with an 

even smaller complementary set of putative 

transcriptional regulators (60 in total) to these molecular 

networks. Whilst individual discussion of all identified 

hub genes and predicted transcription factors is beyond 

the scope herein, this provides an experimentally 

tractable list of putative molecular targets for further 

hypothesis generation. For example, SOX9 is identified 

as a predicted transcriptional regulator of genes 

comprising the angiogenesis network signature 

downregulated in older muscle per se. SOX9, a purported 

modulator of tissue angiogenesis [32, 33], might thus 

represent an interesting candidate molecule influencing 

age-related impairments in muscle angiogenesis [34], 

which is itself implemented in the aetiology of aging 

muscle decline [35]. Hub gene analysis further highlights 

a possible role of abnormal ribosomal processing in 

muscle aging – ribosome-related networks that positively 

associate with basal MVC in the young but negatively in 

the old contain several hub genes with relevance to 

mTOR signalling [28] that similarly show strong age-

discordant association to basal muscle strength. Thus, 

corroborating recent pathway analysis of aging muscle 

alone [36], deregulated ribosomal and protein synthetic 

machinery appears a prominent molecular feature of 

aging muscle weakness. Additionally, supporting our 

previous report of mitochondrial gene insensitivity to 

CON exercise in older muscle [17], network analysis 

confirms and extends this to identify PAX4 as a common 

transcription factor predicted to regulate multiple 

mitochondria-/ energy metabolism-related networks 

suppressed post-CON in older muscle. Because PAX4 is 

implicated in mitochondrial biogenesis and function [37] 

and mediates second stage muscle atrophy in mice [38], it 

may present a promising target for future aging and 

exercise studies. We therefore establish network analysis 

as a powerful data reduction scheme for generating new, 

biologically meaningful insight into the molecular drivers 

of muscle adaptation to age and contraction mode. 

 

Molecular networks that associate with post-exercise 

functional adaptation 

 

Large variability in individual responsiveness to physical 

activity has emerged as a fundamental principle of 

exercise physiology [28, 39]. Identifying molecular 

networks displaying expression changes that scale with 

the magnitude of post-exercise strength responses might 

provide likely candidates for explaining this inter-

individual variability and present strong putative 

regulators of post-exercise functional responses. Of our 

twenty-one network modules responsive to ECC and/or 

CON, we observed two that significantly correlated with 
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corresponding post-exercise functional changes. Several 

cell adhesion- and ECM-related molecular networks 

positively associated with baseline muscle strength in both 

young and older muscle. High habitual expression of cell 

adhesions might therefore promote and/or be a 

consequence of the highest levels of basal muscle 

strength. Additionally, one such cell adhesion module was 

responsive to ECC per se and positively correlated with 

the extent of ECC-induced strength declines. Individuals 

displaying minimal post-ECC expression of cell adhesion 

genes thus appear pre-disposed for resilience against 

ECC-induced loss of muscle strength. Since the gene that 

encodes the rapidly acting sarcolemmal and muscle 

repair-mediating protein Annexin A2 [40] was identified 

as a recurrent molecular hub within this network module, 

Annexin A2 might represent a viable target for 

understanding cell adhesion-mediated muscle damage and 

repair. Lastly, a general ‘transcription factor activity’-

related module downregulated irrespective of contraction 

mode also negatively correlated with strength declines 

imposed by contraction per se (i.e. pooled post-ECC and -

CON strength decrements). Whilst this functional 

annotation is too broad to be informative, the most highly 

connected modular hub, NR1D2, influences muscle lipid 

homeostasis and hypertrophic capacity via strong 

regulation of interleukin-6 and myostatin, respectively 

[41]. This network module and its associated hub genes 

may, therefore, provide insight into the early signals of 

muscle responsiveness to exercise per se. 

 

In summary, we present predictive network-driven 

analysis as a powerful addition to traditional differential 

expression transcriptomic analyses. Although limited 

sample size implores some caution when inferring wider 

biological relevance, WGCNA performs strongly for 

network construction and hub gene identification when 

applied to both smaller (~20 samples) [42], paired design 

[43] datasets, including within exercise physiology using 

comparable sample sizes [44]. Nevertheless, 

extrapolating true aging/ exercise effects requires a much 

larger sample size than that presented herein, and future 

studies verifying these gene signatures are warranted. 

Thus, whilst further validation is needed (e.g. larger 

sample sizes and quantitative/mechanistic analysis of 

identified molecules), our data reduction pipeline is 

effective in identifying an experimentally tractable and 

biologically plausible set of molecular candidates driving 

muscle adaptation in the context of human age and the 

contraction response, including many that appear 

functionally relevant. The current work therefore holds 

immediate potential to accelerate the discovery process 

of primary regulators of age-related muscle decline and 

exercise responsiveness. Our findings can thus expedite 

mechanistic understanding of aging-exercise interactions, 

and help develop optimal exercise interventions to 

counteract sarcopenia and associated health concerns. 

MATERIALS AND METHODS 
 

Overview of experimental procedures 

 

The experimental procedures are in line with those 

outlined in detail previously [17]. In brief, eight young 

(mean ± SEM: age, 21 ± 1 y; body mass index, 23 ± 2 

kg.m-2; 80% ECC 1 repetition-maximum (1-RM), 211 ± 

14 kg; 80% CON 1-RM, 122 ± 11 kg) and eight older 

(age, 70 ± 1 y; body mass index, 26 ± 1 kg.m-2; 80% ECC 

1-RM, 155 ± 1 kg; 80% CON 1-RM, 79 ± 6 kg) healthy, 

exercise-naïve (i.e. no history of partaking in regular, 

structured exercise within the previous year) males 

volunteered for this study. Participants completed 7 sets of 

10 unilateral CON contractions and 7 sets of 10 

contralateral ECC contractions of the knee extensor 

muscle group at 80% of their CON and ECC 1-RM’s, 

respectively. Muscle biopsies were collected from the m. 
vastus lateralis of a randomised leg under local 

anaesthesia (1% Lidocaine) at baseline (BL, -96 h; 

serving as reference to both contraction conditions), and 

then from the m. vastus lateralis of each leg at 5 h 

following the termination of its corresponding exercise 

bout (i.e. post-ECC and post-CON). Muscle tissue was 

snap frozen in liquid nitrogen and stored at −80°C until 

analysis. Muscle strength was measured as a marker of 

muscle function and was quantified by assessing maximal 

voluntary isometric contraction (MVC) of the quadriceps 

of each leg (Humac Norm, CSMI, Stoughton, USA), both 

before and 5 h post-exercise. All experimental procedures 

were approved by the University of Nottingham Faculty 

of Medicine and Health Sciences Research Ethics 

Committee and conformed to the Declaration of Helsinki. 

Informed consent was obtained from all subjects prior to 

their participation.  

 

Generation of RNA-sequencing data 

 

The current work makes use of the raw RNA 

sequencing data reported in [17], which can be found 

within the NCBI BioProject database (https://www. 

ncbi.nlm.nih.gov/bioproject/) under the SRA accession 

PRJNA509121, and that were generated as previously 

described [17]. In short, total RNA was extracted from 

frozen muscle tissue using TRIzol reagent, and samples 

with a sufficient RNA integrity (RIN ≥ 5.7; 39 samples 

in total) sequenced using the Illumina HiSeq 3000/ 

HiSeq 4000 platforms (Beijing Genomics Institute). All 

raw reads were of sufficient quality (established using 

FastQC; Babraham Bioinformatics) and were thus 

subsequently aligned to the human genome (hg38) 

using Bowtie2 [45], with further processing of 

alignment files undertaken via SAMtools [46]. Reads 

mapping to known exons were then counted in an un-

stranded manner using featureCounts [47] and with the 

human genome annotation as a reference (hg38).  

https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
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RNA-sequencing data processing 

 

Genes displaying consistently low expression across 

samples (read count < 10 in at least 80% of samples) 

were first removed and the read counts for retained 

genes then normalised to reads per kilo-base per million 

mapped reads (RPKM). RPKM values were further log 

transformed (Log2[RPKM + 1]), before outlier samples 

were identified and removed using the inter-sample 

correlation (ISC) metric [48]. In particular, samples 

with a mean ISC < 2.5 SD below the mean ISC for the 

entire dataset were excluded. A total of 3 outlier 

samples (1 young BL; 1 young post-CON; 1 older post-

ECC) were identified and removed. Log2[RPKM + 1] 

expression for 12044 genes across 36 samples were 

subsequently obtained for downstream analyses.  

 

Gene co-expression network construction  

 

A signed gene co-expression network was constructed 

from the processed expression dataset using the weighted 

gene co-expression network analysis (WGCNA) methods 

implemented in the WGCNA package for R [49]. Briefly, 

an adjacency matrix (Adj) quantifying the connection 

strength between each pair of genes in the dataset was 

derived as Adj = |0.5 x (1 + Corr)| ß, where Corr is the 

matrix of Pearson’s correlation coefficients that indicate 

the degree of similarity in expression pattern between any 

two given genes across the samples. The exponent ß 

ensures greater disparity between strong and weak 

connections and is chosen with the intent of attaining an 

approximately scale-free network [25]. An appropriate 

value of ß can be chosen using the scale-free topology 

fitting index metric (signed-R2) [25], and on this basis, a 

value of ß = 17 was chosen to achieve a signed-R2 value 

≥ 0.85. The adjacency matrix was then converted into a 

topological overlap matrix (TOM), in which each entry 

provides a measure of the relative inter-connectedness 

(‘common connections’) between a given pair of genes. 

A dissimilarity topological overlap matrix was 

subsequently calculated as ‘1-TOM’ and used to obtain a 

network tree through hierarchical clustering using 

average linkage as a distance metric.  

 

Identification of network modules 

 

Network modules were determined from the 

corresponding network tree using an adaptive and 

iterative branch cutting scheme (cutreeDynamic 

algorithm) [50], with a medium sensitivity (deepSplit = 2) 

and moderate minimum module size (minClusterSize = 

15) considered when identifying modules. Module gene 

expression profiles were summarised by their ‘eigengene’ 

(1st principle component of module expression), and 

modules with similar expression profiles (Pearson’s 

correlation coefficient between their eigengene ≥ 0.9) 

subsequently merged. All modules were accordingly 

assigned a numerical label for identification, with the 

module labelled as ‘M0’ containing un-clustered genes. 

The module labelled ‘M0’ was therefore not included in 

any downstream analyses beyond module functional 

annotation (see below). 

 

Functional annotation of network modules 

 

Functional annotations of network modules were derived 

on the basis of their gene compositions by undertaking 

enrichment analysis of Gene Ontology (GO) terms. 

Analysis was performed using the online Database for 

Annotation, Visualisation and Integrated Discovery 

(DAVID, version 6.8) [51], with each of the three GO 

categories (‘Biological Process’, BP; ‘Cellular 

Component’, CC; ‘Molecular Function’, MF) considered. 

The corresponding background gene list used consisted 

of all genes comprising the network. Of note, analyses 

were limited only to network genes with an attributable 

Entrez ID uniquely recognised within the DAVID 

database (11733 genes). Enrichment was calculated using 

a modified Fisher exact test and GO terms in each 

category with a Benjamini-Hochberg (BH) [52] corrected 

P < 0.05 were accepted as being enriched. 

 

Determining modular expression differences with 

age and/or contraction 

 

The effects of age and contraction on module expression 

patterns were established by undertaking differential 

analysis of module eigengenes using the LIMMA package 

for R [53]. In brief, a linear mixed effects model was 

fitted to the eigengene of each module, with a group 

means parameterisation of experimental condition (all 

possible age-sample point permutations) included as a 

fixed effect. A random effect of subject was also included 

to account for the correlation between samples from the 

same participant. An empirical Bayes method was then 

applied to calculate moderated t-statistics through 

shrinkage of estimated sample variances towards a pooled 

estimate [54], and pairwise comparisons subsequently 

made between sample points within each age group as 

well as between ages at each sample point. Statistical 

significance was accepted for a global BH corrected P < 

0.05. 

 

Establishing modular links with muscle functional 

parameters 

 

Potential links between module expression patterns and 

muscle function were elucidated to by assessing 

relationships between the module eigengene and MVC 

values, which were considered in the basal state (i.e. at 

baseline) and in response to exercise (where 

appropriate). That is, relationships between baseline 



www.aging-us.com 750 AGING 

eigengene and baseline MVC values (average of both 

legs) were quantified for all network modules either 

separately for each age group (using Pearson’s 

correlation) or for age groups together (using partial 

correlation with age as a co-variate), dependent on 

whether the baseline eigengene-MVC association for a 

given module appeared to be influenced by age 

(significant (P < 0.05) interaction between age and 

baseline eigengene expression in the corresponding 

linear regression model). For post-exercise analyses, 

relationships between post-exercise eigengene patterns 

(both exact post-exercise values and changes from 

baseline) and post-exercise changes in MVC (% decline 

from baseline) were determined for those modules with 

a contraction-induced expression profile, in their 

respective contraction-regulated contexts (e.g. young 

ECC-specific etc.), using Pearson’s correlation or 

Repeated Measures correlation [55], as appropriate. 

Statistical significance was accepted in all instances for 

which |r| > 0.5 and P < 0.05. 

 
Hub gene assessment of pertinent network modules 

 
Key molecular drivers within age-, contraction- and/or 

muscle strength-related modules (i.e. modular ‘hub 

genes’) were defined on the basis of their scaled intra-

modular connectivity (‘relative intra-connectedness’) 

[26]. Specifically, the within-module connectivity for 

each gene from a given module was calculated by 

summing its connection strengths to all other genes 

from the same module, and subsequently divided by the 

maximum within-module connectivity value for that 

module to attain a scaled intra-modular connectivity 

measure. Genes with a scaled intra-modular 

connectivity value ≥ 0.7 were considered hub genes. 

The hub genes of functionally-significant network 

modules were also assessed on the basis of their gene 

significance (GS) to muscle function, which was 

quantified by the absolute correlation coefficient of the 

relationship between individual gene expression and 

MVC, as determined in similar fashion to the 

eigengene-MVC associations outlined above. In this 

regard, hub genes of these particular modules were 

further prioritised by those falling within the upper 

quartile of the given module’s comprising genes when 

ranked by their GS. 

 
Uncovering putative transcriptional regulators of 

pertinent network modules 

 
Putative transcriptional regulators of age-, contraction- 

and/or muscle strength-related network modules were 

identified by checking for enriched transcription factor 

binding sites (TFBS) in their comprising genes using 

oPOSSUM-3 Single Site Analysis [27]. The 

corresponding background list comprised all genes used 

to construct the network. Of note, large modules (> 500 

genes) were represented by their upper third most 

connected genes, and all analyses was limited only to 

network genes with an attributable Ensembl ID 

recognised within the oPOSSUM-3 database (11187 

genes). All JASPAR CORE vertebrae profiles with a 

minimum specificity of 8 bits were queried during 

analyses, and putative TFBS pertaining to a 

conservation cut-off of 0.4 and similarity matrix score 

threshold of 85% were examined for enrichment in the 

5 kb upstream/ downstream region encompassing 

transcription start sites. For a given module, TFBS with 

a corresponding Z-score (rate of occurrence in module 

vs. network) and Fisher score (proportion of hits in 

module vs. network) ≳ the mean + 1.5 SD of their 

respective distributions were considered as enriched. 
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SUPPLEMENTARY MATERIALS 
 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4 
 

Supplementary Table 1. Module assignments of all genes used as input for co-expression network construction (i.e. 
the 12044 genes comprising the processed dataset). 

 

Supplementary Table 2. Complete lists of enriched Gene Ontology terms for each network module. 

 

Supplementary Table 3. Lists of all network modules with composite expression differentially regulated by age/ 
contraction, along with the results obtained from module-strength association analyses. 

 

Supplementary Table 4. Full lists of hub genes and predicted transcriptional regulators of each age-, contraction- 
and/or MVC-associated network module. Where appropriate, corresponding ‘gene significance’ ratings of the hub genes are also 

provided. 


