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INTRODUCTION 
 
Malignant tumor is considered as one of the leading 
causes of death worldwide, and it is estimated that more 
than 20 million new cases will be diagnosed each year 
by 2025 [1]. Despite the tremendous efforts made in the 
treatment of cancer, this disease still poses a serious 
threat to human health. Most of the malignancies result 
from 2 to 8 sequential changes, and single-base 
substitution is involved in 95% of these mutations  
[2–3]. Reactive oxygen species (ROS) have been 
indicated to cause DNA damage and induce genetic 
lesions, which play a crucial role in initiating mutagenic 

activity and carcinogenesis [4]. Superoxide dismutase 2 
(SOD2) is one of the key endogenous antioxidants, 
shown to participate in the process of defense against 
mitochondrial ROS, a major source of cellular ROS [5]. 
Previous studies have indicated that genetic variation in 
ROS-related genes, encoding these enzymes, may 
reduce or impair the regulation of enzyme activity and 
alter the detoxification of ROS [6]. 
 
The SOD2 gene, located at sub band 6q25 of 
chromosome 6, is a homotetramer containing 2 identical 
subunits. This single-copy gene can encode superoxide 
dismutase-2, whose expression is significantly regulated 
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ABSTRACT 
 
Background: The correlation between superoxide dismutase 2 (SOD2) V16A variant and urological cancer 
susceptibility has been widely studied, however, with divergent results.  
Results: Totally, 9,910 cancer patients and 11,239 control subjects were enrolled. V16A variant is associated with 
an increased susceptibility to urological cancer (A-allele vs. V-allele: OR = 1.06, 95% CI = 1.00 – 1.13, P = 0.047; 
AA+AV vs. VV: OR = 1.09, 95% CI = 1.02 – 1.16, P = 0.008), especially for prostate cancer (PCa). Serum SOD2 level of 
PCa patients with VV+VA genotypes was lower than in those with AA genotypes. SOD2 expression is 
downregulated in both prostate and bladder cancer, as compared to the control. Furthermore, SOD2 was found to 
be downregulated in more advanced PCa participants, as compared to the ones in early stages. PCa subjects with 
low SOD2 expression displayed a shorter disease-free survival (DFS) time compared to that of the high SOD2 
expression counterparts. 
Conclusions: The SOD2 V16A variant may be associated with increased urological cancer susceptibility, especially 
for prostate cancer. 
Methods: A pooled analysis utilizing odds ratios (ORs), in silico tools and ELISA was adopted to demonstrate this 
association. We also used immunohistochemical staining (IHS) to assess SOD2 expression.  
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at the transcription, translation, and posttranslational 
levels in the process of carcinogenesis [7–9]. 
Previously, it has been shown that the substitution of T-
to-C in SOD2 gene can lead to the change of amino 
acids from valine (Val) to alanine (Ala) [10]. In 
addition, accumulating studies have indicated a 
correlation between the SOD2 V16A variant and risk of 
cancer. Recently, this variant has been demonstrated to 
be involved in a number of malignant tumors, such as 
breast cancer [11–12], colorectal cancer [13], prostate 
cancer [14], cervical cancer [15] and esophageal cancer 
[16]. The populations involved in the study of this 
genetic variant span over several ethnicities, such as 
Japanese [17], Americans [18], Brazilians [19], 
Egyptian [20], Turkish [21], and Italian [22]. 
 
Previous studies have investigated the correlation 
between SOD2 V16A variant and the risk of cancer, 
with some of these reports indicating the correlation of 
this polymorphism with higher cancer risk [11–14]. 
Nevertheless, some other researches did not indicate 
positive relationship between this variant and cancer 
risk [23–25]. Our current study is aimed at 
comprehensively estimating the possible association 
between SOD2 V16A variant and urological cancer risk 
[17–22, 26–45]. As the incidence of prostate cancer 
(PCa) is associated with aging phenomenon [46], we 
further used enzyme linked immunosorbent assay 
(ELISA) and immunohistochemical staining (IHS) to 
explore the expression of SOD2 among PCa 
participants enrolled in our centers. 
 
RESULTS 
 
Characteristics of our study 
 
As described in Supplementary Table 1, a total of 26 
articles containing 28 case-control studies for 
investigating SOD2 V16A variant, were considered. 
Overall, 9,910 cancer cases and 11,239 controls were 
summarized. In subgroup analysis by ethnicity, 21 
studies of these were based on Caucasian descendants, 
four studies were in African population, two were 
according to mixed population and only one was in Asian 
descendants. In stratified analysis by cancer type, 19 
studies were investigating prostate cancer, 8 were based 
on bladder cancer, and one study was assessing renal cell 
carcinoma. 13 studies were performed utilizing hospital-
based controls and 15 studies were population-based. 
Genotype distribution in control group was consistent 
with Hardy-Weinberg equilibrium (HWE) in 24 of the 
eligible studies. Moreover, we examined the minor allele 
frequency (MAF) of SOD2 V16A variant reported for the 
main populations around the world. For African 
descendants: A-allele (C) =0.424, V-allele (T) =0.576; 
for American population: A-allele = 0.580, V-allele = 

0.420; for East Asian population: A-allele = 0.125, V-
allele = 0.875; for South Asian: A-allele = 0.510, V-allele 
= 0.490; for European: A-allele = 0.466, V-allele = 
0.534; for Global population: A-allele = 0.411, V-allele = 
0.589 (Figure 1). 
 
Quantitative synthesis 
 
In overall analysis, we identified a significant 
association between SOD2 V16A variant and urological 
cancer risk (A-allele vs. V-allele: OR = 1.06, 95% CI = 
1.00 – 1.13, Pheterogeneity = 0.006, P = 0.047; AA+AV vs. 
VV: OR = 1.09, 95% CI = 1.02 – 1.16, P value for 
heterogeneity = 0.086, P = 0.008) (Table 2). In stratified 
analysis by cancer type, our results showed evidence 
that SOD2 V16A polymorphism is significantly 
associated with increased risk of prostate cancer (A-
allele vs. V-allele: OR = 1.07, 95% CI = 1.00 – 1.15, 
Pheterogeneity = 0.047, P = 0.043, Figure 2; AA+AV vs. 
VV: OR = 1.12, 95% CI = 1.04 – 1.20, Pheterogeneity = 
0.470, P = 0.003), but not for bladder cancer (A-allele 
vs. V-allele: OR = 1.01, 95% CI = 0.93 – 1.09, 
Pheterogeneity = 0.089, P = 0.892, Figure 2; AA+AV vs. 
VV: OR = 1.12, 95% CI = 1.04 – 1.20, Pheterogeneity = 
0.470, P = 0.003). Moreover, in stratified analysis by 
race, we demonstrated positive correlation in Caucasian 
descendants (allele contrast: OR = 1.08, 95% CI = 1.00 – 
1.16, Pheterogeneity = 0.003, P = 0.043, Figure 3; dominant 
comparison: OR = 1.11, 95% CI = 1.00 – 1.24, P value 
for heterogeneity = 0.034, P = 0.046). No obvious 
association was found in African (allele contrast: OR = 
0.98, 95% CI = 0.88 – 1.09, Pheterogeneity = 0.958, P = 
0.706; dominant comparison: OR = 1.01, 95% CI = 0.80 
– 1.18, P value for heterogeneity = 0.908, 
 

 
 

Figure 1. Minor allele frequency for SOD2 rs4880 V16A 
variant in the main populations around the world. Vertical 
line, ethnicity; Horizontal line, allele frequency. 



www.aging-us.com 827 AGING 

P = 0.931) and Asian populations (allele contrast: OR = 
0.80, 95% CI = 0.53 – 1.21, P = 0.295; dominant 
comparison: OR = 0.79, 95% CI = 0.50 – 1.24, P = 
0.301). In stratified analysis by P value of HWE, we 
observed positive findings in studies that are consistent 
with HWE (allele contrast: OR = 1.05, 95% CI = 1.00 – 
1.09, Pheterogeneity = 0.006, P = 0.031; dominant 
comparison: OR = 1.09, 95% CI = 1.02 – 1.17, P value 
for heterogeneity = 0.048, P = 0.010). Similarly, 
positive finding was indicated in studies with hospital-
based controls (A-allele vs. V-allele: OR = 1.21, 95% 
CI = 1.02 – 1.43, Pheterogeneity = 0.001, P = 0.027; AV vs. 
VV: OR = 1.19, 95% CI = 1.01 – 1.39, P value for 
heterogeneity = 0.060, P = 0.038; AA vs. VV: OR = 

1.40, 95% CI = 1.00 – 1.95, P value for heterogeneity = 
0.002, P = 0.047; AA vs. AV+VV: OR = 1.32, 95% CI 
= 1.02 – 1.71, P value for heterogeneity = 0.009,  
P = 0.034).  
 
Serum and tissue expression of SOD2  
 
220 PCa patients’ serum samples were collected from 
various genotypes of SOD2 V16A polymorphism for 
our study. Moreover, the allele frequency of SOD2 
V16A variant was also investigated. Allele distribution 
among the cancer patients enrolled in our centers was: 
AA, 67 (30.5%); AV, 40 (18.2%); VV 113(51.3%). 
Also, the MAF of SOD2 V16A variant was 0.270, 

 

 
 

Figure 2. Forest plot of cancer susceptibility correlated with SOD2 rs4880 V16A polymorphism (allelic comparison of A-allele 
vs. V-allele, random-effects) in stratified analysis by the type of cancer. 
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slightly higher than that demonstrated in East Asian 
population (0.125), and lower than the MAF identified 
in South Asian population (0.510). Further, we utilized 
ELISA to evaluate the serum expression of SOD2 in our 
study population. Serum SOD2 level of PCa patients 
with VV+VA genotypes was relatively lower than in 
those with AA genotypes (Figure 4, P = 0.02). In order 
to corroborate with the expression of SOD2 in PCa 
tissues, we utilized IHS to test its expression among 
cancer subjects in our centers. As shown in Figure 5, the 
expression of SOD2 was downregulated in more 
advanced PCa, as compared to less advanced PCa 
subjects (T4 versus T1, P < 0.05; T4 versus T2, P < 
0.05). 
 
In silico analysis 
 
Results from in silico tools showed that the expression 
of SOD2 is downregulated in both prostate (Figure 6A) 

and bladder cancer tissues (Figure 7A). Expression of 
SOD2 was especially decreased in Asian bladder cancer 
subjects (Figure 7C, P < 0.05). In addition, prostate 
cancer subjects with low SOD2 expression had a shorter 
DFS time than high-SOD2-expression counterparts 
(Figure 6B, P = 0.047). No positive finding was 
observed for bladder cancer (Figure 7D, P = 0.200). 
Moreover, the relationship between the expression of 
SOD2 and overall survival time of prostate and bladder 
cancer was also investigated by Kaplan-Meier estimate. 
Unfortunately, no positive association was indicated for 
either prostate (Figure 6C, P = 0.630) or bladder cancer 
(Figure 7B, P = 0.570). The Cancer Genome Atlas 
(TCGA) samples were utilized to investigate the level 
of promoter methylation for SOD2 gene in different 
urological cancers. The promoter methylation level of 
SOD2 was found to be decreased in both Caucasian and 
Asian prostate cancer participants (Figure 8A). 
Nevertheless, SOD2 promoter methylation level was 

 

 
 

Figure 3. Forest plot of A-allele versus V-allele genetic model of SOD2 rs4880 V16A polymorphism in stratified analysis by 
ethnicity (random-effects). 
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upregulated in bladder cancer subjects (Figure 8B). 
Additionally, the methylation level was increased in 
Caucasian renal cell carcinoma patients and decreased in 
the Asian cases (Figure 8C). Furthermore, we used String 
online tool to evaluate the functional protein association 
of SOD2 (http://string-db.org/). As described in Figure 9, 
more than 10 proteins were predicted to be involved in  
the interaction of SOD2, including  SOD1 (Superoxide 
dismutase-1), CAT (Catalase), SOD3 (Extracellular 
superoxide dismutase- 3), FOXO3 (Forkhead box  
 

 
 

Figure 4. Analysis of serum SOD2 levels in V16A genotype 
of PCa volunteers with mean values. Serum SOD2 level of 
PCa patients with VV+VA genotypes was relatively lower than in 
those with AA genotypes (P = 0.02). 
 

 
 

Figure 5. Tissue expression of SOD2 among PCa subjects. 
The expression of SOD2 was down-regulated in more advanced 
PCa, as compared to less advanced PCa subjects (T4 versus T1, P 
< 0.05; T4 versus T2, P < 0.05). 

protein O-3), GPX1 (Glutathione peroxidase 1), SIRT3 
(NAD-dependent protein deacetylase sirtuin-3), GPX7 
(Glutathione peroxidase-7), GPX3 (Glutathione 
peroxidase-3), AKT1 (RAC-alpha serine/threonine-
protein kinase-1), GPX2 (Glutathione peroxidase-2). 
The gene-gene interaction of SOD2 among prostate 
cancer participants was also evaluated by TCGA 
samples. As described in Figure 10A, at least 24 genes 
were reported to participate in the correlation of SOD2. 
Among them, complement factor B gene (CFB) was 
predicted to be the most related gene in prostate cancer. 
There was a positive correlation between them in 
prostate cancer (Figure 10B). As was shown in Figure 
11, at least 11 miRNA were predicted to be related to 
SOD2 by TargetScan database. The hsa-miR-330-3p 
was highly conserved miRNA (Figure11 A), and the 
rest ten were poorly conserved (Figure11B). To 
evaluate the correlation of DNA methylation and SOD2 
expression, we adopted scatter plots to investigate the 
relationship between CpG sites and SOD2 expression 
based on three urological cancers (bladder cancer, 
prostate cancer, and renal cell carcinoma) in TCGA 
database. For bladder cancer, SOD2 expression was 
negatively associated with methylation levels at two 
CpG sites (cg06346099 and cg10698098, P < 0.05, 
Figure12A and 12B). The cg09364756 and cg27624424 
methylation were correlated with SOD2 expression in 
prostate cancer (P < 0.05, Figure12C and 12D). For 
renal cell carcinoma, SOD2 expression was negatively 
associated with cg18897905 and cg06346099 
methylation (P < 0.05, Figure 12E and 12F). 
 
Publication bias and sensitivity analyses 
 
Egger’s test and Begg’s plot were utilized to investigate 
any publication bias in the enrolled studies. No 
evidence of publication bias was identified for SOD2 
V16A variant (A-allele versus V-allele: t = 2.17, P = 
0.119; AV versus VV: t = 2.03, P = 0.173; AA versus 
VV: t = 2.06, P = 0.213; AA+VA vs. VV: t = 2.16, P = 
0.110; AA vs. VA + VV: t = 2.03, P = 0.149, Figure 
13A). Sensitivity analysis was also carried out to check 
the effect of each study on pooled ORs by repeating the 
meta-analysis when each time an individual study was 
removed. The sensitivity analysis for the relationship of 
SOD2 V16A variant in the allelic contrast is described 
in Figure 13B, indicating that no single study could 
have an impact on the pooled OR. These results 
suggested that conclusions drawn from the present 
analyses are reliable. 
 
DISCUSSION 
 
Previous studies have shown that SOD plays a central 
role in protecting organisms from the harmful effets of 
superoxide free radicals, by converting them into 

http://string-db.org/
http://string-db.org/
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hydrogen peroxide [5, 47]. Further in vivo experiments 
utilizing SOD2-deficient mice showed perinatal death, 
myocardial injury and neurodegeneration caused by 
impaired SOD2 activity [48, 49]. SOD2, as one of the 
most crucial enzymes against mitochondrial ROS, has 
also been found to act as a potential tumor suppressor 
gene in carcinogenesis [50, 51]. Some studies have 
shown that the activity and expression of SOD2 in 
cancer cells are significantly down regulated as 
compared to that in control cells [52, 53]. 
 
Till date, several studies have assessed the relationship 
between SOD2 V16A variant and cancer susceptibility; 

however, their conclusions remain inconsistent [17–22]. 
A previous study in Macedonian population indicated 
that SOD2 V16A variant is associated with risk of 
prostate cancer [33]. This finding was also confirmed 
by Kucukgergin et al based on Turkish descendants 
[38]. Nevertheless, Choi and his group indicated a 
different result [32]. Li et al [14] performed a meta-
analysis and found that SOD2 V16A variant was 
associated with increased prostate cancer risk. 
Conversely, another meta-analysis conducted by Bag et 
al [54] indicated that this polymorphism was not 
significantly associated with overall cancer risk. 
Therefore, the overall objective of this study was to 

 

 
 

Figure 6. In silico analysis of SOD2 expression in prostate cancer patients (A), the investigation of disease-free survival (DFS) time (B) and 
overall survival (OS) time (C). Expression of SOD2 was down-regulated in prostate cancer tissues (Figure 6A, P < 0.05). Prostate cancer 
subjects with low SOD2 expression had a shorter DFS time than high SOD2 expression counterpart (Figure 6B, P = 0.047). No positive 
association was indicated for prostate cancer participants (Figure 6C, P = 0.630). 
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assess all eligible data on the basis of inclusion criteria 
in order to improve statistical effectiveness and acquire 
more reliable conclusions. 
 
In the present study, a total of 9,910 cancer subjects and 
11,239 control participants were accounted into the 
analysis. Overall results indicated that SOD Val16Ala 
polymorphism is correlated with increased urological 
cancer susceptibility, especially for prostate cancer, 
which is consistent with previous findings. [14, 33, 55]. 
In stratified analysis by race, we observed similar 
findings in Caucasians and mixed populations, but not 
in Asians and Africans. Stratification analysis also 

revealed that this correlation was more obvious in 
hospital-based and high quality studies. In silico tools 
showed evidence that the expression of SOD2 is 
downregulated in both prostate and bladder cancer 
tissues as compared to that in control. To verify this 
finding, we utilized ELISA to evaluate the serum 
expression of SOD2 in our study population and 
revealed that the serum SOD2 level in PCa patients with 
VV+VA genotypes was relatively lower than in those 
with AA genotypes. Besides, we utilized IHS to further 
investigate the expression of SOD2 in different stages 
of PCa cases and found that SOD2 expression was 
downregulated in more advanced PCa as compared to

 

 
 

Figure 7. Association of SOD2 expression in bladder cancer subjects (A), based on patients’ race (C), the investigation of OS time (B) and DFS 
time (D). Expression of SOD2 was also down-regulated in bladder cancer tissues (Figure 7A), especially in Asian populations (Figure 7C, P < 
0.05). No obvious difference was indicated in the effect of low SOD expression group and high expression group on OS time (Figure 7B, P = 
0.570) and DFS time (Figure 7D, P = 0.200). 
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Figure 8. Promoter methylation level of SOD2. Promoter methylation level of SOD2 was decreased in both Caucasian and Asian 
prostate cancer participants (A). SOD2 promoter methylation level was both up-regulated in bladder cancer subjects (B). The methylation 
level was increased in Caucasian renal cell carcinoma patients and decreased in Asian cases (C). 
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Figure 9. SOD2 correlations crosstalk investigation by String server functional protein association networks (Homo sapiens). 
At least 10 proteins were predicted to be involved in the interaction of SOD2, including  SOD1 (Superoxide dismutase-1), CAT (Catalase), 
SOD3 (Extracellular superoxide dismutase-3), FOXO3 (Forkhead box protein O-3),  GPX1 (Glutathione peroxidase 1), SIRT3 (NAD-dependent 
protein deacetylase sirtuin-3), GPX7 (Glutathione peroxidase-7), GPX3 (Glutathione peroxidase-3), AKT1 (RAC-alpha serine/threonine-protein 
kinase-1), GPX2 (Glutathione peroxidase-2). 
 

 
 

Figure 10. Gene-gene interaction of SOD2. At least 24 genes could participate in the correlation of SOD2 (A). Complement factor B gene 
(CFB) was predicted to be the most related gene. There was a positive correlation between CFB and SOD2 in PCa (B).  
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less advanced PCa subjects. Results from in silico  
tools indicated that the expression of SOD2 was 
downregulated in both prostate and bladder cancer tissues 
as compared to the control samples. Furthermore, 
prostate cancer subjects with low SOD2 expression had a 
shorter DFS time than the high-SOD2-expression 
counterpart. According to the analysis of TCGA data, 
SOD2 expression was negatively associated with the 
levels of methylation at six CpG sites (cg06346099 and 
cg10698098 for BCa, cg09364756 and cg27624424 for 
PCa, cg18897905 and cg06346099 for RCC).  
 
It is important to consider the limitations of the current 
analysis which might have an influence on the final 
conclusion. First, the number of registered articles in the 
present analysis is still insufficient for a more 
comprehensive analysis. Only four studies were based 
on African population and one was towards Asian 
descendants. Second, subjects from hospitals or 

populations may have potential diseases, which may 
affect the health of participants and the findings of this 
study. In addition, we did not evaluate the serum SOD2 
level in healthy participants due to ethical factors. In 
stratification analysis by cancer type, only one study 
was for renal cell carcinoma. We tried to further assess 
the potential interactions between SOD2 V16A variant 
and different stages and grades of tumors; however, the 
original data remains insufficient. As described in 
Figure 9, according to String analysis, at least ten 
proteins might participate in the interaction with SOD2. 
However, TCGA samples showed more than 24 genes 
to be correlated with SOD2 in prostate cancer. 
Complement factor B gene (CFB) was predicted to be 
the most related gene. However, there are few studies 
on the specific mechanism of CFB gene in prostate 
cancer. The hsa-miR-330-3p was predicted to be highly 
conserved miRNA related to SOD2. As no further 
investigation on their correlation could be identified from 

 

 
 

Figure 11. MiRNA that related to SOD2. At least 11 miRNA were predicted to be related to SOD2 by TargetScan database. The hsa-miR-
330-3p (A) was highly conserved, and the rest ten were poorly conserved (B). 
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Figure 12. Association of DNA methylation and SOD2 expression. According to the analysis of TCGA data, SOD2 expression was 
negatively associated with the levels of methylation at six CpG sites (cg06346099 and cg10698098 for BCa, cg09364756 and cg27624424 for 
PCa, cg18897905 and cg06346099 for RCC). 

 

 
 

Figure 13. Begg’s funnel plot (A) and sensitivity analysis (B) for SOD2 rs4880 V16A polymorphism under allelic contrast model. No evidence 
of publication bias was identified for SOD2 V16A variant by Begg’s funnel plots test (t = 2.17, P = 0.119). No single study could have an impact 
on the pooled OR through sensitivity analysis. 
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the online database, future in vitro and functional 
experiment are required to verify these interactions in 
more detail. Importantly, future research is still warranted 
to ascertain whether the SOD2 V16A variant is 
responsible for the reduced SOD2 gene expression. 
Moreover, some advantages of the present analysis need 
to be mentioned. First, all eligible studies that assessed 
the relationship between SOD2 V16A variant and 
urological cancer risk were enrolled in the current 
analysis, which could acquire more reliable conclusions 
compared to a single study. Besides, the Begg’s plot and 
Egger’s test demonstrated no evidence of publication 
bias, which indicated that the conclusions drawn from the 
present analyses are reliable. 
 
CONCLUSIONS 
 
Taken together, the current analyses demonstrate that 
SOD2 V16A variant may be associated with increased 
susceptibility to urological cancer, especially for 
prostate cancer. Moreover, the expression of SOD2 was 
found to be downregulated in more advanced prostate 
cancer participants, as compared to the less advanced 
ones. Further high quality randomized controlled 
studies are necessary to ascertain the correlation 
between SOD2 V16A variant and urological cancer risk 
or survival in more detail. 
 
MATERIALS AND METHODS 
 
Search strategy 
 
All suitable studies on SOD2 variant and cancer risk 
were retrieved by systematically searching databases 
including Embase, PubMed, Google scholar, Chinese 
National Knowledge Infrastructure (CNKI), and 
Wanfang databases (the last search was conducted on 
August 22, 2019). The search keywords were as follows: 
“SOD2” or “Superoxide Dismutase 2”, “variant” or 
“polymorphism”, “cancer” or “tumor” or “carcinoma”. 
Additional suitable publications were hand-searched 
from original studies or references about this topic. 
 
Inclusion and exclusion criteria 
 
Two investigators selected case-control studies according 
to the following inclusion criteria: (a) studies compared 
cancer with control; (b) investigating the correlation 
between SOD2 V16A variant and urological cancer risk 
(including prostate cancer, bladder cancer and renal cell 
carcinoma); (c) providing sufficient genotype data and 
allele distribution for calculating odds ratio with 95% 
confidence interval. If any of the following aspects exist, 
the study was excluded: (a) without suitable genotype 
data; (b) studies without controls; (c) duplicate 
publications with previous data. 

Data extraction  
 
Two authors independently reviewed and identified the 
eligible studies based on the criteria mentioned above. 
Detailed information of the extracted studies was as 
follows: first author’s name, publication year, ethnicity 
of study population, control source (hospital-based or 
population-based), type of cancer, total number of case 
and control with V/V, V/A, A/A genotypes, P value of 
Hardy-Weinberg equilibrium (HWE) in control, age 
range, method of genotyping. Controversial content 
should be addressed by discussion of all investigators to 
reach a final consensus. 
 
Statistical analysis 
 
The strength of correlation between SOD2 V16A and 
urological cancer susceptibility was measured by odds 
ratios (ORs) combined with 95% confidence intervals 
(CIs). Pooled ORs of five comparison models were 
investigated: allelic comparison (A-allele versus V-
allele), homozygous model (AA versus VV), 
heterozygous model (VA versus VV), dominant 
comparison (AA+VA vs. VV), and recessive comparison 
(AA vs. VA + VV). We employed Chi-square-based Q 
test to assess statistical heterogeneity among studies. If P 
value less than 0.05, heterogeneity was considered 
significant. Therefore, the fixed-effects model (Mantel-
Haenszel method) was conducted. Otherwise, random-
effects model (DerSimonian-Laird method) was adopted. 
Subgroup analyses were measured by ethnicity 
(Caucasian, Asian, African, or mixed population), type of 
cancer (prostate cancer, bladder cancer and renal cell 
carcinoma), source of control (hospital-based and 
population-based studies). Hardy-Weinberg equilibrium 
(HWE) in control group was also calculated. If P value of 
HWE less than 0.05, it should be defined as low quality 
study (Classified as non-HWE group). We applied 
Begg’s funnel plots and Egger’s test to check publication 
bias among studies. P value less than 0.05 can be defined 
as the existence of significant publication bias. Moreover, 
we applied sensitivity analysis to determine the stability 
of final result by omitting one study each time. STATA 
software (v11.0; Stata Corporation, TX) was employed in 
all of the above statistical analyses. 
 
Study population 
 
Overall, 220 pathologically confirmed prostate cancer 
subjects were recruited from the Affiliated Changzhou 
No.2 People’s Hospital of Nanjing Medical University 
and Affiliated Hospital of Jiangnan University. 
Distribution of PCa patients’ characteristics was 
summarized in Table 1. These patients were diagnosed 
with prostate cancer through needle biopsy (from 
February 2013 to July 2018). 2 milliliters of peripheral 
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Table 1. Distribution of characteristics from the PCa patients involved in our hospitals. 

Features PCa patients 
n 220 
Age,n(%)  

<60 101(45.9) 
≥60 119(54.1) 

Smoking, n (%)  
Ever 99(45) 
Never 121(55) 

Alcohol drinking, n (%)  
Ever 131(59.5) 
Never 89(40.5) 

PSA, n (%)  
 4-10 133(60.4) 
 10-20 69(31.3) 
>20 18(8.3) 

Gleason score (%)  
<7 101(45.9) 
=7 69(31.4) 
>7 50(22.7) 

TNM stage (%)  
 ≤T2c 151(68.6) 
 =T3a 44(20) 
 ≥T3b 25(11.4) 

Recurrent (%)  
Yes 19 (8.6) 
No 201(91.4) 

 

blood samples were collected from every enrolled 
prostate cancer participants. Before all blood samples 
were prepared, written informed consent should be 
acquired from every study subjects. The present study 
protocol was approved by the above hospitals. 
 
Genotyping methods 
 
Genotyping of SOD2 V16A polymorphism was carried 
out using different techniques in various studies, such as 
real-time PCR, restriction fragment length polymorphism 
PCR (PCR-RFLP), MassArray (Sequenom, San Diego, 
CA), Mass spectrometry (matrix-assisted laser 
desorption/ionization time-of-flight) (Sequenom, San 
Diego, CA). In our experiment, SOD2 V16A 
polymorphism was determined using TaqMan assay by 
Li et al. [56] 
 
Enzyme Linked immunosorbent Assay (ELISA) and 
immunohistochemical staining (IHS)  
 
Blood of participants was gathered in standard cubes 
without anticoagulant. We applied serum separator tube 

(SST) and solidified the sample at room temperature for 
2 hours, and then centrifuged at 1000 × g for 15 
minutes. Take out the serum immediately and determine 
it, and divide it equally or store the sample at -80 °C. 
Serum SOD2 expression of participants recruited from 
our centers was tested by ELISA kit (CUSABIO Co. 
ltd.). Moreover, we utilized IHS to test the tissue 
expression of SOD2 among PCa subjects in our centers. 
Paraffin section of prostate cancer was incubated in 
hydrogen peroxide (1%) and then washed in PBS. We 
used goat serum to block the binding of non-specific 
proteins. Then the slice was incubated with anti-SOD2 
antibody at 1: 200. The immunoreactive sites were 
shown brown with diaminobenzidine. 
 
In silico analysis of SOD2 expression 
 
We applied online gene expression database to evaluate 
SOD2 expression in prostate and bladder cancer based 
on different ethnic population (http://gemini.cancer-
pku.cn/). We further adopted The Cancer Genome 
Atlas (TCGA) samples to evaluate high and low 
expression of SOD2 on overall survival time and 

http://gemini.cancer-pku.cn/
http://gemini.cancer-pku.cn/
http://gemini.cancer-pku.cn/
http://gemini.cancer-pku.cn/
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Table 2. Stratified analyses of SOD rs4880 V16A polymorphism on urological cancer risk. 

Variables N Case/Control 

OR(95%CI)   
Pheter   P  

A-allele vs.  
V-allele 

OR(95%CI)    
Pheter   P 

AV vs. VV 

OR(95%CI)   
Pheter   P 

AA vs. VV 

OR(95%CI)   
Pheter   P 

AA+AV vs. VV 

OR(95%CI)  
Pheter   P 

AA vs. AV+VV 

Total 28 9910/11239 
1.06(1.00-1.13) 

0.006 0.047 
1.05(0.90-1.08) 

0.031 0.359 
1.13(1.00-1.28) 

0.007 0.052 
1.09(1.02-1.16) 

0.086 0.008 
1.08(0.97-1.20) 

0.006 0.138 

Ethnicity        

Caucasian 21 8020/9025 
1.08(1.00-1.16) 

0.003 0.043 
1.01(0.94-1.09) 

0.084 0.729 
1.15(0.99-1.33) 

0.008 0.060 
1.11(1.00-1.24) 

0.034 0.046 
1.08(0.97-1.21) 

0.017 0.175 

African 4 1439/1675 
0.98(0.88-1.09) 

0.958 0.706 
0.93(0.77-1.12) 

0.596 0.417 
0.95(0.78-1.17) 

0.902 0.648 
1.01(0.80-1.18) 

0.908 0.931 
0.94(0.79-1.12) 

0.718 0.467 

Mixed 2 238/330 
1.31(1.03-1.68) 

0.485 0.030 
1.96(1.25-3.07) 

0.190 0.003 
1.87(1.11-3.17) 

0.088 0.019 
1.18(0.78-1.78) 

0.434 0.436 
1.89(1.23-2.90) 

0.126 0.003 

Asian 1 213/209 
0.80(0.53-1.21)  

-  0.295 
0.88(0.19-4.05)  

-  0.870 
0.70(0.15-3.16)   -  

0.640 
0.79(0.50-1.24)  -  

0.301 
0.73(0.16-3.31)  

-  0.686 

Cancer         

PCa 19 7478/8594 
1.07(1.00-1.15) 

0.047 0.043 
1.06(0.92-1.23) 

0.003 0.387 
1.15(0.99-1.33) 

0.022 0.064 
1.12(1.04-1.20) 

0.470 0.003 
1.10(0.96-1.26) 

0.002 0.177 

BCa 8 2391/2595 
1.01(0.93-1.09) 

0.089 0.892 
1.02(0.88-1.18) 

0.922 0.782 
1.03(0.87-1.21) 

0.154 0.754 
0.99(0.88-1.13) 

0.059 0.930 
1.02(0.89-1.17) 

0.668 0.745 

RCC 1 41/50 
2.26(1.24-4.11)  

-  0.008 
1.96(0.66-5.80)  

-  0.227 
4.03(1.28-12.62)  -  

0.017 
2.64(1.07-6.52)  -  

0.035 
2.72(1.01-7.36)  

-  0.048 

PHWE         

HWE 24 8665/9669 
1.05(1.00-1.09) 

0.006 0.031 
1.00(0.93-1.08) 

0.401 0.991 
1.09(0.96-1.24) 

0.043 0.167 
1.09(1.02-1.17) 

0.048 0.010 
1.04(0.95-1.14) 

0.136 0.432 

non-HWE 4 1245/1570 
1.07(0.96-1.20) 

0.136 0.200 
1.72(0.95-3.11) 

0.001 0.072 
1.70(0.96-3.01) 

0.007 0.071 
1.06(0.90-1.26) 

0.564 0.495 
1.73(0.98-3.04) 

0.001 0.058 

Source       

HB 13 1742/2450 
1.21(1.02-1.43) 

0.001 0.027 
1.19(1.01-1.39) 

0.060 0.038 
1.40(1.00-1.95) 

0.002 0.047 
1.20(0.95-1.52) 

0.005 0.129 
1.32(1.02-1.71) 

0.009 0.034 

PB 15 8168/9152 
1.04(0.99-1.08) 

0.526 0.101 
0.98(0.91-1.06) 

0.222 0.637 
1.08(0.99-1.18) 

0.329 0.081 
1.09(1.01-1.17) 

0.838 0.022 
1.01(0.94-1.09) 

0.182 0.718 

BCa: bladder cancer; HWE: Hardy-Weinberg equilibrium; HB: hospital-based; PB: population-based; Pheter: P value of Q-test for 
heterogeneity test; PHWE: P value of HWE; PCa: prostate cancer; RCC: renal cell carcinoma. 
 

disease free survival time. Promoter methylation levels 
of SOD2 in different urological cancers were also 
evaluated. String online server was employed to 
investigate functional protein association of SOD2 
(http://string-db.org/). We further utilized TCGA 
samples to investigate gene-gene interaction of SOD2 
among prostate cancer participants (http://ualcan.path. 
uab.edu/analysis.html). Promoter methylation level of 
SOD2 was also investigated by TCGA samples 
(http://ualcan.path.uab.edu/cgi-bin/TCGA-methyl-Result. 
pl?genenam=SOD2). Additionally, TargetScan database 
was utilized to predict the possible miRNA correlated to 
SOD2 (http://www.targetscan.org/vert_71/). 

Abbreviations 
 
AKT1: RAC-alpha serine/threonine-protein kinase; BCa: 
bladder cancer; CAT: Catalase; CFB: complement factor 
B; ELISA: enzyme linked immunosorbent assay; 
FOXO3: Forkhead box protein O3; GPX1: Glutathione 
peroxidase 1; HB: hospital-based; HWE: Hardy-
Weinberg equilibrium of controls; IHS: 
immunohistochemical staining; MS: Mass spectrometry; 
NA: not available; PB: population-based; PCa: prostate 
cancer; PCR-RFLP: polymerase chain reaction and 
restrictive fragment length polymorphism; RCC: renal 
cell carcinoma; RT: real time; SOD2: superoxide 
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dismutase 2; SIRT3: NAD-dependent protein deacetylase 
sirtuin-3. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary Table 
 
Please browse Full Text version to see the data of Supplementary Table 1 
 

Supplementary Table 1. Basic information of included studies for SOD2 rs4880 V16A variant and urological cancer 
risk.

 
 


