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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the most common 

form of liver cancers [1], which has an annual 

incidence of at least 6 per 100,000 individuals and 

represents the fastest-rising cause of cancer-related 

death [2]. Due to the high rate of recurrence and 

metastasis, the five-year survival rate for advanced 

HCC is poor. However, existing targeted drugs show 

unsatisfactory efficacy, due to a combination of factors 

spanning an array of  different  clinical  and  biological  

 

behaviors, and the development of anti-HCC drug 

resistance [3]. The molecular mechanisms underlying 

tumor formation and progression are poorly under-

stood, which further complicates the effective 

treatment of HCC [4]. In addition, the lack of markers 

that are specific for tumor type or disease stage 

represents a critical gap in the current understanding 

and treatment of HCC. 

 

Pre-mRNA splicing is a fundamental process that plays 

a considerable role in generating protein diversity. Pre-
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ABSTRACT 
 

pre-mRNA processing factor 3 (PRPF3) is an RNA binding protein in a core component of the exon junction 
complex. Abnormal PRPF3 expression is potentially associated with carcinogenesis. However, the biological role 
of PRPF3 in hepatocellular carcinoma (HCC) remains to be determined. We analyzed PRPF3 expression via 
multiple gene expression databases and identified its genetic alterations and functional networks using 
cBioPortal. Co-expressed genes with PRPF3 and its regulators were identified using LinkedOmics. The 
correlations between PRPF3 and cancer immune infiltrates were investigated via Tumor Immune Estimation 
Resource (TIMER). PRPF3 was found up-regulated with amplification in tumor tissues in multiple HCC cohorts. 
High PRPF3 expression was associated with poorer overall survival (OS) and disease-free survival (DFS). 
Functional network analysis suggested that PRPF3 regulates spliceosome, DNA replication, and cell cycle 
signaling via pathways involving several cancer-related kinases and E2F family. Notably, PRPF3 expression was 
positively correlated with infiltrating levels of CD4+ T and CD8+ T cells, macrophages, neutrophils, and dendritic 
cells. PRPF3 expression showed strong correlations with diverse immune marker sets in HCC. These findings 
suggest that PRPF3 is correlated with prognosis and immune infiltrating in HCC, laying a foundation for further 
study of the immune regulatory role of PRPF3 in HCC. 
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mRNA splicing is also the key to the pathology of 

numerous diseases, especially cancers [5]. The connection 

between cancer biology and splicing regulation is of 

primary importance to understand the mechanisms 

leading to disease and also to improve the development 

of therapeutic approaches [6]. Among the array of 

splicing factors, pre-mRNA processing factor 3 

(PRPF3), a component of the U4/U6 di-snRNP, is 

required for U4/U6•U5 tri-snRNP formation and 

recruitment to active spliceosomes, which is essential 

for efficient pre-mRNA splicing [7, 8]. 

 

It is also known that one gene pair, KCNE2-PRPF3 as 

the signature could robustly predict prognoses of gastric 

cancer patients treated with 5-FU-based chemotherapy 

[9]. As a member of the hepatic transcription factor 

network, Hepatocyte Nuclear Factor 4 Alpha (HNF4α) 

plays a pivotal role in liver development and 

hepatocellular differentiation. One study indicated that 

PRPF3 is an HNF4α regulated gene with induced 

expression in mouse and human HCC [10]. However, 

the biological function of PRPF3 in HCC remains to be 

determined. 

Here, we investigated PRPF3 expression and mutations 

in data from patients with HCC in The Cancer Genome 

Atlas (TCGA) and various public databases. Using 

multi-dimensional analysis, we evaluated genomic 

alterations and functional networks related to PRPF3 in 

HCC and explored its role in tumor immunity. Our 

results could potentially reveal new targets and 

strategies for HCC diagnosis and treatment. 
 

RESULTS 
 

Elevated expression of PRPF3 in HCC 
 

We initially evaluated PRPF3 transcription levels in 

multiple HCC studies from TCGA and GEO. Analysis 

of eleven HCC cohorts in the HCCDB database revealed 

that mRNA expression of PRPF3 was significantly 

higher in HCC tissues than in adjacent normal tissues 

(Figure 1A). Data in the Oncomine database indicated 

that PRPF3 ranked within the top 10% based on mRNA 

expression (Figure 1B). Levels of PRPF3 DNA copy 

number were significantly higher in tumor tissues than in 

normal tissue (Figure 1C). 

 

 
 

Figure 1. PRPF3 transcription level in HCC. (A) Chart and plot showing the expression of PRPF3 in tumor tissues and the adjacent normal 
tissues, according to t-test in HCCDB. (B) Box plot showing PRPF3 mRNA levels in the Roessler Liver, Roessler Liver 2, and Wurmbach Liver 
datasets, respectively. (C) Box plot showing PRPF3 copy number in Guichard Liver and Guichard Liver 2 datasets, respectively. 
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Further sub-group analysis of multiple clinic-pathological 

features of TCGA-LIHC samples in UALCAN database 

consistently showed elevated transcription level of 

PRPF3. The expression of PRPF3 was significantly 

higher in HCC patients than normal controls in subgroup 

analysis based on gender, age, ethnicity, disease stages, 

and tumor grade (Figure 2). Thus, PRPF3 expression may 

serve as a potential diagnostic indicator in HCC. 

 

PRPF3 expression is survival-associated  

 

Then, Kaplan-Meier survival curves were used to assess 

the association between PRPF3 expression and the 

survival outcomes of HCC cohorts with survival 

information available (Figure 3). The patients were 

separated into two groups according to the median value 

of PRPF3 expression level in each cohort. Generally, 

the high PRPF3 expression group had significantly 

shorter overall survival (OS) (log-rank test, p < 0.05) 

and disease-free survival (DFS) (log-rank test, p < 

0.05), compared to the low expression group in LIHC 

cohort (Figure 3A). Similarly, in an independent cohort 

(GSE14520), the low-risk group had significantly better 

OS and DFS than the high-risk group (Figure 3B). In 

addition, high PRPF3 expression being associated with 

poor survival was also verified in GSE10141 cohort 

(Supplementary Figure 1). 
 

PRPF3 co-expression networks in HCC 
 

To gain the insight of PRPF3 biological meaning in 

HCC, the function module of LinkedOmics was used to 

examine PRPF3 co-expression mode in LIHC cohort. 

As shown in Figure 4A, 3,558 genes (dark red dots) 

were shown significant positive correlations with 

PRPF3, whereas 1,891 genes (dark green dots) were 

shown significant negative correlations (false discovery 

rate, FDR < 0.01). The top 50 significant genes 

positively and negatively correlated with PRPF3 were 

shown in the heat map (Figure 4B). A total description 

of the co-expressed genes was detailed in Supplementary 

Table 1. 

 

 
 

Figure 2. PRPF3 transcription in subgroups of patients with HCC, stratified based on gender, age and other criteria (UALCAN). 
Box-whisker plots showing the expression of PRPF3 in sub groups of LIHC samples.  (A) Boxplot showing relative expression of PRPF3 in 
normal and LIHC samples. (B) Boxplot showing relative expression of PRPF3 in normal individuals of either gender and male or female LIHC 
patients, respectively. (C) Boxplot showing relative expression of PRPF3 in normal individuals of any age or in LIHC patients aged 21-40, 41-60, 
61-80, or 81-100 yr. (D) Boxplot showing relative expression of PRPF3 in normal, African American, Caucasian and Asian LIHC patients. (E) 
Boxplot showing relative expression of PRPF3 in normal individuals or in LIHC patients in stages 1, 2, 3 or 4. (F) Boxplot showing relative 
expression of PRPF3 in normal individuals or LIHC patients with grade 1, 2, 3 or 4 tumors. The central mark is the median; the edges of the 
box are the 25th and 75th percentiles. The t-test was used to estimate the significance of difference in gene expression levels between 
groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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PRPF3 expression showed a strong positive association 

with expression of SETDB1 (positive rank #1, r = 0.672, 

p = 5.06E-50), VPS72 (r = 0.658, p = 2.19E-47), and 

VPS45 (r = 0.647, p = 1.95E-45), etc. Notably, the top 

50 significantly positive genes showed the high 

likelihood of being high-risk genes in HCC, in which 

34/50 genes were with high hazard ratio (HR) (p < 

0.05). In contrast, there were 11/50 genes with low HR 

(p < 0.05) in the top 50 negatively significant genes 

(Figure 4C). 

 

Significant Gene Ontology (GO) term annotation by 

gene set enrichment analysis (GSEA) showed that 

PRPF3 co-expressed genes participate primarily in 

chromosome segregation, mitotic cell cycle phase 

transition, double-strand break repair, and mRNA 

processing, while the activities like fatty acid metabolic 

process, peroxisomal transport, and multiple metabolic 

processes were inhibited (Figure 4D and Supplementary 

Table 2). Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis showed enrichment in the 

spliceosome, fanconi anemia pathway, RNA transport, 

and nucleotide excision repair pathways, etc (Figure 4D 

and Supplementary Table 3). These results suggest  

that a widespread impact of PRPF3 on the global trans-

criptome. 

 

Regulators of PRPF3 networks in HCC 

 

To further explore the regulators of PRPF3 in HCC, 

we analyzed the kinases, miRNAs and transcription 

factors’ (TF) enrichment of PRPF3 co-expressed 

genes. The top 5 most significant kinases related 

primarily to the cyclin-dependent kinase 1 (CDK1), 

polo like kinase 1 (PLK1), Aurora kinase B 

(AURKB), checkpoint kinase 1 (CHEK1), and cyclin-

dependent kinase 2 (CDK2) (Table 1 and 

Supplementary Table 4). In fact, all of these kinase 

genes, except CDK2, were significantly highly 

expressed in tumor tissues. In addition, all these 

kinase genes were significantly associated with the 

OS of HCC (Supplementary Figure 2).  

 

No significant miRNA was enriched by GSEA for PRPF3 

co-expressed genes (Supplementary Table 5). The 

enrichment of transcription factors was related mainly to 

the E2F transcription factor family (Supplementary Table 

6), including V$E2F_Q6, V$E2F_Q4, V$E2F1_Q6, 

V$E2F1DP1RB_01, and V$E2F4DP1_01. One recent 

study, using combinatorial mapping of chromatin 

occupancy and transcriptome profiling, identified an E2F-

driven transcriptional program that was associated with the 

development and progression of HCC [11]. 

 

Genomic alterations of PRPF3 in HCC 

 

We then used the cBioPortal tool to determine the types 

and frequency of PRPF3 alterations in HCC based on 

DNA sequencing data from LIHC patients. PRPF3 was 

altered in 115 of 370 (32%) LIHC patients (Figure 5A). 

These alterations include mRNA upregulation in 60 

cases (16%), amplification (AMP) in 38 cases (10%), 

 

 
 

Figure 3. PRPF3 is associated with survival outcome. (A) Overall survival (OS) and disease-free survival (DFS) in TCGA LIHC cohort.  

(B) OS and DFS of PRPF3 in GSE14520 cohort. The numbers below the figures denote the number of patients at risk in each group. 
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mutation in 1 case (0.3%), and multiple alterations in 19 

cases (5%). Thus, AMP is the most common type of 

PRPF3 CNV in HCC. 

 

PRPF3 AMP results in the high expression level of 

PRPF3 (Figure 5B). Compared with the diploid group, 

gain or amplification group has higher PRPF3 

expression levels (p < 0.001). Next, the frequency 

distribution of PRPF3 CNV patients in different stage 

and grade groups was presented in Figure 5C, 

suggesting the high occurrence and an early-event of 

PRPF3 CNV alteration in HCC. Moreover, PRPF3 

CNV alteration was significantly associated with the OS 

and DFS of HCC patients (Figure 5D, 5E). Based on 

five-years survival, median survival time of samples 

with PRPF3 alteration was 29.97 months and 19.47 

months for OS, and DFS respectively. 

 

Gene co-occurrence of PRPF3 alterations in HCC 

 

Gene co-occurrence reflects common genetic risk factors 

constituting functional relationships, thus we examine 

the co-occurrence profiles with PRPF3 AMP in HCC. 

More than one thousand (1,243) genes were shown 

having significant co-occurrence with PRPF3 AMP 

(Supplementary Table 7). The most frequent alterations 

were Acidic Nuclear Phosphoprotein 32 Family Member 

E (ANP32E) (34.78%), Aph-1 Homolog A (APH1A) 

(34.78%), and Chromosome 1 Open Reading Frame 54 

(C1orf54) (34.78%), etc. KEGG pathway analysis of co-

occurrence genes showed enrichment in complement 

and coagulation cascades and systemic lupus 

erythematosus (Figure 6B). Analysis of significantly 

enriched GO terms indicated that these genes were 

primarily involved in acute inflammatory response, 

immune effector process, and adaptive immune 

response, etc (Figure 6C and Supplementary Table 8). 

 

Further, the PRPF3 co-occurrence derived protein-

protein interaction (PPI) network was assembled based 

on liver-specific data collected from the DifferentialNet 

database [12] (Figure 6D). The top 3 hub genes were 

Ring Finger Protein 2 (RNF2), Myeloid Cell Nuclear 

Differentiation Antigen (MNDA), and Cullin 4A 

 

 
 

Figure 4. PRPF3 co-expression genes in HCC (LinkedOmics). (A) The global PRPF3 highly correlated genes identified by Pearson test in 
LIHC cohort. (B) Heat maps showing top 50 genes positively and negatively correlated with PRPF3 in LIHC. Red indicates positively correlated 
genes and blue indicates negatively correlated genes. (C) Survival map of the top 50 genes positively and negatively correlated with PRPF3 in 
LIHC. (D) Significantly enriched GO annotations and KEGG pathways of PRPF3 in LIHC cohort. 
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Table 1. The Kinases, miRNAs and transcription factors-target networks of PRPF3 in HCC. 

Enriched Category Geneset LeadingEdgeNum FDR 

Kinase Target Kinase_CDK1 85 0.00E+00 

Kinase_PLK1 38 0.00E+00 

Kinase_CHEK1 49 0.00E+00 

Kinase_AURKB 32 0.00E+00 

Kinase_CDK2 118 0.00E+00 

miRNA Target GACTGTT, MIR-212, MIR-132 148 4.32E-01 

AGCGCAG, MIR-191 12 4.56E-01 

CCAGGTT, MIR-490 60 4.58E-01 

GAGCTGG, MIR-337 147 4.67E-01 

ACACTCC, MIR-122A 80 4.70E-01 

Transcription Factor V$E2F4DP2_01 69 0.00E+00 

V$E2F_Q4_01 44 0.00E+00 

KCCGNSWTTT_UNKNOWN 33 8.40E-05 

GCGSCMNTTT_UNKNOWN 30 3.00E-04 

V$ETF_Q6 80 3.20E-04 

 

(CUL4A). The previous study indicated that loss of 

RNF2 inhibited HCC cell growth and promoted apoptosis 

[13]. While CUL4A facilitates hepatocarcinogenesis by 

promoting cell cycle progression and epithelial-

mesenchymal transition [14]. 

 

Finally, TF-miRNA coregulatory interactions of the 

PRPF3 co-occurrence genes was constructed based on 

the RegNetwork repository (Figure 6E) [15]. The top 3 

TFs were Upstream Transcription Factor 1 (USF1), 

POU Class 2 Homeobox 1 (POU2F1), and Aryl 

Hydrocarbon Receptor Nuclear Translocator (ARNT). 

Generally, USF1 acts as a positive transcription factor, 

which binds to the basal promoter thus ensuring gene 

expression in a wide range of tissues including liver 

[16]. POU2F1 promotes growth and metastasis of HCC 

through the FAT Atypical Cadherin 1 (FAT1) signaling 

pathway [17]. Suppression of tumor cell invasion and 

migration was demonstrated in ARNT-silenced HCC 

cell lines. Silencing of ARNT induces anti-tumor effects 

in hepatoma cell lines under tumor hypoxia [18]. 

 

Whether for the liver-specific PPI network or the TF-

miRNA coregulatory network, the function annotation 

implied that PRPF3 AMP involves in the immune 

response and inflammatory response. 

 

PRPF3 is correlated with tumor purity and immune 

infiltration level in HCC 

 

Therefore, we investigated whether PRPF3 expression 

was correlated with immune infiltration levels in HCC 

from TIMER database. The results show that PRPF3 

expression has significant correlations with tumor purity 

(r = 0.223, p = 2.90E-05) and significant correlations 

with the dominant immune cells infiltration levels  

(Figure 7A). Particularly, PRPF3 CNV has significant 

correlations with infiltrating levels of CD8+ T cells, 

macrophages, neutrophils, and dendritic cells (Figure 7B). 

 

Moreover, multivariable hazards models were used to 

evaluate the impacts of PRPF3 expression in the 

presence of varying immune cells. PRPF3 had 1.57 

times higher risks on OS (p < 0.001) and 1.36 times 

higher risks on DFS (p = 0.0259) (Figure 7C).  

 

In addition, PRPF3 co-occurrence genes with Log Ratio 

> 10 also showed the significant correlations with tumor 

purity and varying degree with immune cells 

(Supplementary Figure 3A). Similar to PRPF3, CNV of 

all these genes have significant correlations with 

infiltrating levels of CD8+ T cells, macrophages, 

neutrophils, and dendritic cells (Supplementary  

Figure 3B). 

 

PRPF3 expression is associated with immune 

signatures 

 

Finally, to broaden the understanding of PRPF3 

crosstalk with immune genes, we analyzed the 

correlations between PRPF3 expression and various 

immune signatures, which included immune marker 

genes of 28 tumor-infiltrating lymphocytes (TILs), 

immune inhibitory or stimulatory genes (including 

immune checkpoint gene sets), cytokine-related genes, 

cancer-testis antigen genes, and major histocompatibility 

complex (MHC) genes (Table 2 and Supplementary 

Table 9). 
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After the correlation adjustment by tumor purity, the 

results revealed the PRPF3 expression level was 

significantly correlated with most immune marker sets 

of various immune cells in LIHC. Table 2 showed the 

examples of the purity-corrected partial Spearman’s 

correlation between PRPF3 and marker genes of 

activated T cells. In activated CD8 T cells, PRPF3 is 

highly correlated with Myelin Protein Zero Like 1 

(MPZL1). Indeed, AMP of MPZL1 promotes tumor cell 

migration through Src-mediated phosphorylation of 

 

 
 

Figure 5. PRPF3 genomic alterations in HCC (cBioPortal). (A) OncoPrint of PRPF3 alterations in LIHC cohort. The different types of 

genetic alterations are highlighted in different colors. (B) PRPF3 expression in different PRPF3 CNV groups. PRPF3 amplification (AMP) group 
has a significantly higher expression level. (C) Distribution of PRPF3 CNV frequency in different stage and grade subgroups. The percentage 
number on the right of the bar indicates the ratio of patients with PRPF3 gain or AMP in all this subgroup patients. (D) To reduce the noise of 
disease irrelevant deaths, survival time that was greater than five years was truncated to five years. PRPF3 CNV affects overall survival and 
disease-free survival. ***, p < 0.001. 
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cortactin in HCC [19]. For activated CD4 T cells, 

PRPF3 is significantly correlated with NUF2 

Component Of NDC80 Kinetochore Complex (NUF2), 

which was suggested as a valuable prognostic biomarker 

to predict early recurrence of HCC [20]. Dendritic cell 

(DC) markers such as TTK Protein Kinase (TTK), 

Kinesin Family Member 2C (KIF2C), Centrosomal 

Protein 55 (CEP55), Sperm Flagellar 2 (SPEF2), Opa 

Interacting Protein 5 (OIP5), and Tubulin 

Polymerization Promoting Protein Family Member 2 

(TPPP2), etc., were also shown significant correlations 

with PRPF3 expression. 

 

We also found significant correlations between PRPF3 

and marker genes of Treg and myeloid-derived 

suppressor cell (MDSC), such as Methyltransferase 

Like 7A (METTL7A), Adenosine Deaminase TRNA 

Specific 2 (ADAT2), LDL Receptor Related Protein  

1 (LRP1), Lysosomal Protein Transmembrane 4  

Beta (LAPTM4B), Nuclear Factor Erythroid 2-Related 

Factor 3 (NFE2L3), Leucine Rich Repeat Containing 42 

(LRRC42), CD14, Suppressor Of Cytokine Signaling  

2 (SOCS2), Hydroxysteroid Dehydrogenase Like 2 

(HSDL2), and Ankyrin Repeat Domain 10 (ANKRD10). 

Interestingly, LAPTM4B decreases Transforming 

Growth Factor Beta 1 (TGF-β1) production in human 

Treg cells [21]. A recent study identified the existence 

of a monocytic subset of MDSCs with the CD14+HLA-

DR−/low phenotype that suppresses the proliferation of T 

cells [22]. The frequency of CD14+HLA-DR−/low 

MDSCs was significantly higher in HCC patients [23].  

 

In immunoinhibitory genes, results showed the 

expression levels of Cytotoxic T-Lymphocyte 

Associated Protein 4 (CTLA4) and Programmed Cell 

Death 1 (PD-1), and Programmed Cell Death 1 Ligand 2 

(PD-L2) have positive or negative correlations with 

PRPF3 expression, respectively, while TNF Superfamily 

Member 4 (TNFSF4), Inducible T Cell Costimulator 

Ligand (ICOSLG), TNF Superfamily Member 9 

(TNFSF9), etc., have correlations with PRPF3 

expression in immunostimulator genes. Specifically, we 

showed chemokine (C-C motif) ligand (CCL)-16, 

CCL14, Interleukin 12A (IL12A), CCL20, CCL26, C-

X3-C Motif Chemokine Ligand 1 (CX3CL1), CCL27, 

and CD19 Molecule (CD19) were significantly 

correlated with PRPF3 expression (p < 0.0001). 

Overexpression of the cancer-testis (CT) antigens 

represents the advanced disease of cancer. High PRPF3 

expression relates to high induction of cancer-testis 

 

 
 

Figure 6. PRPF3 CNV co-occurrence profiles in HCC. (A) Volcano plot of co-occurrence genes along with PRPF3 amplification (AMP).  

(B) KEGG pathway analysis of significantly PRPF3 co-occurrence genes. (C) GO_BP terms of significantly PRPF3 co-occurrence genes. (D) The 
liver-specific protein-protein interaction (PPI) network of significantly PRPF3 co-occurrence genes. (E) Transcription factor-miRNA (TF-miRNA) 
coregulatory network of significantly PRPF3 co-occurrence genes. 
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Figure 7. Correlations of PRPF3 expression with immune infiltration level in HCC. (A) PRPF3 expression is significantly related to 

tumor purity and has significant positive correlations with infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and 
dendritic cells in LIHC. (B) PRPF3 CNV affects the infiltrating levels of CD8+ T cells, macrophages, neutrophils, and dendritic cells in HCC.  
(C) Multivariable hazards models were used to evaluate the impacts of PRPF3 expression on overall survival and disease-free survival in the 
presence of infiltrating levels of multiple immune cells. (D) Survival maps of top 20 PRPF3 positively and negatively correlated immune 
markers in LIHC, respectively. *, p < 0.05, **, p < 0.01, ***, p < 0.001. 
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Table 2. Correlation analysis between PRPF3 and markers of activated T cells. 

Activated 

CD8 T cell 

None Purity Activated  

CD4 T cell 

None Purity 

Cor P Cor P Cor P Cor P 

ADRM1 0.0434 4.17E-01 0.0510 3.42E-01 AIM2 0.0519 3.32E-01 0.1657 1.86E-03* 

AHSA1 0.0464 3.86E-01 0.0498 3.53E-01 BIRC3 0.1174 2.78E-02* 0.1768 8.95E-04 

C1GALT1C1 -0.0042 9.38E-01 0.0134 8.03E-01 BRIP1 0.1941 2.54E-04* 0.1915 3.13E-04* 

CCT6B -0.2883 3.82E-08* -0.3117 2.53E-09* CCL20 0.1877 4.06E-04* 0.2190 3.59E-05* 

CD37 -0.0824 1.23E-01 0.0095 8.60E-01 CCL4 -0.1020 5.61E-02 -0.0259 6.29E-01 

CD3D 0.0226 6.73E-01 0.1133 3.41E-02* CCL5 -0.1204 2.41E-02* -0.0516 3.35E-01 

CD3E -0.0931 8.14E-02 -0.0112 8.35E-01 CCNB1 0.365 1.67E-12* 0.3762 3.31E-13* 

CD3G -0.0688 1.99E-01 0.0126 8.14E-01 CCR7 -0.0941 7.82E-02 -0.0267 6.19E-01 

CD69 -0.1511 4.56E-03* -0.0892 9.56E-02 DUSP2 -0.0274 6.08E-01 0.043 4.23E-01 

CD8A -0.0993 6.32E-02 -0.0288 5.91E-01 ESCO2 0.3049 5.53E-09* 0.3218 7.13E-10* 

CETN3 0.0194 7.17E-01 0.0206 7.01E-01 ETS1 -0.2332 1.02E-05* -0.1945 2.52E-04* 

CSE1L 0.2510 1.91E-06* 0.2442 3.78E-06* EXO1 0.4795 1.41E-21* 0.4902 1.48E-22* 

GEMIN6 0.0557 2.98E-01 0.0379 4.80E-01 EXOC6 0.2337 9.66E-06* 0.2355 8.47E-06* 

GNLY -0.0378 4.80E-01 -0.0003 9.95E-01 IARS 0.2431 4.09E-06* 0.2496 2.26E-06* 

GPT2 -0.2661 4.22E-07* -0.2872 4.52E-08* ITK -0.1523 4.23E-03* -0.0884 9.87E-02 

GZMA -0.1467 5.90E-03* -0.0849 1.13E-01 KIF11 0.4089 1.39E-15* 0.4189 2.64E-16* 

GZMH -0.1656 1.85E-03* -0.1192 2.57E-02* KNTC1 0.4255 7.19E-17* 0.4308 3.02E-17* 

GZMK -0.1558 3.44E-03* -0.0950 7.60E-02 NUF2 0.5126 6.60E-25* 0.5176 2.25E-25* 

IL2RB -0.1291 1.55E-02* -0.0558 2.98E-01 PRC1 0.3915 2.66E-14* 0.3994 7.75E-15* 

LCK -0.0842 1.15E-01 0.0036 9.47E-01 PSAT1 -0.0417 4.37E-01 -0.0360 5.02E-01 

MPZL1 0.3774 2.51E-13* 0.4119 9.18E-16* RGS1 0.0037 9.45E-01 0.0929 8.27E-02 

NKG7 -0.1198 2.47E-02* -0.0651 2.25E-01 RTKN2 0.3646 1.79E-12* 0.3849 8.36E-14* 

PIK3IP1 -0.1298 1.49E-02* -0.0972 6.93E-02 SAMSN1 -0.1064 4.64E-02* -0.0189 7.25E-01 

PTRH2 0.1665 1.74E-03* 0.1594 2.78E-03* SELL -0.0732 1.71E-01 -0.0034 9.50E-01 

TIMM13 -0.0588 2.72E-01 -0.0703 1.89E-01 TRAT1 -0.1266 1.77E-02* -0.0603 2.60E-01 

ZAP70 -0.0428 4.24E-01 0.0398 4.58E-01      

Cor, R value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity. * p < 
0.05. 

 

antigen genes in LIHC, such as the significant positive 

correlation between PRPF3 and NUF2, TTK, KIF2C, 

CEP55, SPEF2, and OIP5, etc. 

 

Generally, the top 5 markers positively correlated with 

PRPF3 were Interleukin Enhancer Binding Factor 2 

(ILF2), CREB Regulated Transcription Coactivator 2 

(CRTC2), NUF2, Exonuclease 1 (EXO1), and TTK. And 

the top 5 markers negatively correlated with PRPF3 were 

Transmembrane BAX Inhibitor Motif Containing 6 

(TMBIM6), METTL7A, Tubulin Polymerization 

Promoting Protein Family Member 2 (TPPP2), HIG1 

Hypoxia Inducible Domain Family Member 1A 

(HIGD1A), and Aldo-Keto Reductase Family 7 Member 

A3 (AKR7A3). Survival map analysis clearly 

demonstrated the high risk of PRPF3 positively 

correlated marker genes and the low risk of PRPF3 

negatively correlated marker genes (Figure 7D). 

Therefore, these results further confirm the findings that 

PRPF3 is specifically correlated with immune infiltrating 

cells in HCC, which suggests that PRPF3 plays a vital 

role in immune escape in the tumor microenvironment. 

 

DISCUSSION 
 

Splicing, a key step in gene expression enabling 

individual genes to encode multiple proteins, is 

emerging as a major driver of abnormal phenotypic 

heterogeneity. And it is expected splicing as a potential 

major source of untapped molecular targets in precision 

oncology and cancer disparities [24]. PRPF3, a core 

component of the spliceosome complex, is involved in 

multiple steps of transcription. To gain more detailed 

insights into the potential functions of PRPF3 in HCC 

and its regulatory network, we performed the 

bioinformatics analysis of public data to guide future 

research in HCC. 
 

Analysis of transcriptome from more than 3,400 clinical 

samples comprising six geographic regions and ethnic 
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HCC studies confirmed that PRPF3 mRNA levels and 

CNVs are significantly higher in HCC than in normal 

liver tissue (Figure 1). In addition, high expression of 

PRPF3 was significantly related to poor survival and 

disease-free state in multiple cohorts. Thus, our results 

suggest that PRPF3 up-regulation occurs in many cases 

of HCC and deserves further clinical validation as a 

potential diagnostic and prognostic marker. 

 

For mining regulators potentially responsible for 

PRPF3 dysregulation, we found that PRPF3 in HCC is 

associated with a network of kinases including CDK1, 

PLK1, AURKB, CHEK1, and CDK2. These kinases 

regulate genomic stability, mitosis, and the cell cycle, 

and showed differential expression and survival 

prognosis in LIHC. In fact, CDK1 participates in the 

regulation of mitosis, self-renewal, differentiation, and 

somatic reprogramming. Various inhibitors of CDK1, 

have been developed, and some have entered phase I 

and II clinical trials for the treatment of a variety of 

solid tumors and hematologic malignancies [25]. As a 

key driver gene, a causal link has recently been 

established between PLK1 and hepatocarcinogenesis 

[26]. In HCC, PRPF3 may regulate DNA replication, 

repair, and cell cycle progression via interacted kinases. 

 

Next, the E2F family constitute the main transcription 

factors for PRPF3 dysregulation. E2F1 is one of the key 

links in the cell cycle regulation network. Activated 

E2F oncogenic signaling was always seen in the 

progression of liver cancer, and studies have shown that 

dosage-dependent copy number gains in E2F1 and 

E2F3 drive HCC [11]. Our results suggest that E2F1 is 

an important regulator of PRPF3 and that PRPF3 might 

act through this factor to regulate the cell cycle and 

proliferation capacity of HCC. Further studies are 

needed to test this hypothesis. Our study identified no 

miRNAs that were significantly associated with PRPF3, 

possibly due to the role of PRPF3 involving in mRNA 

splicesome, and keeping away from miRNA cellular 

machinery. 

 

To probe the signaling events in controlling abnormal 

PRPF3 expression, we tested the PRPF3 co-expression 

network. Our results suggest that the functional 

consequence of PRPF3 mainly include spliceosome, 

DNA repair, DNA replication, and cell cycle, while it 

inhibits the metabolic processes, such as fatty acid, 

lipid, antibiotic, nucleoside bisphosphate, and cellular 

modified amino acid metabolic process. These findings 

are consistent with the molecular pathways implicated 

in HCC carcinogenesis [27]. 

 

A recent study found that genomic alteration, such as 

somatic mutations in the genes encoding components of 

the spliceosome, occurs frequently in human neoplasms 

[28]. CNVs can have major genomic implications, such 

as disrupting genes, altering genetic content, and lead to 

phenotypic differences. Our study found that the copy 

number of PRPF3 was increased in HCC and that the 

major type of PRPF3 alteration was AMP, which was 

associated with shorter survival. 

 

The tumor microenvironment is the non-cancerous cells 

present in and around a tumor, having a strong influence 

on the genomic analysis of tumor samples [29]. Since 

gene dynamics are known to influence belowground 

genetic diversity and microenvironment processes, co-

occurrence analysis was performed. Most co-occurrence 

genes with PRPF3 CNV were distributed in 1q21 locus. 

Further, a gene-level network representing the co-

occurrence of genes across HCC genomes was built, 

which gives the clues of PRPF3 role in regulating the 

immune response. Herein, by tumor purity analysis, the 

network of PRPF3 alterations is involved in the tumor 

purity and tumor immunity. Our findings provide a 

detailed characterization of the association between 

PRPF3 and immune marker sets in LIHC patients. 

Further studies need to be done to elucidate whether 

PRPF3 is a crucial factor in mediating T-cell therapy. 

 

In conclusion, this study provides multi-level evidence 

for the importance of PRPF3 in hepatocarcinogenesis 

and its potential as a biomarker in HCC. Our results 

suggest that PRPF3 up-regulation in HCC may likely 

have far-reaching effects in RNA splicing and genomic 

stability, and at multiple steps of the cell cycle. Further, 

our results suggest a potential novel immune regulatory 

role of PRPF3 in tumor immunity. These findings call 

for large-scale HCC genomics research and subsequent 

functional studies. 

 

MATERIALS AND METHODS 
 

Databases description 
 

HCCDB database analysis 

HCCDB is a database of HCC expression atlas 

containing 15 public HCC gene expression datasets 

containing totally 3917 samples [30], including the data 

from the Gene Expression Omnibus (GEO), Liver 

Hepatocellular Carcinoma Project of The Cancer 

Genome Atlas (TCGA-LIHC) and Liver Cancer - 

RIKEN, JP Project from International Cancer Genome 

Consortium (ICGC LIRI-JP). HCCDB provides the 

visualization for the results from several computational 

analyses, such as differential expression analysis, tissue-

specific and tumor-specific expression analysis. 
 

Oncomine database analysis 

The expression level of the PRPF3 gene in liver cancers 

was examined in the Oncomine 4.5 database 
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(https://www.oncomine.org/). Oncomine is a cancer 

microarray database and web-based data-mining 

platform. The threshold was determined according to 

the following values: p-value of 0.05, fold change of 

1.5, and gene ranking of all.  

 

UALCAN database analysis 

UALCAN (http://ualcan.path.uab.edu) uses TCGA  

level 3 RNA-seq and clinical data from 31 cancer types 

[31], allowing analysis of relative expression of  

genes across tumor and normal samples, as well as in 

various tumor sub-groups based on individual cancer 

stages, tumor grade or other clinicopathological 

features. 

 

GEPIA database analysis 

The Gene Expression Profiling Interactive Analysis 

(GEPIA) database (http://gepia.cancer-pku.cn/) is an 

interactive web that includes 9,736 tumors and 8,587 

normal samples from TCGA and the GTEx projects 

[32]. GEPIA was used to generate survival curves, 

including overall survival (OS) and recurrence-free 

survival (RFS), based on gene expression with the log-

rank test and the Mantel-Cox test in liver cancer. 

 

c-BioPortal database analysis 

The cBio Cancer Genomics Portal (http://cbioportal.org) 

has multidimensional cancer genomics data sets [33]. 

Mutation, copy number variation (CNV), and gene co-

occurrence of PRPF3 in HCC were analyzed using the  

c-BioPortal tool. The tab OncoPrint displays an overview 

of genetic alterations per sample in PRPF3.  

 

LinkedOmics Database Analysis 

The LinkedOmics database (http://www.linkedomics. 

org/login.php) is a web-based platform for analyzing 32 

TCGA cancer-associated multi-dimensional datasets 

[34]. PRPF3 co-expression was analyzed statistically 

using Pearson’s correlation coefficient, presenting in 

volcano plots, heat maps, or scatter plots. Function 

module of LinkedOmics performs analysis of Gene 

Ontology biological process (GO_BP), KEGG 

pathways, kinase-target enrichment, miRNA-target 

enrichment and transcription factor-target enrichment 

by the gene set enrichment analysis (GSEA). The rank 

criterion was FDR < 0.05 and 1000 simulations were 

performed. 

 

Networkanalyst database analysis 

Network interpreting gene expression was used  

by NetworkAnalyst 3.0 tool (https://www.network 

analyst.ca/) [35], which integrates cell-type or tissue-

specific protein-protein interaction (PPI) networks, gene 

regulatory networks, and gene co-expression networks. 

Function enrichment was based on a similar concept 

introduced by ClueGO and EnrichmentMap [36]. 

TIMER database analysis 

TIMER is a comprehensive resource for systematic 

analysis of immune infiltrates across diverse cancer 

types from TCGA (https://cistrome.shinyapps.io/timer/), 

which includes 10,897 samples across 32 cancer types 

[37]. TIMER applies a deconvolution method [38] to 

infer the abundance of tumor-infiltrating immune cells 

(TIICs) from gene expression profiles. We analyzed 

PRPF3 expression in LIHC and the correlation of 

PRPF3 expression with the abundance of immune 

infiltrates, including B cells, CD4+ T cells, CD8+ T 

cells, neutrophils, macrophages, and dendritic cells, as 

well as the tumor purity. 

 

Tumor immunology analysis 

 

Tumor purity was estimated using ESTIMATE and a 

consensus approach, as previously described [29, 39]. 

ESTIMATE used the single-sample gene-set 

enrichment analysis (ssGSEA) score to quantify the 

enrichment levels of immune signatures in tumor. 

 

Further, gene signatures of 28 tumor-infiltrating 

lymphocytes (TILs) [40], comprising Activated CD8 T 

cell, Central memory CD8 T cell, Effector memory 

CD8 T cell, Activated CD4 T cell, Central memory 

CD4 T cell, Effector memory CD4 T cell, T follicular 

helper cell, Gamma delta T cell, Type 1 T helper cell, 

Type 17 T helper cell, Type 2 T helper cell, Regulatory 

T cell, Activated B cell, Immature B cell, Memory B 

cell, Natural killer cell (NK), CD56bright NK, CD56dim 

NK, Myeloid-derived suppressor cell (MDSC), Natural 

killer T cell (NKT), Activated dendritic cell, 

Plasmacytoid dendritic cell, Immature dendritic cell, 

Macrophage, Eosinophil, Mast cell, Monocyte, 

Neutrophil, Tumor-associated macrophage (TAM), M1 

Macrophage, and M2 Macrophage, as well as markers 

from multiple types of oncoimmunology containing 

genes associated with immunomodulators and 

chemokines, were referenced in prior studies [41].  

 

Statistical analysis 

 

The t-test p < 0.05 was utilized to determine the statistical 

significance between groups with different expression 

level of PRPF3. We compared the survival (overall 

survival (OS) and recurrence-free survival (RFS)) of 

HCC patients separated by the median expression level of 

specific genes. Kaplan-Meier curves were used to 

compare the survival time differences. The log-rank test 

p < 0.05 indicates the significance of survival time 

differences. The survival analyses were performed by R 

programming of “survival” and “survminer” package. 

 

We calculated the correlation between PRPF3 and 

immune signature score or gene expression levels using 

https://www.oncomine.org/
https://www.oncomine.org/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://cbioportal.org/
http://cbioportal.org/
http://www.linkedomics.org/login.php
http://www.linkedomics.org/login.php
http://www.linkedomics.org/login.php
http://www.linkedomics.org/login.php
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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the Spearman or partial Spearman method. Tumor 

purity-corrected partial Spearman’s correlation 

calculated the correlation between PRPF3 expression 

and immune genes while controlling for tumor purity, 

which was explored using ppcor package [42]. The 

threshold of p < 0.05 indicates the significance of 

correlation.  
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SUPPLEMENTARY MATERIALS 
 

 

 

Supplementary Figures 
 

 
 

Supplementary Figure 1. High expression of PRPF3 is associated with advanced outcome in GSE10141 cohort. 
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Supplementary Figure 2. Expression and survival outcome of PRPF3-related regulators. (A) Top 5 kinase regulators of PRPF3 co-

expressed genes. All of these kinase genes, except CDK2, were significantly highly expressed in tumor tissues. All these genes have significant 
association with OS of HCC. (B) E2F regulators of PRPF3 co-expressed genes. 
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Supplementary Figure 3. Immune infiltration of top PRPF3 co-occurrence genes (Log Ratio > 10). (A) Tumor purity and immune 
infiltration levels. (B) CNV affecting the distribution in various immune cells. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1–9. 

 

Supplementary Table 1. PRPF3 co-expressed genes. 

Supplementary Table 2. GO term annotation of PRPF3 co-expressed genes. 

Supplementary Table 3. KEGG annotation of PRPF3 co-expressed genes. 

Supplementary Table 4. Kinases enrichment of PRPF3 co-expressed genes. 

Supplementary Table 5. miRNA enrichment of PRPF3 co-expressed genes. 

Supplementary Table 6. Transcription factor enrichment of PRPF3 co-expressed genes. 

Supplementary Table 7. PRPF3 AMP co-occurrence genes. 

Supplementary Table 8. Functional annotation of PRPF3 AMP co-occurrence genes. 

Supplementary Table 9. Correlation of PRPF3 with various immune signatures. 

 


