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INTRODUCTION 
 
Myocardial infarction (MI) is one of the most severe 
coronary artery diseases, and a leading cause of 
morbidity and mortality in developed and developing 
countries [1]. Although currently available biomarkers 
such as cardiac troponins T and I and creatine kinase-
MB are valuable aids in the diagnosis of MI, novel 
biomarkers may substantially increase early diagnosis 
accuracy to improve treatment strategies and patient 
outcomes. Additionally, since the 5-year mortality rate 
of the patients who developed heart failure (HF) after 
MI is as high as 50% [2], identifying early-stage 
prognostic biomarkers associated with post-MI HF is 
also  very important.  Although for some specific condi- 

 

tions the molecular mechanisms underlying MI have 
been defined, the dynamic modulation of gene 
expression, especially of non-coding RNAs (ncRNAs), 
during MI progression has not been fully investigated at 
a system level. 
 
The proportion of the human genome encoding protein-
coding genes is only ~2%, and estimations based on 
current sequencing methods suggest that most of the 
human transcriptome is composed of ncRNAs [3]. Long 
non-coding RNAs (lncRNAs) and microRNAs (miRNAs) 
are two important ncRNA classes. Many lncRNAs share 
miRNA binding sites with other coding and non-coding 
transcripts, and thus regulate the miRNA pool and 
influence posttranscriptional control by acting as 
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ABSTRACT 
 
Analyses of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) implicated in myocardial infarction (MI) 
have increased our understanding of gene regulatory mechanisms in MI. However, it is not known how their 
expression fluctuates over the different stages of MI progression. In this study, we used time-series gene 
expression data to examine global lncRNA and miRNA expression patterns during the acute phase of MI and at 
three different time points thereafter. We observed that the largest expression peak for mRNAs, lncRNAs, and 
miRNAs occurred during the acute phase of MI and involved mainly protein-coding, rather than non-coding 
RNAs. Functional analysis indicated that the lncRNAs and miRNAs most sensitive to MI and most unstable 
during MI progression were usually related to fewer biological functions. Additionally, we developed a novel 
computational method for identifying dysregulated competing endogenous lncRNA-miRNA-mRNA triplets 
(LmiRM-CTs) during MI onset and progression. As a result, a new panel of candidate diagnostic biomarkers 
defined by seven lncRNAs was suggested to have high classification performance for patients with or without 
MI, and a new panel of prognostic biomarkers defined by two lncRNAs evidenced high discriminatory capability 
for MI patients who developed heart failure from those who did not. 
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competing endogenous RNAs (ceRNAs) [4, 5]. 
Moreover, mounting evidence indicates that lncRNAs 
and miRNAs can exert transcriptional and epigenetic 
regulation, and influence the course of various diseases 
including MI [6–9]. The potential of these ncRNAs as 
diagnostic and prognostic biomarkers in MI is suggested 
by studies demonstrating that dysregulated lncRNA and 
miRNA expression is closely associated with MI 
initiation and progression [10–12]. For example, 
inhibition of lncRNA-TUG1 was recently found to 
ameliorate myocardial injury and protect against 
acute MI by upregulation of miR-142-3p and subsequent 
suppression of HMGB1 and Rac1 expression [8]. 
 
Time-series gene expression data provide more valuable 
information than steady-state expression data for 
deciphering molecular mechanisms mediating bio-
logical processes and disease progression [13–17]. For 
example, dynamic gene regulatory networks for human 
myeloid differentiation were constructed using time-
series RNA-seq and ATAC-seq data, from which a role 
for PU.1 and other key transcriptional regulators in 
maintaining and driving regulatory circuits specified 
during human myeloid differentiation was identified 
[18]. Whereas the dynamic characteristics of lncRNAs 
and circRNAs in cardiac differentiation have been 
recently explored [19] and our own work recently 
addressed the temporal changes in the expression, 
biological function, and regulatory interactions among 
miRNAs, TFs, and target genes during MI [20], the 
expression profiles of lncRNAs and miRNAs during MI 
progression remain unexplored. 
 
To characterize dynamic patterns of lncRNA and 
miRNA expression and their potential functions in MI 
progression, we systematically analyzed lncRNA and 
miRNA expression profiles at four time points after MI. 
Additionally, we propose a novel algorithm for 
identifying dysregulated competing endogenous 
lncRNA-miRNA-mRNA triplets (LmiRM-CTs) during 
MI progression, with which we identified new panels of 
lncRNA biomarkers for MI diagnosis and prognosis. 
 
RESULTS 
 
Dynamic expression and functional characteristics of 
lncRNAs and miRNAs during MI progression  
 
We investigated the dynamic expression of lncRNAs and 
miRNAs in MI patients at four time points: on admission 
(day 1 of MI), at discharge (4-6 days after MI), 1 month 
after MI, and 6 months after MI. To this end, we first 
analyzed the global expression distribution of mRNAs, 
lncRNAs, and miRNAs in MI patients. As shown in 
Figure 1A, the average expression level of miRNAs and 
lncRNAs was significantly lower than that of mRNAs 

(p<2.2e-16, Kolmogorov-Smirnov test), and miRNAs 
displayed the lowest expression levels. This was in 
accordance with current knowledge attesting lower 
expression of lncRNAs compared to protein-coding 
genes in different tissues [21]. Subsequently, we 
identified significantly differentially expressed (SDE) 
genes between adjacent MI stages, and calculated the 
percentage of SDE mRNAs, lncRNAs, and miRNAs 
relative to their total numbers in expression profiles 
(Figure 1B). Results showed that the largest percentage 
of SDE transcripts corresponded to the acute phase of MI 
(day 1), and among those, mRNAs were the most 
abundant. This indicated that the largest transcriptome 
change in MI occurs during the acute phase, and involves 
mainly differential expression of protein-coding, rather 
than ncRNA-coding, genes. In addition, we observed that 
most SDE transcripts (65.0% of mRNAs, 72.2% of 
lncRNAs, and 66.7% of miRNAs) were upregulated in 
the acute phase of MI (Figure 1C). Interestingly, while 
most SDE mRNAs were downregulated in the successive 
MI stages, the expression of SDE lncRNAs and miRNAs 
changed in parallel, as most of them were downregulated 
4-6 days after MI, upregulated 1 month post-MI, and 
downregulated again 6 months after MI. 
 
SDE lncRNAs and miRNAs were further explored to 
identify the most responsive ones at each stage. As a 
result, three lncRNAs (AF131216.7, LINC00052, and 
RP11-739B23.1), but no miRNAs, were retrieved. As 
shown in Figure 1D, the expression trend for these 
lncRNAs was consistent during MI progression. 
Whereas LINC00052 has been recently associated with 
certain cancers [7, 22, 23], no disease associations have 
been detected, to the best of our knowledge, for 
AF131216.7 and RP11-739B23.1.  
 
To further study the dynamic changes in lncRNAs and 
miRNAs expression during MI progression, we 
classified stage-specific SDE lncRNAs and miRNAs 
into 6 and 3 clusters, respectively, using Mfuzz [24]. As 
shown in Figure 2A, lncRNAs in Clusters 1, 2,4, and 5 
were all rapidly upregulated reaching a plateau on day 1 
after MI, but they had different expression patterns in the 
following stages. Among all clusters, Cluster 5 had the 
most dramatic expression changes at each stage. Stage-
specific variations were also noted for SDE miRNAs 
(Figure 2B). Cluster 1 was downregulated, while 
Clusters 2 and 3 were upregulated on day 1 after MI, and 
for these three clusters differing expression patterns 
ensued in subsequent stages. These results demonstrate 
that changes in the expression of lncRNAs and miRNAs 
during MI progression were not linear, but often 
evidenced drastic transitions at different time points. 
 
Next, we examined the potential biological functions  
of the SDE lncRNAs and miRNAs included in the 
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Figure 1. Global gene expression distribution in MI and analysis of SDE genes during MI progression. (A) Expression distribution 
of mRNAs, lncRNAs, and miRNAs in MI patients. (B) Percentage of SDE mRNAs, lncRNAs, and miRNAs estimated by comparing expression data 
between adjacent stages during MI progression. S0, control; S1, day 1 of MI; S2, 4-6 days after MI; S3, 1 month after MI; S4, 6 months after 
MI. (C) Percentage of upregulated and downregulated SDE genes during MI progression. (D) Relative expression levels of three lncRNAs that 
showed differential expression at each MI stage. 
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different clusters, and identified KEGG subpathways 
significantly enriched with these transcripts with basis 
on their co-expressed mRNAs (Supplementary Table 1). 
Subpathways associated with MI are shown in Figure 3. 
For lncRNAs (Figure 3A), Clusters 1 and 2 shared 
several common subpathways. Some of these, closely 
related to MI, such as PI3K-Akt signaling pathway, 
MAPK signaling pathway, Chemokine signaling 
pathway, T cell receptor signaling pathway, and 

apoptosis, were also shared with Clusters 3, 4, and 6. 
Simultaneously, we found that the lncRNAs and 
miRNAs with the sharpest expression changes during 
MI progression participated in fewer biological 
pathways. Thus, the lncRNAs in Cluster 5 enriched the 
fewest subpathways, while no subpathway was found to 
be significantly enriched with the miRNAs in Cluster 2 
(Figure 3B). These results suggested that the lncRNAs 
and miRNAs most sensitive to environmental changes 

 

 
 

Figure 2. Expression patterns of SDE lncRNAs and miRNAs during MI progression. (A) SDE lncRNA clusters. (B) SDE miRNA clusters. 
The analysis was performed on R using the Mfuzz package. 
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Figure 3. Subpathway enrichment analysis of MI-related lncRNA/miRNA clusters. (A) MI-related KEGG subpathways enriched for 
different lncRNA clusters. (B) MI-related KEGG subpathways enriched for different miRNA clusters. 
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and thus unstable during MI progression might be of 
lesser biological relevance. 
 
Identification of dysregulated LmiRM-CTs and 
validation of their roles in MI 
 
We developed a novel computational method for 
identifying dysregulated LmiRM-CTs in MI. This was 
done by integrating sample-matched expression profiles 
from 73 MI patients and 46 control samples in a Gene 
Expression Omnibus (GEO) dataset, and experimental 
verification of regulatory interactions among mRNAs, 
lncRNAs, and miRNAs (see Materials and Methods). As 
a result, 1,173 dysregulated LmiRM-CTs comprising 
517 mRNAs, 49 lncRNAs, and 35 miRNAs were 
obtained (Supplementary Table 2). We validated the 
roles of these dysregulated LmiRM-CTs in MI from 
several perspectives and compared our method with the 
traditional one. The latter considered a LmiRM-CT as 
dysregulated when the mRNA, miRNA, and lncRNA in 
the LmiRM-CT satisfied the following criteria [25]: (1) 
they were all SDE in MI samples compared with 
controls; (2) the mRNA shared a significant number of 
miRNA binding sites with its paired lncRNA 
(hypergeometric test); (3) negative correlations existed 

within miRNA-mRNA and miRNA-lncRNA pairs, and 
the mRNA-lncRNA interaction was positively correlated 
in controls, but not in MI samples. Thus, the traditional 
method yielded 941 dysregulated LmiRM-CTs, which 
included 427 mRNAs, 46 lncRNAs, and 32 miRNAs 
(Supplementary Table 2), but did not provide scores for 
these LmiRM-CTs. 
 
We first analyzed the distribution of SDE and MI-
related mRNAs, miRNAs, and lncRNAs comprising 
dysregulated LmiRM-CTs. We found that the 
proportion of both SDE and MI-related transcripts in 
dysregulated LmiRM-CTs was significantly higher than 
in candidate LmiRM-CTs (hypergeometric test, 
p<0.001 and p<0.05, respectively). SDE and MI-related 
transcripts in the top 5%, 10%, 15%, 20%, 30%, 40%, 
and 50%, and in the full (100%) dysregulated LmiRM-
CT set were also examined. As demonstrated in Figure 
4A and 4B, and in Supplementary Table 3, the  
top-ranked dysregulated LmiRM-CTs had more SDE 
and MI-associated transcripts, while dysregulated 
LmiRM-CTs identified by the traditional method 
represented a lower rate of transcripts related to MI 
(5.74%) compared to our method (6.82%). Figure 4B 
shows that the top 15% dysregulated LmiRM-CTs 

 

 
 

Figure 4. Ranked distribution of SDE and MI-related transcripts. Distribution of SDE transcripts (A) and MI-related transcripts (B) is 
shown for the top 5%, 10%, 15%, 20%, 30%, 40%, 50%, and 100% of dysregulated LmiRM-CTs. (C) Significantly enriched MI-related 
subpathways specifically detected by our method. 
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exhibited the largest percentage of MI-related 
transcripts. Since ceRNAs analysis is still a developing 
field, newer studies on MI-associated ncRNAs aided by 
tools to increase transcript profiling accuracy might 
help unmask additional LmiRM-CTs of clinical 
relevance. 
 
We next investigated the putative biological functions 
of the dysregulated LmiRM-CTs. Using 
SubpathwayMiner [26], 72 and 74 significant KEGG 
subpathways were revealed using our method and the 
traditional one, respectively (p<0.05, Supplementary 
Table 4). We found that several MI-related pathways, 
such as the signal transduction-related PI3K-Akt and 
MAPK pathway, the inflammation-related chemokine 
signaling pathway, and the immune-related B cell and T 
cell receptor signaling pathway were shared by both 
methods. However, some pathways with critical roles in 
MI initiation and progression, as those involving 
atherogenesis [27], inflammation-related leukocyte 
transendothelial migration, ventricular remodeling-
related TGF-β signaling [28], blood pressure-related 
vascular smooth muscle contraction [29], and 
angiogenesis-related VEGF signaling, were significantly 
enriched on our method, but not on the traditional one 
(Figure 4C and Supplementary Table 4). These 
observations support the strength of our approach in 
identifying LmiRM-CTs dysregulated in MI. 
 
Progression-related dysregulated LmiRM-CTs 
analysis reveals diagnostic and prognostic 
biomarkers of MI 
 
To identify potential diagnostic and prognostic 
biomarkers of MI, we applied our method to identify 
progression-related dysregulated LmiRM-CTs at the 
four indicated MI stages (Supplementary Table 5). Thus, 
3,126 LmiRM-CTs (940 mRNAs, 59 miRNAs, and 77 
lncRNAs) for day 1 of MI, 459 LmiRM-CTs (279 
mRNAs, 36 miRNAs, and 55 lncRNAs) for days 4-6 
after MI, 641 LmiRM-CTs (367 mRNAs, 45 miRNAs, 
and 58 lncRNAs) for month 1 after MI, and 749 
LmiRM-CTs (427 mRNAs, 43 miRNAs, and 57 
lncRNAs) for month 6 after MI were detected. The acute 
phase (day 1) of MI exhibited the largest number of 
dysregulated LmiRM-CTs, indicating that the most 
pronounced changes in gene expression and regulatory 
interactions occurred at this stage. 
 
We next focused on the 20 lncRNAs and 15 miRNAs 
specific for the MI acute phase (Supplementary Figure 
1). A Random Forest supervised classification algorithm 
was applied and 10 lncRNAs and 7 miRNAs mostly 
related to MI occurrence were selected (see Materials 
and Methods). There were 210-1=1023 and 27-1=127 
combinations of these lncRNAs and miRNAs, respec-

tively. Classification accuracies for all the combinations 
were computed using the support vector machine (SVM) 
classification model, and the optimal biomarkers with 
the highest classification accuracy were identified. 
Consequently, two biomarker panels defined 
respectively by 7lncRNAs (AC016747.3, MIR4697HG, 
RMRP, RP11-2C24.4, RP11-802E16.3, RP4-785G19.5, 
and TBC1D3P1-DHX40P1) and 4 miRNAs (hsa-mir-
144, hsa-mir-200b, hsa-mir-211, and hsa-mir-29a) were 
defined in the discovery cohort. In the training set, 5-fold 
cross-validation accuracies of 0.824 and 0.782 and AUC 
values of 0.859 and 0.823 were obtained, respectively, 
for the 7 lncRNAs and 4 miRNAs signatures (Figure 5A 
and Supplementary Figure 2A). Furthermore, we 
examined these signatures in an independent test set 
(GSE62646) which included 28 MI patients and 14 
control samples. In this dataset, accuracies of 0.980 and 
0.667 and AUC values of 0.814 and 0.700 were obtained 
for the 7 lncRNAs and 4 miRNAs signatures, 
respectively (Figure 5B and Supplementary Figure 2B). 
We next performed hierarchical clustering analysis using 
expression data of these two panel biomarkers and 2 
major sample clusters were found (Figure 5C and 5D, 
and Supplementary Figure 2C and 2D). For the 7 
lncRNAs, the rates of MI patients in the predicted MI 
group were 72.4% (71/98) and 93.3% (28/30) in the 
training and test sets, respectively, whereas the 
corresponding rates in the predicted control group were 
90.5% (19/21) and 100% (12/12), respectively. The 
classification results of the 4 miRNAs were not better 
than those of the 7 lncRNAs (Supplementary Figure 2C 
and 2D). 
 
Additionally, we tested whether early changes in gene 
expression could predict disease prognosis and 
distinguish patients who developed HF after MI from 
those who did not. Therefore, 20 lncRNAs and 15 
miRNAs that were specifically dysregulated in the acute 
phase of MI were examined. In the same way, 10 
lncRNAs and 7 miRNAs mostly related to MI prognosis 
were selected. It is worth noting that they were different 
from those associated with MI diagnosis. Finally, two 
panel biomarkers defined by 2 lncRNAs (AC084018.1 
and LOC100128288) and 2 miRNAs (hsa-mir-211 and 
hsa-mir-214) were defined, showing respectively 
accuracies of 1.000 and 0.385 and AUC values of 0.857 
and 0.857 using 5-fold cross-validation (Figure 6A and 
Supplementary Figure 3A). Hierarchical clustering heat 
maps of the two biomarker panels are shown in Figure 
6B and Supplementary Figure 3B. For the 2 lncRNAs, 
HF patient rate in the predicted HF group was 63.6% 
(7/11), whereas the corresponding rate in the predicted 
non-HF group was 100% (2/2). The classification results 
of the 2 miRNAs were no better than those of the 2 
lncRNAs. The above results suggest that the lncRNA 
biomarkers we identified had higher classification 
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efficiency than the miRNA biomarkers for both MI 
diagnosis and prognosis, and that the lncRNA signatures 
reliably distinguished MI patients from controls and MI 
patients who developed HF from those who did not. 
Additionally, we found that most MI diagnostic lncRNA 
and miRNA biomarkers were upregulated in MI patients, 
while all the MI prognostic lncRNA and miRNA 

biomarkers were downregulated in MI patients who 
developed HF (Figure 7 and Supplementary Figure 4). 
 
DISCUSSION 
 
The current study explored the global dynamic 
expression and tentative functions of lncRNAs and 

 

 
 

Figure 5. Classification performance of diagnostic lncRNA biomarkers for MI. Performance evaluation of the 7 diagnostic lncRNA 
biomarkers in the training (A) and test (B) sets using 5-fold cross-validation. Hierarchical clustering heat map of the expression profiles of 7 
lncRNAs in (C) the training set (119 samples) and (D) the test set (42 samples). 
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Figure 6. Classification performance of prognostic lncRNA biomarkers for MI. (A) Performance evaluation by 5-fold cross-validation 
of the 2 prognostic lncRNA biomarkers in the training set. (B) Hierarchical clustering heat map of 13 samples based on expression profiles of 
the 2 lncRNAs in the training set. 
 

 
 

Figure 7. Relative expression of lncRNA biomarkers for MI diagnosis and prognosis. (A) Relative expression of 7 lncRNAs in MI and 
control samples. (B) Relative expression of 2 lncRNAs in HF and non-HF samples. 
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miRNAs during MI progression by systematically 
analyzing MI-related time-series gene expression data. 
Using a novel computational method integrating sample-
matched mRNA, lncRNA, and miRNA expression 
profiles, significantly dysregulated ceRNA triplets were 
identified at different stages of MI progression. 
 
We obtained lncRNA and miRNA expression profile 
data for dynamic expression analysis through 
microarray re-annotation. Evidence shows that about 
10% to 30% of probes in microarrays designed  
for protein-coding genes actually map to ncRNAs [30], 
thus acquisition of lncRNA expression information 
through re-annotation is a widely used approach in 
transcriptomics studies [31, 32]. According to a pre-
viously described pipeline [33], we extracted expression 
data of lncRNAs and miRNAs directly from existing 
expression profiles, and thus reduced the error. As a 
result, 1,282 lncRNAs and 260 miRNAs were acquired. 
Currently, there are 1,913 miRNAs in the miRBase 
(release 22) database and 15,779 lncRNAs in 
GENCODE (release 28). The ratio of miRNAs (13.6%) 
we obtained from re-annotation was larger than that of 
lncRNAs (8.12%). 
 
We first retrieved candidate LmiRM-CTs from control 
samples (patients with stable coronary artery disease 
and without a history of myocardial infarction) and 
assumed that their dysfunction was associated with the 
occurrence and development of MI. The extent of 
dysfunction of a LmiRM-CT was assessed by 
integrating differential expression of the corresponding 
transcripts and differential linked co-expression 
between two transcripts in two biological states 
(consecutive MI stages). Therefore, the method not only 
reflects expression changes of a single transcript, but 
also reveals concurrent changes between two 
transcripts. Compared with the traditional method, our 
method detected a larger number of dysregulated 
LmiRM-CTs, and expanded the number of MI-related 
biological pathways enriched by these ceRNA triplets. 
Because our method was based on sample-matched 
mRNA, miRNA, and lncRNA expression profiles with 
experimentally verified interactions within individual 
miRNA-mRNA and miRNA-lncRNA duplexes, supe-
rior analysis stringency was achieved. Interestingly, 
SVM classification analysis suggested that two separate 
lncRNA signatures reliably distinguished MI patients 
from controls and MI patients who developed HF from 
those who did not. Information for these lncRNAs is 
scarce or absent, especially on relation to MI. Among 
the dysregulated lncRNAs, RMRP was recently found 
to be upregulated by hypoxia in cardiomyocytes, and to 
aggravate myocardial ischemia-reperfusion injury by 
sponging miR-206 to target ATG3 expression [34].  
In addition, upregulation of RMRP was also reported  

to promote the activation of cardiac fibroblasts by 
regulating miR-613 [7]. 
 
In conclusion, the present study provided a system level 
exploration of the landscape of dysregulated lncRNAs 
and miRNAs, and their interactions with differentially 
expressed mRNAs, at different time points over MI 
progression. Using a novel computational approach, we 
present two new lncRNA biomarker panels to aid MI 
diagnosis and predict HF in MI patients. 
 
Worth noting, several limitations stand out in the 
present work and merit further experimental validation. 
These include underrepresentation of the actual number 
of miRNAs and lncRNAs extractable from expression 
profiles, incomplete or biased characterization of cell- 
tissue- or disease-specific regulatory interactions 
between miRNA-mRNA and miRNA-lncRNA related 
to MI, and the relatively small sampling size of the 
GEO dataset examined in this study. 
 
MATERIALS AND METHODS 
 
RNA expression profiling 
 
The mRNA expression profile data of GSE59867 
(based on Affymetrix Human Gene 1.0 ST Array)  
was downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=g
se59867) [35]. The dataset included 111 patients with 
ST-segment elevation MI and a control group 
comprised of 46 patients with stable coronary artery 
disease and without a history of MI. The corresponding 
mRNA expression profiles were obtained from 
peripheral blood mononuclear cells at four time points: 
on admission (MI day 1), at discharge (4-6 days after 
MI), 1 month after MI, and 6 months after MI. We 
retained samples that included expression profiles from 
all four time points, and 73 case samples and 46 
controls were obtained. Additionally, among the 73 
patients 13 had follow-up data, including 7 HF and 6 
non-HF cases. 
 
LncRNA expression profiles were obtained by applying a 
lncRNA classification pipeline based on transcript 
clusters in the Affymetrix 1.0 ST Arrays [33]. First, we 
downloaded the Annotation file (HuGene-1_0-st-v1 
Transcript Cluster Annotations, CSV, Release 36) and 
then mapped gene names to associated Affymetrix 1.0 ST 
transcript cluster IDs. Each transcript cluster was 
assigned to an mRNA transcript associated with an 
Ensembl gene ID and/or RefSeq transcript ID. Second, 
for transcript clusters with Ensembl gene IDs, we 
retained those annotated as “lincRNA”, “antisense_ 
RNA”, “processed_transcript”, “sense_intronic”,“TEC”, 
“3prime_overlapping_ncRNA”, “bidirectional_promoter 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse59867
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse59867
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_lncRNA”, “sense_overlapping” and “non_coding” in 
the GENCODE project (https://www.gencode 
genes.org/human/release_28.html) [3]. For transcript 
clusters with RefSeq transcript IDs, those labeled as 
“NR_” (non-coding RNA) were retained. Finally, 
duplicated transcripts were removed and lncRNA 
expression profiles were determined from 1,655 
transcript clusters and 1,282 lncRNAs. MiRNA 
expression profiles were obtained using the same pipeline 
as for lncRNAs. Transcript clusters with an mRNA-
assignment that included an miRNA and/or Refseq 
transcript ID were retained. We unified miRNA names 
using miRBase (release 22) database, and miRNA 
expression profiles comprising 252 transcript clusters and 
260 miRNAs were acquired. 
 
Expression profile analyses 
 
For multiple probes corresponding to the same gene 
within the mRNA, lncRNA, and miRNA expression 
profiles, their median value was taken as expression 
value for such gene. We then retained protein-coding 
genes in mRNA expression profiles. Finally, 18,451 
mRNAs, 1,282 lncRNAs, and 260 miRNAs were 
retained for further analysis. SDE genes were screened 
by comparing expression data between two adjacent 
stages, and differential analysis was performed using an 
empirical Bayesian method implemented in R “limma” 
package [36]. Genes with p<0.05 were selected as SDE 
genes. 
 
Expression and functional analysis of lncRNAs and 
miRNAs 
 
LncRNAs and miRNAs were grouped according to their 
dynamic expression patterns. The R package “Mfuzz” 
[24] was used to detect lncRNA/miRNA clusters with 
consistent expression trends during MI progression. To 
investigate their biological functions, co-expressed 
mRNAs were extracted based on a Pearson correlation 
coefficient (PCC)>0.7 or <-0.7 and p<0.01. KEGG sub-
pathway enrichment analysis for co-expressed mRNAs 
was implemented using the R “SubpathwayMiner” 
package [26]. Significantly enriched sub-pathways were 
identified based on p<0.05. If multiple significantly 
enriched sub-pathways corresponded to an entire 
pathway, the sub-pathway with the lowest p value was 
retained. 
 
Regulatory interactions between miRNA-mRNA and 
miRNA-lncRNA duplexes 
 
Experimentally verified miRNA-mRNA regulatory 
relationships were collected from TarBase (version 6.0) 
[37], miRTarBase (version 7.0) [38], and miRecords 
(version 4) [39] databases, and 391,694 non-redundant 

miRNA-mRNA interactions were obtained. 
Experimentally confirmed miRNA-lncRNA interactions 
were retrieved from starBase v2.0 [40] and DIANA-
LncBase v2.0 [41] databases, and 64,716 non-redundant 
miRNA-lncRNA relationships were retained. 
 
Candidate LmiRM-CTs 
 
We assumed that LmiRM-CTs existed in control 
samples, and their dysfunction would lead to initiation 
and progression of cardiac diseases. Based on the 
ceRNA hypothesis [4, 5], a candidate LmiRM-CT in 
control samples was identified if it met all of the 
following criteria: (1) the mRNA and the lncRNA 
shared a significant number of miRNAs as determined 
by a hypergeometric test (p<0.05); (2) the PCC of the 
mRNA (lncRNA) and the miRNA was negatively 
correlated (p<0.05), and the PCC of the lncRNA and 
the mRNA was positively correlated (p<0.05). To 
increase the reliability of the results, we retained the 
top correlated interaction pairs for further analysis [42, 
43]. Interaction pairs with PCCs above the threshold of 
the 90th percentile of the corresponding overall 
correlation distribution were retained. By integrating 
expression profile data in the control group and 
confirmed miRNA-mRNA and miRNA-lncRNA 
interactions, 7,468 candidate LmiRM-CTs comprising 
120 lncRNAs, 97 miRNAs, and 1,718 mRNAs were 
retained. 
 
Identification of dysregulated LmiRM-CTs in MI 
 
Dysregulated LmiRM-CTs in MI were identified by 
considering the dysregulation extent of all genes 
(nodes) and their regulatory/competing relationships 
(edges) in two different biological states (i.e. case and 
control samples) using-sample matched expression 
profiles. First, each node score was calculated through 
the following formulas according to the extent of 
differential expression [44, 45]: 
 

1(1 2 (1 ( )))node nodeScore Dϕ ϕ−= − × −  (1) 
 

10 2( log ) | log |nodeD p FC= − ⋅  (2) 
 
where φ−1 is the inverse normal cumulative distribution 
function, p is the p-value reflecting the significance of 
differential expression determined by the R ‘limma’ 
package, and FC is the corresponding fold expression 
change. Second, each edge score was computed 
according to the change ingene co-expression between 
two different biological states [45–47] using equations 
(3) and (4): 
 

1(1 2 (1 (| |)))edgeScore ϕ ϕ ξ−= − × −  (3) 

https://www.gencodegenes.org/human/release_28.html
https://www.gencodegenes.org/human/release_28.html
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Here, rstate2 and rstate1 are the PCCs of gene expression in 
state2 and state1 samples (i.e. case and control samples), 
respectively, pstate2 and pstate1 are their respective  
p-values, and nstate2 and nstate1 are the corresponding 
number of samples. F is the Fisher transformation 
function, applied to improve the power of identifying 
differentially rewired genes [48]. Finally, the score of 
candidate LmiRM-CTs was computed by integrating the 
node and the edge scores: 
 

node

edgeedge(1 )

nodeLmiRM CT

node

LmiRM CT

edge

Score
Score

n

Score

n

ω

ω

∈ −

∈ −

=

+ −

∑

∑
   (6) 

 
where nnode and nedge are the number of nodes and edges 
in the LmiRM-CT. Here, it is considered that regulatory 
relationships exist for both miRNA-lncRNA and 
miRNA-mRNA duplexes, and competing relationships 
exist between lncRNA-mRNA pairs. Therefore, a value 
of 3 is assigned to both nnode and nedge. The weight 
parameter (0 1)ω ω≤ ≤  is used to control the 
contribution of the node and edge scores. Here, both 
scores were considered equally weighted, and ω was 
defined as 0.5. 
 
We performed permutation analysis to evaluate the 
significance of a given LmiRM-CT. An arbitrary 
LmiRM-CT was generated by randomly selecting a 
lncRNA, an miRNA, and an mRNA, and its score 
calculated through the above equations. This process 
was repeated 10,000 times, and the empirical p-value 
was defined as the proportion of randomly obtained 
scores larger than the observed score: 
 

(Number of )/10000randomp value Score Score− = >  (7) 
 
LmiRM-CTs with p<0.05 were selected as dysregulated 
LmiRM-CTs. 
 
Collection of mRNAs, lncRNAs, and miRNAs 
related to MI 
 
MI-related mRNAs were collected from DisGeNET 
(V5.0) [49], a comprehensive human gene-disease 

association database that integrates many current, 
widely used gene-disease databases such as OMIM 
[50], the Genetic Association Database (GAD) [51], the 
Comparative Toxico genomics Database (CTD) [52], 
the Mouse Genome Database (MGD) [53], PubMed, 
and Uniprot [54]. We removed repeated gene-disease 
entries, and 990 non-redundant MI-related mRNAs 
were acquired. 
 
MI-related lncRNAs were collected by performing a 
comprehensive literature review. Relevant articles 
were compiled from a experimentally confirmed 
human lncRNA-disease association database, 
LncRNADisease (version 2.0) [6] using the search 
phase “myocardial infarction”, and from PubMed 
using the search phrase “myocardial infarction AND 
(lncRNA OR long non-coding RNA)”. Each article 
was manually searched for lncRNAs with aberrant 
expression in MI. Finally, 37 unique lncRNAs were 
obtained. 
 
MI-related miRNAs were collected from a manually 
curated and experimentally confirmed human miRNA-
disease association database, HMDD (version 3.1) 
[55]. After removing redundant miRNA-disease 
relations and unifying miRNA names according to the 
miRBase database (release 22) [56], 101 miRNAs 
were selected. 
 
Identification of candidate diagnostic and prognostic 
biomarkers for MI 
 
Candidate diagnostic and prognostic biomarkers  
for MI were identified by applying a classification 
model based on SVM. This process was performed 
using the R ‘e1071’ package, and the performance  
was estimated by classification accuracy and the  
area under the receiver operating characteristic curve 
(AUC) based on 5-fold cross-validation. AUC values 
range from 0 to 1, with 0.5 indicating random 
performance and 1.0 implying perfect predictive 
performance. 
 
LncRNAs and miRNAs highly related to MI diagnosis 
and prognosis were selected using a Random Forest 
supervised classification algorithm [57]. At each step, an 
importance score was computed for each lncRNA/ 
miRNA using the out-of-bag samples via permutation 
test, and the lowest scoring thirds of the lncRNAs/ 
miRNAs were removed. We then reserved certain 
lncRNAs/miRNAs considering a balance between 
classification accuracy and the number of lncRNAs/ 
miRNAs. Finally, classification accuracy for all 
combinations of the remaining lncRNAs/miRNAs was 
assessed using SVM, and the optimal lncRNA/miRNA 
biomarkers were obtained. 
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SUPPLEMENTARY MATERIALS 
 

 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Venn diagram of lncRNAs (A) and miRNAs (B) in dysregulated LmiRM-CTs at four stages during MI progression. 
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Supplementary Figure 2. Classification performance of miRNA biomarkers for MI diagnosis based on 5-fold cross-validation 
analysis. Performance evaluation of the 4 diagnostic miRNAs biomarkers in the training (A) and test (B) sets. Hierarchical clustering heat 
map of the expression profiles of the 4 miRNAs in (C) the training set (119 samples), and (D) the test set (42 samples). 
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Supplementary Figure 3. Classification performance of miRNA biomarkers for MI prognosis based on 5-fold cross-validation 
analysis. (A) Performance evaluation of the 2 prognostic miRNA biomarkers in the training set. (B) Hierarchical clustering heat map of 13 
samples based on expression profiles of the 2 miRNAs in the training set. 

 

 
 

Supplementary Figure 4. Expression levels of diagnostic and prognostic miRNA biomarkers in MI. (A) Relative expression of 4 
SDE miRNAs in MI and control samples. (B) Relative expression of 2 SDE miRNAs in HF and non-HF samples. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1-5. 
 
Supplementary Table 1. KEGG subpathway enrichment analysis of lncRNAs and miRNAs based on mRNA  
co-expression. 

Supplementary Table 2. List of dysregulated LmiRM-CTs detected using our method (n = 1,173) and the traditional 
method (n = 941). 

Supplementary Table 3. Ranked percentage of SDE transcripts (mRNAs, miRNAs, and lncRNAs) and known  
MI-related transcripts contained in dysregulated LmiRM-CTs obtained using our method. 

Supplementary Table 4. KEGG sub-pathways enriched with dysregulated LmiRM-CTs defined by our method (n = 72 
pathways) and the traditional method (n = 74 pathways). 

Supplementary Table 5. MI-related dysregulated LmiRM-CTs at four MI stages. 


