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INTRODUCTION 
 
In the pathogenesis of osteoporosis and osteonecrosis, 
increased reactive oxygen species (ROS) production 
and oxidative injury will lead to severe damage to 
human osteoblasts and bone cells [1–4]. To the 
cultured human osteoblasts or osteoblastic cells 
hydrogen peroxide (H2O2) was added, as an in vitro 
cellular model of osteoporosis/osteonecrosis [5–8]. 
H2O2 induces profound oxidative stress, protein 
damage, lipid peroxidation and DNA breaks in human 
osteoblasts, leading to cell death and apoptosis. 
Further understanding the pathological mechanisms of 
H2O2-induced osteoblast injury is important for the 
development of possible intervention strategies [5–8]. 

 

Circular RNAs (circRNAs) are a large family of 
conserved and stable non-coding RNAs (ncRNAs) 
exclusively in the cytoplasm of eukaryotic cells [9, 10]. 
Compared with linear RNAs, circRNAs have covalently-
closed loop structures, but without a free 3′ or 5′ end nor 
poly-adenylated tails [9, 10]. circRNAs function as 
microRNA (miRNA) sponges to sequester and 
competitively inhibit miRNA expression and activity [9, 
10]. The potential functions of circRNAs in the 
pathogenesis of osteoporosis and osteonecrosis have not 
been extensively studied. 
 
Derived from homeodomain-interacting protein kinase 3 
(HIPK3) gene Exon2, the circular RNA HIPK3 
(circHIPK3) has the sequence length of 1099 base-pair 
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ABSTRACT 
 
Hydrogen peroxide (H2O2) induces oxidative injury to human osteoblasts. The expression and potential function 
of circular RNA HIPK3 (circHIPK3) in H2O2-treated human osteoblasts were tested. We show that H2O2 
significantly downregulated circHIPK3 in OB-6 cells and primary human osteoblasts. Furthermore, circHIPK3 
levels were decreased in the necrotic femoral head tissues of dexamethasone-treated patients. In OB-6 
osteoblastic cells and primary human osteoblasts, forced overexpression of circHIPK3 by a lentiviral construct 
alleviated H2O2-induced viability reduction, cell death and apoptosis. Contrarily, circHIPK3 silencing by targeted 
shRNA potentiated H2O2-induced cytotoxicity in OB-6 cells and primary human osteoblasts. Moreover, 
circHIPK3 downregulation by H2O2 induced miR-124 accumulation in OB-6 cells and primary human osteoblasts. 
On the contrary, miR-124 inhibition by transfection of the miR-124 inhibitor protected human osteoblasts from 
H2O2. Importantly, forced overexpression of miR-124 by transfection of the miR-124 mimic induced significant 
cytotoxicity in OB-6 cells and primary human osteoblasts. H2O2 downregulated miR-124’s targets, cyclin 
dependent kinase 6 and Rho-Associated Protein Kinase 1, in human osteoblasts. In conclusion circHIPK3 
downregulation mediates H2O2-induced cytotoxicity in human osteoblasts. 
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[11]. circHIPK3 could possibly exert pro-survival 
functions in a number of cancer cells, partially mediated 
through as sponges of cancer-suppressive miRNAs  
[11–13]. A very recent study has shown that circHIPK3 
levels are downregulated in high glucose (HG)-treated 
human umbilical vein endothelial cells (HUVECs) and in 
primary human aortic endothelial cells (HAECs) from the 
diabetic patients [14]. More importantly, circHIPK3 
downregulation mediated in vitro endothelial cell injury 
by HG [14]. The results of the current study will show 
that H2O2 downregulates circHIPK3 to promote human 
osteoblast cell death and apoptosis.  
 
RESULTS 
 
H2O2 downregulates circHIPK3 in human 
osteoblasts 
 
We first tested the potential effect of H2O2 on the 
expression of circHIPK3 in human osteoblasts. The 
differentiated, osteoblast-like human OB-6 cells [15–17] 
were treated with H2O2. qPCR testing circHIPK3 
expression confirmed that H2O2 dose-dependently 
downregulated circHIPK3 in OB-6 osteoblastic cells 
(Figure 1A). The levels of circHIPK3 decreased to  
98.55 ± 9.39%, 70.68 ± 5.58%, 56.30 ± 6.23% and  
41.59 ± 4.10% of control level, following 50 μM,  
100 μM, 250 μM and 500 μM of H2O2 treatment, 
respectively (Figure 1A). Furthermore, H2O2-induced 
circHIPK3 downregulation was time-dependent  
(Figure 1B). In OB-6 cells circHIPK3 downregulation 
started as early as 4 hours (4h) following H2O2 treatment 
(250 μM), and it lasted for at least 24h (Figure 1B). In the 
primary human osteoblasts, significant circHIPK3 
downregulation was detected as well following H2O2 

treatment (250 μM, 24h) (Figure 1C). Significantly, 
circHIPK3 expression levels were decreased in the 
necrotic femoral head tissues of dexamethasone-treated 
patients (Figure 1D). While its levels in surrounding 
normal femoral head tissues are relatively high (Figure 
1D). 
 
Forced overexpression of circHIPK3 alleviates 
H2O2-induced death and apoptosis in human 
osteoblasts 
 
The results in Figure 1 indicate a potential activity of 
circHIPK3 in H2O2-induced cytotoxicity. To test this 
hypothesis, circHIPK3-expressing lentivirus (“LV-
circHIPK3”, from Dr. Lu at Nanjing University of 
Traditional Chinese Medicine [14]) was transduced to 
OB-6 osteoblastic cells. Following selection by 
puromycin two stable cell lines with LV-circHIPK3 were 
established: “OE-circHIPK3-L1 and OE-circHIPK3-L2”. 
Analyzing circHIPK3 expression, by qPCR, confirmed 
that circHIPK3 levels increased over ten folds in the LV-
circHIPK3-expressing OB-6 cells (Figure 2A), even with 
H2O2 treatment (Figure 2A).  
 
It has been previously shown that H2O2 could induce both 
programmed necrosis and apoptosis in human osteoblasts 
and osteoblastic cells [18, 19]. Significantly, H2O2-
induced cell viability (MTT OD) reduction (Figure 2B) 
and death (increased medium LDH release, Figure 2C) 
were significantly inhibited in circHIPK3-overexpressed 
stable OB-6 cells. Furthermore, H2O2-induced apoptosis 
activation in OB-6 cells was attenuated by circHIPK3 
overexpression as well (Figure 2D and 2E). Apoptosis 
activation in H2O2-treated OB-6 cells was evidenced by 
cleavages of caspase-3, caspase-9 and ploy ADP ribose 

 

 
 

Figure 1. H2O2 downregulates circHIPK3 in human osteoblasts. OB-6 human osteoblastic cells or the primary human osteoblasts were 
treated with hydrogen peroxide (H2O2, at applied concentrations) and cultured for indicated time periods, relative circHIPK3 expression was 
tested by qPCR (A–C) qPCR analysis of the relative circHIPK3 expression in the surgery-isolated femoral head tissues (both normal and 
necrotic) from ten (10) different dexamethasone-treated patients (D) “Veh” stands for vehicle control (PBS, same for all Figures). Quantified 
values were mean ± standard deviation (SD). * P < 0.05 vs. “Veh” treatment (A–C) * P < 0.05 vs. “S” tissues (surrounding normal femoral head 
tissues) (D; n=10). Experiments were repeated three times, with similar results obtained. 
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polymerase (PARP) (Figure 2D) as well as the increased 
nuclear TUNEL staining ratio (Figure 2E). Furthermore, 
ectopic overexpression of circHIPK3 largely inhibited 
H2O2-induced increase in Annexin V staining (Figure 2F), 
further supporting the anti-apoptosis activity by 
circHIPK3. Additionally, H2O2 treatment in vector control 
OB-6 cells induced mitochondrial depolarization, tested 
by JC-1 green intensity increase (Figure 2G). The actions 
by H2O2 were again inhibited in circHIPK3-
overexpressed OB-6 cells (Figure 2G). 
 
In the primary human osteoblasts, LV-circHIPK3 
similarly resulted in an increase of circHIPK3 expression, 
regardless of H2O2 stimulation (Figure 2H). H2O2-induced 
cell death (Figure 2I, tested by LDH medium release) was 
significantly alleviated by LV-circHIPK3 in the primary 
osteoblasts. Furthermore, circHIPK3 overexpression 
potently inhibited H2O2-induced apoptosis activation, 
decreasing cell numbers with positive TUNEL (Figure 2J) 
and Annexin V (Figure 2K) staining. Together, these 
results showed that forced overexpression of circHIPK3 
alleviated H2O2-induced death and apoptosis in human 
osteoblasts.  
 
circHIPK3 silencing potentiates H2O2-induced death 
and apoptosis in human osteoblasts 
 
Previous studies have indicated that circHIPK3 is 
important for cell survival [14, 20]. We therefore 
proposed that circHIPK3 silencing could possibly 
intensify H2O2-induced cytotoxicity in human osteoblasts. 
Two lentiviral shRNAs, against non-overlapping 
sequences of circHIPK3 (“sh-circHIPK3-a/b”), were 
individually transduced to OB-6 cells. Following selection 
of puromycin stable cell lines were established. qPCR 
results, in Figure 3A, confirmed that the applied 
circHIPK3 shRNAs resulted in over 90% reduction of 
circHIPK3 expression in OB-6 cells, regardless of H2O2 
treatment. Significantly, circHIPK3 silencing, by sh-
circHIPK3-a/b, induced OB-6 cell viability (MTT OD) 
reduction (Figure 3B) and cell death (increased medium 
LDH release, Figure 3C). Importantly, H2O2-induced 
cytotoxicity was potentiated in circHIPK3-silenced OB-6 
cells (Figure 3B and 3C). Moreover, in stable OB-6 cells 
bearing the circHIPK3 shRNAs, H2O2-induced apoptosis 
activation was significantly exacerbated as well (Figure 
3D-3F). Cell apoptosis was tested by caspase-3, caspase-9 
and PARP cleavages (Figure 3D) as well as increased 
nuclear TUNEL staining (Figure 3E) and Annexin V 
staining (Figure 3F). H2O2-induced mitochondrial 
depolarization, shown by JC-1 green intensity increase, 
was also intensified with circHIPK3 silencing (Figure 
3G).  
 
In the primary human osteoblasts, the lentiviral 
circHIPK3 shRNA (“sh-circHIPK3-a”) similarly induced 

circHIPK3 downregulation (Figure 3H), cell viability 
reduction (Figure 3I) and death (Figure 3J). Moreover, 
circHIPK3 shRNA potentiated H2O2-induced cytotoxicity 
in human osteoblasts (Figure 3I and 3J). These results 
show that circHIPK3 silencing potentiated H2O2-induced 
cytotoxicity in human osteoblasts.  
 
miR-124 inhibition attenuates H2O2-induced 
cytotoxicity in human osteoblasts 
 
circRNAs sponge target miRNAs. It has been previously 
shown that circHIPK3 physically associates and degrades 
multiple microRNAs, including miR-124, miR-152 and 
miR-338 [11, 13]. As shown in Figure 4A, expression 
levels of miR-124, miR-152 and miR-338 were 
significantly increased in stable OB-6 cells bearing 
circHIPK3 shRNA (“sh-circHIPK3-a”, see Figure 3), but 
decreased in circHIPK3-overexpressed OB-6 cells (“OE-
circHIPK3-L1”, see Figure 2). Moreover, H2O2 treatment, 
which downregulated circHIPK3, induced accumulations 
of miR-124, miR-152 and miR-338 in OB-6 cells  
(Figure 4B). In OB-6 cells transfection of the miR-124 
inhibitor (“miR-124i”) potently inhibited H2O2-induced 
viability reduction (Figure 4C) and apoptosis activation 
(Figure 4D). On the contrary, miR-152 inhibitor (“miR-
152i”) and miR-338 inhibitor (“miR-338i”) had no 
significant effect on H2O2-induced cytotoxicity  
(Figure 4C and 4D). H2O2-induced mitochondrial 
depolarization, or JC-1 green intensity increase, was 
largely attenuated by miR-124i (Figure 4E), while other 
miR inhibitors were ineffective (Figure 4E). In the 
primary human osteoblasts H2O2 similarly induced miR-
124 accumulation, reversed by miR-124i (Figure 4F). 
Furthermore, H2O2-induced viability reduction  
(Figure 4G), cell death (Figure 4H) and apoptosis (Figure 
4I) were significantly attenuated by miR-124i.  
 
Based on the results we proposed that H2O2-induced 
downregulation of circHIPK3 caused miR-124 
accumulation, mediating osteoblast cell death and 
apoptosis. Thus, forced expression of miR-124 should 
induce the similar action of H2O2. To test this hypothesis, 
the miR-124 mimic was transfected to OB-6 cells and 
primary human osteoblasts, resulting in significant 
increase in miR-124 expression (Figure 4J). Significantly, 
the miR-124 mimic induced viability reduction  
(Figure 4K), cell death (Figure 4L) and apoptosis (Figure 
4M) in OB-6 cells and primary human osteoblasts.  
 
We also tested the potential effect of H2O2 on the 
expression of miR-124’s targets, including cyclin 
dependent kinase 6 (CDK6) and Rho-Associated Protein 
Kinase 1 (ROCK1) [20–23]. qPCR and Western blotting 
assays were performed in OB-6 osteoblastic cells. Results 
showed that mRNA and protein expression of CDK6 and 
ROCK1 was significantly decreased following H2O2 
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Figure 2. Forced overexpression of circHIPK3 alleviates H2O2-induced death and apoptosis in human osteoblasts. OB-6 human 
osteoblastic cells were infected with circHIPK3-expressing lentivirus (“LV-circHIPK3”) or control lentivirus (with empty vector, “Vec”), 
following puromycin selection stable cell lines were established (“OE-circHIPK3-L1/2”). Cells were treated with hydrogen peroxide (H2O2,  
250 μM) and cultured for the applied time periods, relative circHIPK3 expression was tested by qPCR assay (A); Cell viability (B), cell death (C), 
cell apoptosis (D–F) and mitochondrial depolarization (G) were tested by the assays mentioned in the text, and results were quantified. The 
primary human osteoblasts were infected with “LV-circHIPK3” or “Vec” for 24h, then treated with hydrogen peroxide (H2O2, 250 μM) and 
cultured for the applied time periods, relative circHIPK3 expression and cell death were tested by qPCR (H) and LDH release (I) assays, 
respectively; Cell apoptosis was tested by TUNEL staining (J) and Annexin V-FACS (K) assays. Expression of the listed proteins was quantified 
and normalized to the loading control protein (β-) Tubulin (D). “MW” stands for molecular weight (Same for all Figures). Quantified values 
were mean ± standard deviation (SD, n=5). * P < 0.05 vs. “Veh” treatment of “Vec” cells. # P < 0.05 vs. H2O2 treatment of “Vec” cells. 
Experiments were repeated five times, with similar results obtained. Bar=100 μm (E, G and J). 
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Figure 3. circHIPK3 silencing potentiates H2O2-induced death and apoptosis in human osteoblasts. OB-6 human osteoblastic cells 
were transfected with the lentiviral circHIPK3 shRNA (“sh-circHIPK3-a/b”, with non-overlapping sequences) or control shRNA lentivirus (“sh-
C”), following puromycin selection the stable cells were established. Cells were treated with hydrogen peroxide (H2O2, 250 μM) and cultured 
for the applied time periods, relative circHIPK3 expression was tested by qPCR assay (A); Cell viability (B), cell death (C), cell apoptosis  
(D–F) and mitochondrial depolarization (G) were tested by the assays mentioned in the text, and results were quantified. The primary human 
osteoblasts were infected with “sh-circHIPK3-a” lentivirus or “sh-C” lentivirus for 24h, and then treated with hydrogen peroxide (H2O2,  
250 μM) and cultured for the applied time periods, relative circHIPK3 expression, cell viability and death were tested by qPCR (H), MTT (I), 
and LDH release assay (J), respectively. Expression of the listed proteins was quantified and normalized to the loading control protein (β-) 
Tubulin (D). Quantified values were mean ± standard deviation (SD, n=5). * P < 0.05 vs. “Veh” treatment of “sh-C” cells. # P < 0.05 vs. H2O2 
treatment of “sh-C” cells. Experiments were repeated five times, with similar results obtained. Bar=100 μm (E and G). 
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Figure 4. miR-124 inhibition attenuates H2O2-induced cytotoxicity in human osteoblasts. OB-6 human osteoblastic cells were 
transfected with circHIPK3-expressing lentivirus (“LV-circHIPK3”) or control lentivirus (with empty vector, “Vec”), as well as lentiviral 
circHIPK3 shRNA (“sh-circHIPK3-a”) or control shRNA lentivirus (“sh-C”), expression of listed microRNAs (miR-124, miR-152 and miR-338) was 
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tested by qPCR (A). OB-6 cells were treated with hydrogen peroxide (H2O2, 250 μM) and cultured for 24h, expression of listed microRNAs 
(miR-124, miR-152 and miR-338) was tested by qPCR (B). OB-6 cells were transfected with miR-124 inhibitor (“miR-124i”, 500 nM), miR-152 
inhibitor (“miR-152i”, 500 nM), miR-338 (“miR-338i”, 500 nM) or the non-sense control miRNA inhibitor (“miRi-C”) for 24h, followed by 
hydrogen peroxide (H2O2, 250 μM) treatment, cell viability and apoptosis were tested by MTT (C) and TUNEL staining (D), respectively. 
Mitochondrial depolarization was tested by JC-1 assay (E). The primary human osteoblasts were transfected with 500 nM of miR-124i or the 
miRi-C for 24h, followed by hydrogen peroxide (H2O2, 250 μM) treatment for indicated time periods, relative miR-124 expression (F), cell 
viability (G), cell death (H) and apoptosis (I) were tested by qPCR, MTT, LDH release and TUNEL staining assays, respectively. OB-6 cells or the 
primary human osteoblasts (“Osteoblasts”) were transfected with 500 nM of the miR-124 mimic or miR non-sense control (“miR-C”) for 48h, 
relative miR-124 expression (J), cell viability (K), cell death (L) and apoptosis (M) were tested similarly. OB-6 cells were transfected with the 
miR-124 inhibitor (“miR-124i”, 500 nM) for 24h, followed by H2O2 (250 μM) treatment for 16h, expression of listed genes was shown (N); The 
mRNA and protein expression of CDK6 and ROCK1 in stable OB-6 osteoblastic cells, with circHIPK3-expressing lentivirus (“OE-circHIPK3-L1/2”) 
or control lentivirus (with empty vector, “Vec”), was shown (O); OB-6 cells were transfected with 500 nM of the miR-124 mimic or miR non-
sense control (“miR-C”) for 48h, with expression of listed genes examined (P). The primary human osteoblasts with or without H2O2 (250 μM, 
16h) treatment were examined for the listed genes (Q). Quantified values were mean ± standard deviation (SD, n=5). * P < 0.05 vs. “sh-C” 
cells (A); * P < 0.05 vs. “Veh” treatment (B–I, N and Q). * P < 0.05 vs. “Vec” cells (O). # P < 0.05 vs. H2O2 treatment of “miRi-C” cells (C–H); * P < 
0.05 vs. “miR-C” cells (J-M). # P < 0.05 (N and P). Experiments were repeated three times, with similar results obtained. 
 

treatment (Figure 4N), which was attenuated by miR-
124i (Figure 4N). On the contrary, LV-circHIPK3-
induced ectopic overexpression of circHIPK3, which 
depleted miR-124 (see Figure 2), resulted in upregulation 
of CDK6 and ROCK1 expression (both mRNA and 
protein, Figure 4O). Importantly, forced expression of 
miR-124, by transfection of miR-124 mimic, 
downregulated CDK6 and ROCK1 in OB-6 cells (Figure 
4P). In the primary human osteoblasts H2O2 treatment 
resulted in downregulation of the two miR-124 targets 
(Figure 4Q). These results demonstrated that H2O2 
downregulated miR-124’s targets, CDK6 and ROCK1, in 
human osteoblasts, further supporting the function of 
miR-124 in H2O2-induced cytotoxicity in osteoblasts. 
 
DISCUSSION 
 
CircRNAs are formed from exon transcripts through non-
linear reverse splicing or gene re-arrangements [9, 10, 24]. 
Dysregulation of circRNAs could be important for 
oxidative stress-induced osteoblast injury and 
pathogenesis of osteoporosis/osteonecrosis. The results of 
the present study show that circHIPK3 is downregulated 
in the necrotic femoral head tissues of dexamethasone-
treated human patients, indicating a possible association 
between circHIPK3 reduction and pathophysiology of 
femoral head necrosis. 
 
In vitro results of this study show that H2O2 
downregulated circHIPK3 in OB-6 cells and primary 
human osteoblasts. Importantly, forced 
overexpression of circHIPK3, by a lentiviral 
construct, alleviated H2O2-induced viability reduction, 
cell death and apoptosis. Contrarily, circHIPK3 
silencing by targeted shRNAs potentiated H2O2-
induced cytotoxicity in OB-6 cells and primary human 
osteoblasts. These results imply that circHIPK3 
downregulation mediates H2O2-induced cytotoxicity 
in human osteoblasts. 

A study by Zhao et al., has shown that miR-124 can 
inhibit viability, promote apoptosis, and impair 
migration in human endothelial cells [25]. The miR-124 
targets are key pro-survival genes, including SphK1 
(sphingosine kinase1) [26, 27] CDK6, ROCK1 [20–23], 
and STAT3 (signal transducers and activators of 
transcription 3) [28]. The very recent study by Cao  
et al., has shown that in endothelial cells high glucose 
(HG) treatment induced circHIPK3 downregulation, 
causing accumulation of its target miR-124 [14]. 
Importantly, miR-124 accumulation promoted 
endothelial cell death and apoptosis [14]. Other studies 
have also shown that circHIPK3 silencing induced miR-
124 accumulation and cancer cell death and apoptosis 
[20, 23]. Additionally, in the hepatocellular carcinoma 
cells, miR-124 accumulation following circHIPK3 
inhibition induced significant cell apoptosis [13]. 
 
In the current study, we show that circHIPK3 possibly 
acts as the sponge of miR-124 in human osteoblasts. 
miR-124 levels were significantly increased in 
circHIPK3-silenced OB-6 cells, but downregulated with 
circHIPK3 overexpression. Moreover, circHIPK3 
downregulation by H2O2 induced miR-124 
accumulation in OB-6 cells and primary human 
osteoblasts. On the contrary, miR-124 inhibition by a 
miR-124 inhibitor protected osteoblasts from H2O2. 
Forced expression of miR-124, by the miR-124 mimic, 
induced significant cytotoxicity in human osteoblasts. 
Importantly, H2O2 downregulated verified miR-124’s 
targets, including CDK6 and ROCK1, in human 
osteoblasts. These results imply that miR-124 
accumulation by circHIPK3 downregulation possibly 
mediated H2O2-induced cytotoxicity in human 
osteoblasts.  
 
Together, we show that circHIPK3 downregulation 
mediates H2O2-induced cytotoxicity in human osteoblasts. 
Targeting circHIPK3-miR-124 cascade could be a novel
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Table 1. Primers of the qPCR assay in this study. 

miR-124-F 5′- GGACTTTCTTCATTCACACCG-3′ 
miR-124-F 5′- GACCACTGAGGTTAGAGCCA-3′ 
U6 RNA-F 5′-CTCGCTTCGGCAGCACATATACT-3′ 
U6 RNA-R 5′-ACGCTTCACGAATTTGCGTGTC-3′ 
circHIPK3-F 5′-TATGTTGGTGGATCCTGTTCGGCA-3′ 
circHIPK3-R 5′-TGGTGGGTAGACCAAGACTTGTGA-3′ 
miR-152-F 5′-TCAGTGCATGACAGAACT-3′ 
miR-152-F 5′-GAACATGTCTGCGTATCTC-3′ 
miR-338-F 5′-ATATCCTGGTGCTGAGTG-3′ 
miR-338-F 5′-GAACATGTCTGCGTATCTC-3′ 

 

strategy to protect human osteoblasts from oxidative 
injury.  
 
MATERIALS AND METHODS 
 
Reagents 
 
H2O2 and puromycin were purchased from Sigma-
Aldrich Co. (St. Louis, Mo). Fetal bovine serum (FBS), 
DMEM (Dulbecco's Modified Eagle Medium), 
antibiotics, and other cell culture reagents were obtained 
from Gibco-BRL (Grand Island, NY). TRIzol reagent 
and other RNA assay agents were purchased from 
Thermo-Fisher (Shanghai, China). Sequences and 
primers were synthesized by Shanghai Genechem Co. 
(Shanghai, China). The applied miRNA inhibitors, 
control miRNA inhibitor, miR-124 mimic and control 
mimic were purchased from Ambion (Austin, TX). All 
antibodies were provided by Cell Signaling Tech 
(Shanghai, China).  
 
Cell culture 
 
Established OB-6 human osteoblastic cells were provide 
Dr. Cui [29, 30], cells were cultured as described 
previously [29, 30]. The primary human osteoblasts were 
provided by Dr. Ji [17], cultured under a previously-
described condition [17, 31]. Primary human osteoblasts 
at passage 3-10 were utilized for in vitro biomedical 
studies. All protocols were approved by Ethics Committee 
of authors institutions, and according to the Declaration of 
Helsinki. 
 
Human tissues 
 
The lysate samples of necrotic femoral head tissues 
and the surrounding normal femoral head tissues  
from ten (10) dexamethasone-taking patients with 
femoral head resection surgery were provided by Dr. 
Cui [32]. All clinical investigations were conducted 
according to the criteria set by the Declaration of 
Helsinki. 

Quantitative real-time polymerase chain reaction 
assay (qPCR) 
 
OB-6 cells or the primary human osteoblasts were seeded 
into six-well plates at 1.5×105 cells per well. Following 
the treatments, TRIzol reagent was added to extract total 
cellular RNA. qPCR was performed by a SYBR Green 
PCR kit (Applied Biosystems, Shanghai, China) under a 
7500H FAST Real-Time PCR System (Takara, Osaka, 
Japan) [33]. Melting curve analysis was always performed 
to calculate product melting temperature. Using a ΔΔCt 
method, target gene expression was quantified. U6 RNA 
was tested to normalize expression levels of listed genes. 
All the primers for qPCR assay were purchased from 
Origene (Beijing, China) Table 1. qPCR primers of CDK6 
and ROCK1 were provided by Dr. Wu from Medical 
School of Nanjing University [20].  
 
Western blotting 
 
At a density of 1.5 × 105 cells per well OB-6 cells or 
primary human osteoblasts were seeded into six-well 
plates. Following the treatments, the cell lysis buffer 
(Biyuntian, Wuxi, China) was added. The lysates  
(30–40 μg per lane) were separated by 10-12% SDS-
PAGE gels, and transferred to polyvinylidene difluoride 
(PVDF) blots (Millipore, Bedford, MA). After blocking in 
PBST with 10% non-fat milk, the blots were probed with 
the designated primary and secondary antibodies. The 
enhanced chemiluminescence (ECL) reagents (Amersham 
Bioscience, Piscataway, NJ) were added to visualize the 
targeted protein signals. Image J software (National 
Institutes of Health) was utilized for the data 
quantification. 
 
Ectopic circHIPK3 overexpression 
 
The lentivirus with pGLV3-U6-GFP-Puro vector 
encoding circHIPK3 (“LV-circHIPK3”) was provided by 
Dr. Lu [14], and added to OB-6 cells and primary human 
osteoblasts. Afterwards, cells were cultured in the fresh 
complete medium for another 48h. When necessary, 
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puromycin (5 μg/mL) was added to select stable cells for 
another 10 days. CircHIPK3 overexpression was verified 
by qPCR. 
 
circHIPK3 shRNA 
 
Two circHIPK3 shRNAs, with non-overlapping and 
unique sequence (“S1/S2”), were designed by Shanghai 
Genechem Co. The shRNA was sub-cloned into a GV248 
lentiviral construct to general lentivirus. OB-6 cells and 
primary human osteoblasts were seeded into the six-well 
plates at a 50% confluence, and the shRNA lentivirus was 
added. Afterwards, cells were cultured in the fresh 
complete medium for another 48h. When necessary 
puromycin (5 μg/mL) was added to the medium to select 
stable cells. CircHIPK3 knockdown was confirmed by 
qPCR.  
 
Cell viability 
 
At a density of 5 × 103 cells per well OB-6 cells or 
primary human osteoblasts were seeded into 96-well 
plates. Following the applied H2O2 treatment, cell 
viability was tested by a 3-[4,5-dimethylthylthiazol-2-yl]-
2,5 diphenyltetrazolium bromide (MTT) dye assay. At the 
wavelength of 590 nm MTT optical density(OD) values 
were tested. 
 
Cell death assay 
 
At a density of 1.5 × 105 cells per well OB-6 cells or 
primary human osteoblasts were seeded into six-well 
plates. Following the treatments, cell death was  
tested by examining lactate dehydrogenase (LDH) 
release in the conditional medium, by a simple two-step 
LDH kit (Takara, Tokyo, Japan). Medium LDH 
contents were always normalized to the total LDH 
contents. 
 
TUNEL [terminal deoxynucleotidyl transferase 
(TdT)-mediated dUTP nick end labeling] staining 
 
At a density of 5 × 104 cells per well OB-6 cells or 
primary human osteoblasts were seeded into twelve-
well plates. Following the treatments, cells were further 
stained with TUNEL and DAPI (4',6-diamidino-2-
phenylindole, dihydrochloride) dyes. TUNEL ratio (vs. 
DAPI) was calculated, recording 500 cells of each 
treatment from five random views (1 : 100 
magnification). 
 
JC-1 assaying of mitochondrial depolarization 
 
In stressed cells mitochondrial depolarization will cause 
JC-1 aggregating in mitochondria, thereby forming 
green monomers [34]. OB-6 cells or primary human 

osteoblasts were seeded into 12-well tissue-culture 
plates (5 × 104 cells in each well). Following the  
applied treatments cells were stained with JC-1  
(5 μg/mL) and tested immediately by a fluorescence 
spectrofluorometer at 550 nm. The representative JC-1 
images, merging both the green fluorescence image  
(at 550 nm) and the red fluorescence image (at 650 nm), 
were presented.  
 
Annexin V assay 
 
OB-6 cells or primary osteoblasts were seeded into six-
well plates (3 × 105 cells per well). Following the applied 
treatment cells were incubated with Annexin V (10 
μg/mL) and PI (10 μg/mL), and analyzed by a 
fluorescent-activated cell sorting (FACS) machine. The 
Annexin V ratio was recorded.  
 
Transfection of miR mimic and miR inhibitors 
 
OB-6 cells and primary human osteoblasts were seeded 
into the six-well plates at a 40-50% confluence. Cells 
were transfected with 500 nM of the applied miR 
inhibitor, control miR inhibitor or miR-124 mimic by 
Lipofectamine 2000 (Thermo-Fisher) for 24h. The 
siRNA/mimic transfection was repeated another round 
(total 48h). Afterwards, miRNA expression was tested by 
qPCR. 
 
Statistical analysis 
 
Data were presented as the mean ± standard deviation 
(SD). ANOVA with multiple comparisons through 
Bonferroni post-hoc test, analyzed by SPSS version 18.0 
(SPSS Co., Chicago, IL), was utilized to test statistical 
differences. Values of P < 0.05 were considered 
statistically significant. 
 
Abbreviations 
 
MTT: 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenylte-
trazolium bromide; circRNAs: circular RNAs; 
circHIPK3: circular RNA HIPK3; CDK6: cyclin 
dependent kinase 6; DMEM: Dulbecco's Modified Eagle 
Medium; ECL: enhanced chemiluminescence; HIPK3: 
homeodomain-interacting protein kinase 3; LDH: lactate 
dehydrogenase; FBS: fetal bovine serum; HG: high 
glucose; H2O2: hydrogen peroxide; HUVECs: human 
umbilical vein endothelial cells; ncRNAs: non-coding 
RNAs; OD: optical density; PARP: ploy ADP  
ribose polymerase; PVDF: polyvinylidene difluoride; 
qPCR: quantitative real-time polymerase chain reaction 
assay; ROS: reactive oxygen species; ROCK1: Rho-
Associated Protein Kinase 1; TUNEL: [terminal 
deoxynucleotidyl transferase(TdT)-mediated dUTP nick 
end labeling]. 
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