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INTRODUCTION 

Esophageal cancer is globally one of the most prevalent 
cancers which is diagnosed more than 500,000 new 
cases yearly [1]. Esophageal adenocarcinoma (EAC) 

and esophageal squamous cell carcinoma (ESCC) are 
the two main clinical subtypes of esophageal cancer, 
with more than 80% of esophageal cancers being ESCC 
[2]. In Asia, ESCC has higher morbidity and mortality 
compared with western countries [3]. More than half of 
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ABSTRACT 

Aberrant DNA methylation leads to abnormal gene expression, making it a significant regulator in the 
progression of cancer and leading to the requirement for integration of gene expression with DNA methylation. 
Here, we identified 120 genes demonstrating an inverse correlation between DNA methylation and mRNA 
expression in esophageal squamous cell carcinoma (ESCC). Sixteen key genes, such as SIX4, CRABP2, and EHD3, 
were obtained by filtering 10 datasets and verified in paired ESCC samples by qRT-PCR. 5-Aza-dC as a DNA 
methyltransferase (DNMT) inhibitor could recover their expression and inhibit clonal growth of cancer cells in 
seven ESCC cell lines. Furthermore, 11 of the 16 genes were correlated with OS (overall survival) and DFS 
(disease-free survival) in 125 ESCC patients. ChIP-Seq data and WGBS data showed that DNA methylation and 
H3K27ac histone modification of these key genes displayed inverse trends, suggesting that there was 
collaboration between DNA methylation and histone modification in ESCC. Our findings illustrate that the 
integrated multi-omics data (transcriptome and epigenomics) can accurately obtain potential prognostic 
biomarkers, which may provide important insight for the effective treatment of cancers. 
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patients with these tumors have distal metastases at the 
time of diagnosis, and only 10%–20% of sufferers 
survive for 5 years [1]. Therefore, there is an urgent 
need to provide effective targets for therapy or early 
detection of ESCC.  
 
Epigenetic alterations have been suggested as 
underlying mechanisms of cancer progression [4]. DNA 
methylation is one of the major epigenetic mechanisms 
involved in cancer [5], with global DNA 
hypomethylation accompanied by hypermethylation of 
tumor suppressor genes being recognized as an 
epigenetic hallmark of cancer [6]. Altered DNA 
methylation patterns can change gene expression by 
silencing or activating genes, so numerous studies 
aimed at revealing the pathogenesis of tumors have 
focused on epigenetics, such as circulating tumor DNA 
(ctDNA) analysis [7–9] and whole-genome bisulfite 
sequencing (WGBS) [10–12]. In 1999, the feasibility of 
detecting tumor-associated abnormal ctDNA 
methylation was initially described [13]. Since then, 
more and more studies have been conducted to 
characterize the potential use of ctDNA methylation for 
early diagnosis and prognosis [14]. Some methylation-
associated drugs, such as decitabine, an effective drug 
for myelodysplastic syndrome (MDS) and acute 
myeloid leukemia (AML), have been used for the 
clinical therapy of AML [15]. On the other hand, next-
generation transcriptome sequencing (RNA-Seq) 
provides a method for tracing transcriptional aberrations 
in diseases [16, 17]. In addition, posttranslational 
modifications of histones also regulate gene activity in 
tumors [18, 19]. Nevertheless, there is a little research 
on integrating DNA methylation and gene expression or 
histone modification in ESCC.  
 
Here, we systematically define DNA methylation status 
and mRNA expression level and demonstrate the 
correlation between DNA methylation and gene 
expression by using DNA methylation array and RNA-
seq data. Furthermore, we perform a comprehensive 
analysis to determine whether some identified genes 
could serve as potential prognostic biomarkers and 
could be applied to the treatment of ESCC. 
 
RESULTS 
 
Identification of differentially-methylated genes  
 
We performed an Illumina Infinium 
HumanMethylation450 BeadChip assay to compare 
esophageal DNA patterns in fifteen ESCC patients’ 
tumor tissues and paired normal tissues. After the chip 
was pretreated, the methylation data of the 15 pairs of 
esophageal squamous cell carcinoma samples was 
analyzed using the minfi package. We detected 80,557 

CpG sites, related to 15,882 different genes, that 
showed significant differences in DNA methylation in 
ESCC (p-value<0.05, Figure 1A and Supplementary 
Table 1). We also found that most of the genes were 
covered with 1~15 differentially-methylated probes 
(DMPs) (Figure 1B). Most of the 80,557 differentially-
methylated sites were located in the gene body and 
TSS1500 (Figure 1C), and more than half of the DMPs 
were located around the CPG islands (Figure 1D). 
Because several probes can map to a given gene when 
using the Illumina Infinium 450k bead array, we 
wanted to evaluate which probes were most relevant to 
the state of gene expression. To determine this, we 
averaged the DNA methylation β value of probes 
mapping to the same gene region (TSS1500, TSS200, 
5’UTR, 1st exon, gene body and 3’UTR). Regression 
analysis revealed that the strongest associations 
between gene expression and DNA methylation were 
for TSS200, 1st exon and TSS1500 regions (Figure 
1E). Finally, we assigned a unique β value to a given 
gene by the following scheme: for a gene with probes 
binding to TSS200, the average β value of such 
TSS200 probes was used. For a gene with no TSS200 
probes but with probes binding to the 1st exon, we used 
the average over 1st exon probes. For a gene with no 
TSS200- or 1st exon-binding probes, the average over 
the TSS1500 probes was used [20]. After these 
analyses, we obtained 10,336 differentially-methylated 
genes (Figure 1F).  
 
Integration of DNA methylation and mRNA 
expression data to obtain candidate genes 
 
Expression analysis of genes was performed on 15 
paired esophageal samples. We identified 860 
differentially-expressed genes between tumors and non-
tumor matched samples (Figure 1G; p-value<0.05, 
|log2(FC)|>1). Based on these results, we ultimately 
obtained 120 candidate genes that were both 
differentially methylated and expressed, and with the 
strongest negative associations between gene expression 
and DNA methylation (Figure 1G; p-value<0.05, PCC 
<-0.5). Then we found that these candidate genes were 
cancer-associated, by DAVID enrichment analysis, 
which suggested that abnormal methylation also plays 
an important role in esophageal squamous cell 
carcinoma (Figure 1H).  
 
Use of multiple expression profiles to screen the 
specific methylated key genes in ESCC 
 
In order to find the specific genes regulated by DNA 
methylation only in ESCC, we then downloaded 10 
datasets (5 ESCC datasets and 5 other cancer datasets) 
from the GEO database to filter the 120 candidate 
genes. The genes that showed differential expression in
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Figure 1. Analysis using the Illumina 450K bead array and RNA-Seq data for 15 paired ESCC samples. (A) Volcano plot 
representing the probes for differentially-methylated genes. The probes for hypermethylated genes are shown in red while probes for 
hypomethylated genes are shown in blue (P< 0.05). (B) Frequency line graph shows the coverage rate of differentially-methylated regions 
(DMPs) in one gene. The results show that most genes have more than twenty DMPs. (C) Distribution of differentially-methylated sites in six 
gene regions (TSS1500, TSS200, 5’ UTR, 1st exon, gene body and 3’ UTR). (D) Proportions of differentially-methylated regions from genes 
with associated CpG islands (CGI). (E) Plot of the regression t-statistics between log-normalized RNA-Seq RPKM values and corresponding 
average DNA methylation β values for probes, stratified according to six genetic regions. The number of curves equals the number of 
samples. (F) Heatmap shows the differentially-methylated genes in 15 paired ESCC samples. (G) Venn plot shows the overlap between 
differentially-methylated genes and differentially-expressed genes in 15 paired ESCC samples. (H) KEGG and GO analysis of 120 candidate 
genes that are both differentially methylated and differentially expressed. 
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at least 3 of the 5 ESCC datasets, and differential 
expression in no more than 2 pan-cancer datasets in 5 
other cancers, were selected for key genes. Ultimately, 
we identified 16 specific genes in ESCC (Figure 2A and 
Supplementary Table 2). The heatmap of the 16 genes 
shows the expression level and methylation status in 15 
paired ESCC samples (Figure 2B and 2C).  
 
Key genes regulated by methylation affect the 
proliferation of ESCC cells 
 
To test the biological functions of the 16 genes, we 
first analyzed expression of the genes, in twenty 
ESCC tumor tissues and paired normal esophageal 
epithelial tissues, using qRT-PCR. Expression of most 
of the 16 genes could be detected in all of the tumors 
and normal esophageal epithelium tissues, except for 
C2orf54. As shown in Figure 3A, expression of the 
hypermethylated genes (VSIG10L, ST6GALNAC1, 
SCNN1B, PRSS27, PPP1R3C, KRT4, KLK13, 

KLK11, IL1RN, GPX3, EHD3 and CRABP2) in 
tumor tissues was lower than that of the 
corresponding genes in normal esophageal epithelial 
tissues. The hypomethylated genes (SIX4, MFAP2 
and COL5A2) showed the reverse trend. In order to 
know whether the DNA methylation status of these 15 
genes was associated with their expression in ESCC, 
we further detected their mRNA expression in 5-aza-
dC-treated ESCC cell lines. The expression of 
hypermethylated genes increased in seven ESCC cell 
lines after 5-aza-dC treatment (Figure 3B). Then, we 
cultured KYSE140, KYSE150, TE3 and KYSE180 
cells with or without 5-aza-dC and examined the 
ability of cells to form colonies. The efficiency of cell 
colony formation in the presence of 5-aza-dC was 
significantly decreased, suggesting that aberrant 
hypermethylation of these key genes could promote 
cell colony formation and proliferation of ESCC cells 
(Figure 3C). All of these results illustrate that 
methylation-related genes play a vital role in ESCC. 

 

 
 

Figure 2. Identification of ESCC-specific genes. (A), Genes were filtered from ten data sets (5 ESCC data sets and five other cancer data 
sets) to obtain specific key genes in ESCC. Scatter plot shows the p-value of 16 differentially-expressed genes in the ten data sets. (B, C) 
Heatmap of methylation and expression of the 16 key genes, respectively.  
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Figure 3. Experimental verification of key genes in ESCC. (A) qRT-PCR analysis of key genes in tumor (T) and normal (N) tissues of 
twenty paired ESCC samples. (B) Scatter plot of qRT-PCR analyses for key genes in seven ESCC cell lines. Blue spots represent cells treated 
with DMSO, whereas the orange spots represent cells treated with 5-aza-dC. (C) Colony formation assays of ESCC cells after 5-aza-dC 
treatment. ESCC cells were plated in 6-well plates. After 24 h, the cells were treated with 5-aza-dC. Cultures were maintained for six days, and 
cells were then stained and photographed. DMSO was used as the control. Colony formation assays illustrate that hypermethylation of key 
genes plays an important role in cell growth. 



www.aging-us.com 1337 AGING 

Evaluation of the prognostic performance of the key 
genes  
 
In order to explore the clinical significance of the key 
genes, an Affymetrix IVT microarray of 125 ESCC 
patients (GSE121931) was used to find the potential 
prognostic factors (VSIG10L was not scored because it 
was not detected by the chip). The clinicopathological 
characteristics of the 125 ESCC patients are shown in 
Supplementary Table 3. Then survival analysis was 
used to evaluate the impact of these key genes on the 
overall survival (OS) and disease-free survival (DFS) of 
the 125 ESCC patients. First, we conducted 16383 

1 2 3 14
14 14 14 14(C C C C )+ + + +  Cox proportional hazard 

models by permutating and combining the expression of 
14 key genes and OS time or DFS time, respectively. 
Next, we evaluated the efficiency of each survival 
model and found that 2,923 models in OS and 1,181 
models in DFS were survival-associated (p-value<0.01). 
Although pTNM stage is a crucial prognostic indicator 
of esophageal cancer [21, 22], the analysis lacks 
auxiliary biomarkers to aid the accuracy of pTNM [23, 
24]. We then performed ROC analysis to compare the 
prognostic efficiency between these signatures and 
pTNM stage. Figure 4A and 4B shows the top 20 AUCs 
of these models for OS and DFS. Then, we found a 
model (Signature-1) composed of 11 key genes (EHD3, 
IL1RN, KLK13, PRSS27, COL5A2, CRABP2,GPX3, 
KRT4, MFAP2, SCNN1B and SIX4) with excellent 
prognostic capability in both the OS and DFS models, 
and the AUC of the time-dependent ROC curve was 
similar to pTNM stage (OS: AUCSignature-1 = 0.684, 
AUCpTNM = 0.684, DFS: AUCSignature-1 = 0.675, 
AUCpTNM = 0.700). In order to understand the clinical 
significance of Signature-1 better, we associated a series 
of clinicopathological parameters with this signature in 
125 ESCC patients. There was no relevance between 
Signature-1 and pTNM stage, age and gender (Table 1 
and Supplementary Table 4). We found that Signature-1 
and pTNM stage were independent of these clinical 
features and also were independent prognostic factors in 
OS and DFS (univariate analysis p-value<0.05). So we 
combined Signature-1 with pTNM stage to construct a 
new model with better prognostic performance (OS: 
AUC= 0.760, DFS: AUC= 0.774) in our cohort.  
 
To further investigate the prognostic power of this 
signature, the test ESCC dataset that was downloaded 
from TCGA was also used to evaluate the Signature-1 
prognostic model. There were 82 ESCC patients with 
OS time and 68 patients with DFS time in the test 
datasets. Cox regression analysis was performed first 
and found that Signature-1 was indeed independent of 
these clinical features, and pTNM stage also was an 
independent prognostic factor in OS, but not in DFS 

(Table 1). In the OS group (n=82), the predictive ability 
of Signature-1 was significantly better than pTNM stage 
(AUCSignature-1=0.837 vs. AUCpTNM=0.497) and the 
combined model also had a better ability than the TNM 
stage (AUCSignature-1&pTNM=0.770, Figure 4C). In the 
DFS group (n=68), the predictive ability of Signature-1 
was significantly better than pTNM stage (AUCSignature-

1=0.801 vs. AUCpTNM=0.385, Figure 4C). These results 
demonstrate that Signature-1 has important clinical 
relevance and is a novel prognostic signature with high 
accuracy. 
 
Relationship between DNA methylation and histone 
modification of the key genes in ESCC 
 
DNA methylation usually is considered to repress 
transcription, which is also influenced by histone 
modifications [25, 26]. In order to further reveal the role 
of the 11 survival-associated key genes that have 
aberrant epigenomic regulation in ESCC, we performed 
H3K27ac ChIP-seq analysis on five ESCC cell lines and 
whole-genome bisulfite sequencing (WGBS) in seven 
primary ESCC samples. We define the H3K27ac 
histone modification level and the WGBS level of a 
100bp region which contain the differentially 
methylated site. Then, we performed the differential 
analysis between H3K27ac and DNA methylation 
(WGBS) in this region. After this analysis, we can see 
that most of these 14 genes have a significant p-value 
between H3K27ac histone modification and 
methylation (Supplementary Figure 1). Take CRABP2 
for example (Figure 5), we examined the methylation β 
values of all 16 CpG probes that are located on 
CRABP2 from HM450 array data (Infinium 
HumanMethylation450) in three cohorts (our data, 
n=30; TCGA ESCC data, n=85 and TCGA EAC data, n 
=87). By plotting the change in methylation (∆β) of 
ESCC and EAC samples, we identified 
hypermethylation of promoter CpG loci in ESCC 
samples, but not in EAC samples. We next calculated 
the Pearson correlation between each probe’s 
methylation β value and CRABP2 mRNA expression 
level in all samples. The uniquely hypermethylated 
region in ESCC was inversely correlated with CRABP2 
expression, but was unchanged in EAC samples. These 
results indicated that abnormally high methylation of 
the CRABP2 promoter region was most prominently 
associated with aberrantly low CRABP2 expression in 
ESCC. Consistent with the 450K array, the CRABP2 
promoter region (TSS±1.5kb) was intensively 
methylated in seven ESCC samples and corresponded to 
both a decrease in H3K27acetylation in the same region 
in ESCC cells and low CRABP2 expression. 
Interestingly, a previous study indicated that CRABP2 
is associated with super-enhancer activity in healthy 
esophageal tissue [27]. This shows epigenetically



www.aging-us.com 1338 AGING 

 

 
 

Figure 4. Survival analysis of 125 ESCC samples and TCGA data sets. (A), Time-dependent AUC curves of overall survival (OS) and 
disease-free survival (DFS) for the top 20 signatures in 125 ESCC samples. (B) For the 125 ESCC samples, Kaplan-Meier curves for overall 
survival (OS) and disease-free survival (DFS) for Signature-1. ROC analysis shows a better prognostic efficiency of Signature-1 combined with 
pTNM-stage compared with Signature-1 or pTNM-stage. (C) In the TCGA dataset, Kaplan-Meier curves of overall survival (OS) and disease-
free survival (DFS)for Signature-1. ROC analysis shows better prognostic efficiency of Signature-1 compared with Signature-1 combined with 
pTNM-stage or pTNM-stage alone. 
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Table 1. Univariate and multivariate analysis of factors associated with overall survival and disease-free survival. 

Variables 

Univariate analysis  Multivariate analysis 

P-
value* HR 

95% CI for HR  P-
value* HR 

95% CI for HR 

Lower Upper  Lower Upper 

Overall survival (N = 125)          

Age (>59 vs. ≤ 59) 0.079  1.524  0.953 2.438          

Gender (Female vs. Male) 0.253  0.708  0.391  1.280       

pTNM-stage (III vs. I+II ) 0.000  2.554 1.611 4.048  0.000  2.526 1.621 3.939 

Signature-1 (High score vs. Low 
score)a 0.016  1.814  1.120  2.938   0.001 2.119 1.342 3.345 

Disease-free survival (N = 125)          

Age (>59 vs. ≤ 59) 0.447  1.195  0.755 1.890       

Gender (Female vs. Male) 0.687 0.884  0.485  1.611       

pTNM-stage (III vs. I+II ) 0.000  2.570 1.620 4.077  0.000 2.582 1.645 4.052 

Signature-1 (High score vs. Low 
score)a 0.017 1.777 1.110 2.847  0.008 1.856 1.173 2.936 

Overall survival  
(TCGA data, N = 82)          

Age (>57 vs. ≤ 57) 0.417  1.384  0.631 3.035          

Gender (Female vs. Male) 0.168   4.397 0.535  36.165       

pTNM-stage (IV+III vs. I+II ) 0.019  2.687 1.177 6.138  0.020  2.656 1.167 6.042 

Signature-1 (High score vs. Low 
score)b 0.000  6.148  2.220 17.023   0.000 6.147 2.239 16.878 

Disease-free survival  
(TCGA data, N = 68)          

Age (>57 vs. ≤ 57) 0.839  1.117  0.384 3.252       

Gender (Female vs. Male) 0.244  29.251 0.100 8527.816       

pTNM-stage (IV+III vs. I+II ) 0.377  0.558 0.153 2.032      

Signature-1 (High score vs. Low 
score)b 0.004 19.462 2.538 149.258  0.005 19.018 2.422 149.333 

*Multivariate analysis, Cox proportional hazards regression model. Variables were adopted for their prognostic significance 
by univariate analysis. a Low, score< -2.221; high, score ≥ -2.221. b Low, score< -2.066; high, score ≥ -2.066. 

 

modified regions of CRABP2 may affect histone 
binding and correlates with expression silencing. 
 
Regarding the hypomethylated gene SIX4 (Figure 6), we 
also examined the methylation β values of all 23 CpG 
probes that were located in SIX4 in the cohorts. We 
found frequent hypomethylation of the CpG loci at the 
promoter region in ESCC samples, but not in EAC 
samples. The uniquely hypomethylated probe in ESCC 
was inversely correlated with SIX4 expression and was 
hypermethylated in EAC samples. This indicates that 

abnormal hypomethylation of the SIX4 promoter was 
most prominently associated with aberrantly high SIX4 
expression in ESCC. ChIP-seq and WGBS data also 
showed that the SIX4 promoter was weakly methylated 
in seven ESCC samples, and in the same region, 
H3K27acetylation was enhanced in ESCC cells and 
correlated with elevated SIX4 expression (Supplementary 
Figure 1). Another 12 genes are shown in Supplementary 
Figure 2. These results further confirmed that aberrant 
expression of the key genes was regulated by DNA 
methylation and histone modification.  
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Figure 5. Inverse trend between DNA methylation and histone modification of CRABP2 in ESCC. Blue tracks represent the 
histone modifications in CRABP2 for five ESCC cell lines, and yellow tracks represent its methylation level, as measured by the WGBS assay. All 
tracks are on the same scale (0-1). Scatter diagrams show the ∆β of CRABP2 in ESCC samples compared with normal samples. Histograms 
show the correlation between DNA methylation and gene expression of CRABP2.  
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Figure 6. Inverse trend between DNA methylation and histone modification of SIX4 in ESCC. Blue tracks represent the histone 
modifications of SIX4 in five ESCC cell lines, and yellow tracks represent its methylation level, as measured by the WGBS assay, all the tracks 
are on the same scale (0-1). Scatter diagrams show the ∆β of SIX4 in ESCC samples compared with normal samples. Histograms show the 
correlation between DNA methylation and gene expression of SIX4.  
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DISCUSSION 
 
ESCC is one of the most fatal carcinomas around the 
world. However, the application of prognostic 
biomarkers is scarce [28]. In this study, we 
established a pipeline to find and investigate 
potentially aberrant genes in ESCC to correlate DNA 
methylation and mRNA expression by: (1) identifying 
both differentially-methylated and expressed genes, 
(2) keeping the genes whose methylation and 
expression are highly inversely correlated, (3) 
performing GO and KEGG pathway analysis on the 
inversely correlated genes, (4) identifying specific key 
genes by several datasets and verifying their 
methylation and expression levels by biological 
experiments, (5) evaluating the prognostic 
significance of these genes, and (6) exploring the 
potential molecular mechanisms by examining histone 
modification and WGBS data. 
 
DNA methylation plays a major role in expression and 
disease [29–31]. Many researchers have found that 
super-enhancers may indicate an important role for the 
key genes in cancers [31, 32]. RNA-Seq also has been 
applied to identify the functional mRNAs in ESCC [33, 
34]. However, single category data may miss some 
important information related to tumorigenesis and 
tumor progression. Recently, integrated analysis 
between DNA methylation and gene expression has 
been applied to lung adenocarcinoma [35, 36] and 
cholangiocarcinoma [37]. Aberrant DNA methylation at 
functional regulatory elements is often accompanied by 
alterations of histone modifications [38]. So, a 
comprehensive analysis of DNA methylation and gene 
expression or histone modification offers a new basis 
for the diagnosis and treatment of ESCC.  
 
A total of fourteen DMGs were discovered in our 
integrated analysis, eleven of which (KLK13, 
PRSS27, COL5A2, KRT4, MFAP2, SCNN1B, SIX4, 
CRABP2, IL1RN, EHD3 and GPX3) were associated 
with prognosis of ESCC and also exhibited a negative 
correlation between DNA methylation and mRNA 
expression. KLK13 is a member of the tissue 
kallikrein (KLK) family, and overexpression of 
KLK13 has been shown to result in an increase in 
malignant cell behavior [39]. Marapsin (PRSS27) is a 
trypsin-like serine protease and is highly expressed in 
normal esophagus [40]. COL5A2, also known as 
collagen type V alpha 2 chain, has previously been 
reported to be involved in the pathology of cancer [41, 
42], and the protein encoded by KRT4 is a member of 
the keratin gene family and is related to 
differentiation [43]. MFAP2 plays an important role 
in the extracellular deposition [44], and few studies 
have explored the role of MFAP2 in cancers. 

SCNN1B encodes the β subunit of the epithelial 
sodium channel (ENaC), which is essential for the 
maintenance of body salt and water homeostasis [45]. 
SIX4 encodes a member of the homeobox family who 
have been reported to be related with tumorigenesis 
[46]. Importantly, a model (Signature-1) consisting of 
key genes highly efficient at predicting both OS and 
DFS, was used to identify SIX4, suggesting SIX4 
could be a potential prognostic biomarker. Four of the 
key genes (CRABP2, IL1RN, EHD3 and GPX3) are 
associated with super-enhancers in healthy esophageal 
tissue and are hypermethylated, with correspondingly 
low expression, in ESCC samples (Supplementary 
Table 2). CRABP2 is a crucial component of the RAR 
pathway and can induce apoptosis in MCF-7 
mammary carcinoma cells [47, 48]. IL1RN is an 
important regulator of the inflammatory response 
[49]. EHD3 regulates endocytic recycling, along with 
other EHD family members [50, 51], and it has been 
considered to be a tumor suppressor in gliomas [52]. 
GPX3 can catalyze the reduction of peroxides and 
protect cells against oxidative damage and its 
hypermethylation has been found in esophageal 
adenocarcinoma. It also involved in the progression 
and lymph node metastasis of ESCC [53–55]. These 
results suggest that the present analysis has identified 
some potential key genes in ESCC, and their aberrant 
DNA methylation may affect the function of super-
enhancers to lead to abnormal gene expression and 
influence tumor progression. However, there are still 
some deficiencies in our research. Although we 
investigated the aberrant coding RNAs in ESCC, 
many potential non-coding RNAs regulated by 
methylation may also play key roles in tumor 
initiation [56–58].  
 
All in all, this is the first integrated study of 
epigenomics and transcriptomics to identify key genes 
underlying the tumorigenic processes of ESCC. Our 
study reveals many genes with aberrant DNA 
methylation, which may help to understand the tumor 
progression of ESCC and to develop novel treatment 
strategies for patients with ESCC. The eleven genes 
regulated by methylation are correlated with OS and 
DFS of ESCC patients and may be potential prognostic 
biomarkers. In addition, our study combines 
epigenomics and transcriptomics to provide new insight 
into the molecular basis of ESCC. 
 
MATERIALS AND METHODS 
 
Sample collection and preparation  
 
Information of DNA methylation and gene expression 
was obtained from 15 patients [34], and clinical 
information was obtained from 125 patients, all from 
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the Chaoshan District of Guangdong Province, a region 
of high ESCC prevalence in China. Each sample, 
comprised of tumor and paired non-tumor tissues, was 
collected from an individual patient who underwent 
surgical resection from the Department of Oncological 
Surgery of the Central Hospital of Shantou City,  
China. Informed consent was obtained from the 
participants of this study. This study was approved by 
the Ethics Committee of the Central Hospital of 
Shantou City. The 125 ESCC patients’ mRNA 
expression data used for survival analysis are available 
publicly at the GEO database under accession number 
GSE121931. 
 
ChIP-seq data from 5 ESCC cell lines (KYSE510, 
KYSE140, TE5, TT and TE7) and WGBS data of 7 
ESCC tumor tissues were generated previously, by Lin 
et.al. [59], and visualized in R with bigWig files. The 
level of H3K27ac histone modification and WGBS 
methylation was defined by the R package Gviz. RNA-
Seq data of 85 ESCC patients and 87 EAC patients with 
matched clinical data were downloaded from TCGA 
(level 3 data). Five whole genome gene expression data 
of ESCC and five whole genome gene expression data 
of other cancers (pancreatic, gastric, colorectal, lung 
and esophagus adenous cancer) were downloaded from 
the GEO database. The 10 datasets were selected by the 
following criteria. First, we focused on gastrointestinal 
carcinomas, so we selected 4 datasets, including 
pancreatic cancer, gastric cancer, colorectal cancer and 
esophagus adenous cancer. Then, we selected a lung 
cancer dataset because the lung is adjacent to the 
esophagus. In addition, we also selected 5 ESCC 
datasets to test whether the results of our data were 
stable. Finally, all of these datasets should contain 
paired tumor and normal samples. The GEO accession 
numbers of the five ESCC datasets were GSE53622, 
GSE53624, GSE20347, GSE17351, and GSE23400, 
and the GEO accession numbers of the other cancers 
were GSE15471, GSE19826, GSE32323, GSE27262 
and GSE1420. The Robust Multichip Average (RMA) 
algorithm was used for processing and normalizing the 
raw gene expression data. 
 
DNA methylation microarray 
 
The Illumina Human Methylation450K Array was used 
to analyze the methylation status of 15 paired ESCC 
samples. This bead chip covers more than 480,000 
methylation sites per sample. The probes were 
distributed across the promoter, first exon (1st exon), 
5′UTR, gene body, and 3′UTR regions [60]. DNA 
methylation data are available publicly at the GEO 
database under accession number GSE121930. The raw 
data were processed by the following methods: 1) 
probes with a null value were removed, 2) probes 

located in sex chromosomes were deleted, 3) probes 
that mapped to multiple genes or were not mapped to 
genes were removed, and 4) probes containing SNPs 
were excluded [61]. 
 
The Bioconductor R package minfi was used for quality 
control and normalization of the raw data. Probes with a 
p-value < 0.05 were considered differentially 
methylated. Then the linear regression between DNA 
methylation β value and gene expression RPKM value 
for each region of a gene (TSS1500, TSS200, 5’UTR, 
1st exon, gene body and 3’UTR) was used to assess 
which probes were most predictive of the gene 
expression state [20]. 
 
Identification of differentially-expressed mRNAs 
 
Fifteen ESCC sample expression profiles (SRP064894) 
were downloaded from NCBI [34]. We first used the 
“estimate” R package [62] to measure the tissues’ purity 
of 15 ESCC patients and found that the purity of these 
15 patients is more than 50% and the mean purity is 
70%. We extracted this data by TopHat and identified 
the differentially-expressed mRNAs based on the count 
number expression profile using DESeq (Heidelberg, 
Germany). In this study, mRNAs with an absolute log2 
fold change > 2, and p-value < 0.05 are considered 
differentially-expressed. 
 
Integration of DNA methylation with gene 
expression 
 
We integrated the 450K array and RNA-seq data by 
following analytical process: (1) identification of 
differentially-methylated and -expressed genes in 15 
paired ESCC samples. The differentially-methylated 
genes were selected by a p-value < 0.05, and (2) testing 
of both differentially-methylated and differentially-
expressed genes for a strong association. Pearson 
correlation analysis was used to identify their 
correlations. A negative correlation was considered 
significant for a Pearson correlation coefficient (PCC) < 
-0.5 and p-value < 0.05. 
 
The DAVID Bioinformatics Tool (version 6.8) [63] was 
used to infer the potential biological processes  
of methylation-associated genes. Results with  
p-value<0.05 were considered as significant functional 
categories. 
 
Cell culture and cell lines 
 
Eight cell lines (KYSE140, KYSE150, KYSE180, 
KYSE450, KYSE510, TE3 and SHEEC) were used in 
this study [64]. All cell lines were incubated at 37°C in 
a humidified atmosphere containing 5% CO2.  
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qRT-PCR 
 
Total RNA from ESCC tissue or ESCC cell lines was 
isolated with TRIzol (Invitrogen) as per the 
manufacturer’s instructions, and the concentration 
determined with a Nanodrop (Agilent). One microgram 
total RNA was reverse transcribed into cDNA by a 
Reverse Transcription System (Promega) according to the 
manufacturer’s protocol [65]. Quantitative real-time PCR 
(qRT-PCR) was performed using GoTaq® qPCR Master 
Mix (TaKaRa) in a 7500 Real-Time PCR System 
(Applied Biosystems). Primer pairs for target genes used 
in the PCR assay are listed in Supplementary Table 5. 
 
Colony formation assay 
 
Cell plate colony formation assays were performed as 
described previously [65, 66]. Briefly, four cell lines 
(KYSE140, KYSE150, KYSE180 and TE3) were 
treated with 100 µM 5-aza-dC for 36 h before being 
trypsinized and plated into 6-well plates at a 
concentration of 2,000, 5,000 and 10,000 cells/well. The 
same four cell lines without 5-aza-dC treatment were 
used for the control. After washing with PBS, cultures 
were fixed with 4oC pre-cooled methanol for 15 min, 
and stained with hematoxylin for 15 min. Colonies were 
photographed and their sizes calculated with a 
FluorChem 8900 image analysis system (Alpha 
Innotech). Each experiment was performed in triplicate. 
 
Statistical analysis 
 
SPSS 22.0 software (SPSS, Chicago, IL) and R 
(https://www.r-project.org) were used to perform the 
statistical analyses. Two-tailed independent sample t 
tests were used to determine whether differences were 
significant. Differences were considered statistically 
significant if the p-value < 0.05. 
 
Time-dependent ROC curves were used to assess the 
prognostic efficiency of the key gene signatures. Kaplan–
Meier survival analyses were used to test the survival 
distributions for ESCC samples. The chi-square test was 
performed to analyze the association with the clinical 
signatures, and multivariable Cox regression analysis was 
used to test whether the signature was independent of 
other clinical features. R was used to perform all of these 
analyses. Packages, including pROC, survival and 
survivalROC, were downloaded from Bioconductor. 
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SUPPLEMENTARY MATERIALS  
 
Supplementary Figures 
 

 

Supplementary Figure 1. Differential analysis between H3K27ac histone modification and WGBS in the differentially 
methylated site (DMS) of 14 key genes. We detected the enrich level of a 100bp region which contain the DMS. Scatter plot showed the 
p-value of the differential analysis. Blue spots represent H3K27ac enrich level in 5 ESCC cell lines, whereas the yellow spots represent WGBS 
level in 7 ESCC samples. T-test were used to determine whether differences were significant. The statistically significant were considered with 
p-value < 0.05. 
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Supplementary Figure 2. Inverse trend between DNA methylation and histone modification of key genes in ESCC cells. Blue 
tracks represent the histone modifications of these genes in five ESCC cell lines, and yellow tracks represent its methylation level, as 
measured by the WGBS assay. All tracks are on the same scale (0-1). Scatter diagrams show the ∆β of the genes in ESCC samples compared 
with normal samples. Histograms show the correlation between DNA methylation and gene expression. 
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Supplementary Tables 
 
 
Please browse Full Text version to see the data of Supplementary Table 1 
 
Supplementary Table 1. Basic information of 80557 DMPs. 
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Supplementary Table 2. Basic information of 16 genes. 

Gene Symbol Full Title Chromosomal 
Position 

Methylation  Expression Pearson 
Correlation 
Coefficient 

(PCC) 

P-value 
of PCC SE*  

Status P-value Level 
Log2 
(Fold-

change) 
P-value 

CRABP2 Cellular retinoic acid 
binding protein 2 

chr1: 
156,667,400-
156,677,608 

Hypermethylation 2.40E-02 Low -3.045 6.63E-07 -0.638 1.47E-04 Y 

IL1RN Interleukin 1 
receptor antagonist 

chr2: 
113,873,470-
113,893,593 

Hypermethylation 3.34E-06 Low -4.308 1.34E-11 -0.641 1.37E-04 Y 

EHD3 EH domain 
containing 3 

chr2: 
31,454,880-
31,493,260 

Hypermethylation 3.48E-02 Low -2.971 1.77E-06 -0.749 1.96E-06 Y 

GPX3 Glutathione 
peroxidase 3 

chr5: 
150,397,999-
150,408,554 

Hypermethylation 2.78E-02 Low -2.159 7.02E-04 -0.521 3.17E-03 Y 

ST6GALNAC1 

ST6 N-
acetylgalactosaminid

e alpha-2,6-
sialyltransferase 1 

chr17: 
74,620,839-
74,639,900 

Hypermethylation 7.03E-03 Low -2.601 6.33E-03 -0.669 5.38E-05 Y 

SCNN1B 
Sodium channel 
epithelial 1 beta 

subunit 

chr16: 
23,311,591-
23,394,620 

Hypermethylation  1.00E-02 Low -3.830 6.99E-09 -0.544 1.87E-03 N 

KLK11 Kallikrein related 
peptidase 11 

chr19: 
51,523,487-
51,533,290 

Hypermethylation  2.90E-04 Low -3.524 1.21E-07 -0.551 1.59E-03 N 

PPP1R3C 
Protein phosphatase 
1 regulatory subunit 

3C 

chr10: 
93,386,197-
93,394,858 

Hypermethylation  7.88E-03 Low -4.137 4.45E-11 -0.684 3.04E-05 N 

KRT4 Keratin 4 
chr12: 

53,198,327-
53,209,900 

Hypermethylation 4.45E-03 Low -7.039 1.18E-23 -0.535 2.30E-03 N 

SIX4 SIX homeobox 4 
chr14: 

61,174,256-
61,192,852 

Hypomethylation 2.00E-02 High 2.904 1.35E-06 -0.562 1.24E-03 N 

MFAP2 Microfibril 
associated protein 2 

chr1: 
17,298,999-
17,310,081 

Hypomethylation 3.61E-07 High 3.578 7.51E-03 -0.756 1.17E-06 N 

COL5A2 Collagen type V 
alpha 2 chain 

chr2: 
189,894,641-
190,046,605 

Hypomethylation 9.12E-03 High 2.941 2.28E-06 -0.557 1.39E-03 N 

KLK13 Kallikrein related 
peptidase 13 

chr19: 
51,557,463-
51,570,367 

Hypermethylation 9.10E-03 Low -4.901 5.85E-14 -0.596 5.13E-04 N 

VSIG10L 

V-Set and 
immunoglobulin 

domain containing 
10 like 

chr19: 
51,834,784-
51,845,375 

Hypermethylation 2.07E-02 Low -3.749 7.09E-10 -0.516 3.54E-03 N 

C2orf54 Chromosome 2 open 
reading frame 54 

chr2: 
241,825,469-
241,835,569 

Hypermethylation 8.63E-04 Low -5.320 2.90E-15 -0.717 8.20E-06 Y 

PRSS27 Protease, serine 27 
chr16: 

2,762,419-
2,770,556 

Hypermethylation 2.69E-03 Low -4.543 8.65E-12 -0.616 2.86E-04 N 

* SE: super-enhancer around the genes in esophageal tissues or cell lines[27]  
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Supplementary Table 3. Clinicopathological characteristics of patients with ESCC. 

a Log-rank test using the Kaplan Meier method;  P-value <0.05 was considered significant. 
OS, overall survival   
DFS, disease-free survival 
 
 
Supplementary Table 4. Correlation between Signature-1 and clinicopathological characteristics in ESCC (N = 125). 

Variables 
Signature-1a 

Chi-square value R P-value 
Low High 

Age (years)   2.354 0.137 0.125* 
≤ 59 38 30     
> 59 24  33     
Gender   2.476 -0.141 0.116* 
Male 54  48     
Female 8  15     
pTNM-stage   0.970 -0.041  0.616*  
I 7  6     
II 28  34     
III 27  23    

aLow, score<-2.221; high, score≥-2.221. * Chi-squared test. P-value<0.05 was considered significant. 
  

Clinical and pathological 
indices Cases 5-year  

OS (%) P-value  a 5-year DFS (%) P-value  a 

Specimens 125     
Mean age 59     
Age (years)      
≤59 68 48.5 0.069 44.1 0.156 
>59 57 29.8  29.8  
Gender      
Male 102 41.2 0.554 37.3 0.970 
Female 23 31.8  39.1  
pTNM stage      
I 13 61.5 0.000 61.5 0.000 
II 62 53.2  45.2  
III 50 18.0  22.0  
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Supplementary Table 5. qRT-PCR primers used in this study. 

Primers Sequences (5ʼ–3ʼ) Positions 
EHD3-qF CCTTGGAAGAGCATTACCGC exon 1 
EHD3-qR ACCGCAATGAAGGAGTCTGT exon 2  
KLK11-qF GAAGACGCGGCTACTCTGTG exon 3 
KLK11-qR TTGTTGGGGAGGCTGTTGTT exon 4 
KRT4-qF CTTGGGCAATGACAAAGGGC exon 2 
KRT4-qR ACCTTGTTCAGGTAGGCAGC exon 4 
ST6GALNAC1-qF GATATACCGCCCCACCACTG exon 9 
ST6GALNAC1-qR GTGTAGCCGCTTCCAGACTT exon 10 
COL5A2-qF AAACTGGGCGGAAGCAAGA exon 1 
COL5A2-qR GCCATTCTGAGTGCAGGCTA exon 2 
PRSS27-qF ATTACATCCTCCCCGTGTGC exon 3 
PRSS27-qR TTGCACTTGGGTGTGTCGAT exon 4 
VSIG10L-qF CTCAGTCAAGATGGGCGGAA exon 6 
VSIG10L-qR AGCCTCCACGAGGATATGGA exon 7 
SIX4-qF TGTCAGTGGCAGCTTCACAA exon 2 
SIX4-qR GCTCCTTTCCAAGCCTTCCT exon 3 
SCNN1B-qF CACGAGCAGAGGTCATACCC exon 6 
SCNN1B-qR CGGGGACCTCAGAACCATTC exon 7 
MFAP2-qF GTGAGGAACAGTACCCGTGC exon 7 
MFAP2-qR TAATGACGTACACACGGCGG exon 8 
GPX3-qF TACGGAGCCCTCACCATTGA exon 2 
GPX3-qR AGGGAAAGCCCAGAATGACC exon 3 
C2orf54-qF CAGCCAGTGACCCCACTTAC exon 4 
C2orf54-qR ATGGCAGAGATCCGGTCCTT exon 5 
IL1RN-qF TGTGCCTGTCCTGTGTCAAG exon 4 
IL1RN-qR AAGCGCTTGTCCTGCTTTCT exon 5 
KLK13-qF TGGCCCTAGTGATCGCCT exon 1 
KLK13-qR CTGGGAGAAACCCACTGGTC exon 2 
PPP1R3C-qF TTCGAATTTGTGCAGGCAGC exon 1 
PPP1R3C-qR TGAATGTGCCAAGCAAAGCC exon 2 
CRABP2-qF CCGATCGGAAAACTTCGAGGA exon 2 
CRABP2-qR TTGATCTCCACTGCTGGCTT exon 3 

F: forward primer; R: reverse primer. 


