
www.aging-us.com 1577 AGING 

INTRODUCTION 
 
A recent study suggested PIK3CA mutations to be a major 
mediator of therapy resistance in breast cancer [1]. More 
than 70% of hormone receptor (HR)-positive breast 
cancers have molecular aberrations in 
Phosphatidylinositol 3-kinase (PI3K)-AKT-mTOR 
pathways [2]. PI3K is a heterodimer composed of a 
regulatory subunit p85 and a catalytic subunit p110 [3]. 
The PIK3CA gene encodes the PI3K catalytic subunit 
p110α [4]. According to the circulating tumor DNA 

(ctDNA) sequencing results, about 50% of HR-positive 
metastatic breast cancers (MBCs) have PIK3CA missense 
mutations; 10-30% of metastatic triple-negative breast 
cancers (TNBC) and HER2-positive breast cancers have 
PIK3CA missense mutations [5]. About 80% of PIK3CA 
mutations occur in helix domain (HD) exon 9 and kinase 
domain (KD) exon 20 [6]. 26% of PIK3CA mutations are 
in exon 9 (hotspots: E545K and E542K), and 50% of 
PIK3CA mutations are in exon 20 (hotspot: H1047R) [7]. 
While PIK3CA-HD mutations are less potent in inducing 
mammary tumors [8], these mutations are independently 
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ABSTRACT 
 
Nearly half of metastatic breast cancers (MBC) have genetic aberrations in the PI3K/AKT pathway. To investigate 
the distinct effect of these aberrations on MBC, 193 MBC patients who progressed after the early line (≤2) salvage 
treatment voluntarily received next generation sequencing (NGS) for a panel of 1,021 genes. 93 (48%) patients had 
genetic aberrations in the PI3K/AKT pathway. The number of patients with PIK3CA mutations in kinase domain 
(KD), helical domain (HD) and other domain (OD), were 36 (18.7%), 26 (13.5%), 10 (5.2%), respectively. 21 (10.9%) 
patients had mutations in PI3K/AKT pathway genes other than PIK3CA (P/A). Compared to PI3K/AKT-wild type 
(WT) patients, PIK3CA-HD patients had a significantly shorter progression-free survival (PFS) (Logrank p-value < 
0.0001). PIK3CA-KD, PIK3CA-OD and other P/A mutations showed similar PFS to WT patients (Logrank p-value = 
0.63). PIK3CA-HD patients had a distinct ctDNA mutation profile to patients with other PI3K/AKT mutations. 
PIK3CA-HD patients had a higher rate of FGFR and NF1 aberrations. In addition, more PIK3CA-HD carriers were 
TMB-high. Cox regression analyses suggested that PIK3CA-HD mutations, FGFR aberrations and high TMB were all 
significant risk factors for poor PFS. In conclusion, future research needs to focus more on the treatment strategies 
targeting PIK3CA-HD mutations. 
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associated with poor prognosis (early recurrence and 
death) [9]. Although PIK3CA-KD mutations are 
associated with lymph node infiltration and are much 
more aggressive in carcinogenesis compared to PIK3CA-
HD mutations [8, 10–11], PIK3CA-KD mutations are 
associated with optimal prognosis [9]. 
 
PIK3CA-HD mutations are more frequent in older age-
onset patients, and they are not associated with lymph 
node infiltration as PIK3CA-KD mutations [10–11]. 
Importantly, the therapeutic response of PIK3CA-HD 
mutant tumors is significantly poorer than tumors with 
PIK3CA-KD mutations [12]. Mechanism studies 
suggest that, instead of binding to the p85 subunit, 
PIK3CA-HD mutation-encoded protein PIK3CA(E545K) 
interacts with Ras-GTP [13]. Compared to 
PIK3CA(H1047R), PIK3CA(E545K) is less efficient in 
activating the downstream Akt signaling [13]. 
 
Most MBC patients receive chemotherapy coupled 
with/without endocrine therapy or anti-HER2 therapy. 
The activation of PI3K/AKT/mTOR pathway, 
however, would promote tumor progression and induce 
drug resistance to endocrine therapy and chemotherapy 
[14–16]. In this study, we examined the genetic 
aberrations of PI3K/AKT pathway and assessed the 
effect of these aberrations on progression-free survival 
(PFS) in metastatic breast cancer (MBC) patients with 
late-line treatment. We analyzed the ctDNA mutation 
profile and investigated the association of PI3K/AKT 
pathway aberrations with the clinical and genetic 
features of MBC tumors. We compared distinct  
types of PI3K/AKT pathway mutations, especially 
PIK3CA-HD and PIK3CA-KD mutations, to determine 
the different effects of PI3K/AKT pathway mutations 
on the prognosis of MBC patients with late-line 
treatment. 
 
RESULTS 
 
Genetic aberrations of PI3K/AKT pathway 
molecules in MBCs after early-line salvage therapy 
 
A total of 193 MBC patients after 1st or 2nd salvage 
treatment received ctDNA testing and then late-line 
therapy between December 2016 and December 2018. 
Ninety three patients (48%) had ctDNA mutations of 
the PI3K/AKT pathway molecules. Among these ninety 
three patients, thirty six patients (38.7%) had PIK3CA–
KD missense mutations, including thirty one p.H1047R, 
one p.H1047L, two p.G1049R, and one p.M1043V 
missense mutations (Figure 1A). Twenty six patients 
(28%) had PIK3CA–HD missense mutations, including 
sixteen p.H545K, six p.H542K, one p.E545G, two 
p.Q546R and one p.Q546H missense mutations (Figure 
1B). Ten patients (10.8%) had PIK3CA-OD aberrations, 

including five p.N345K, two p.C420R and one p.Y985S 
missense mutation, one p.L113del and one 
p.G106_E109del mutation (Figure 1C). The other 
twenty one patients (22.6%) had aberrations in other 
PI3K/AKT pathway molecules except PIK3CA, 
including six AKT1 p.E17K missense mutations, two 
other AKT1 mutations, two AKT2 mutations, two PTEN 
frameshifts, two PIK3CB, three PIK3CG, two PIK3R1 
and two PIK3R2 mutations (Figure 1D). 
 
Clinical features were distinct with respect to different 
PI3K/AKT aberrations (Table 1). Compared to the wild-
type (WT) patients, patients with PI3K/AKT pathway 
aberrations had longer time from BC diagnosis to 
metastasis (TTM) (p = 0.001). More PI3K/AKT 
pathway aberrant patients had visceral metastases, and 
more PI3K/AKT pathway aberrant patients were ER-
positive or PR-positive. In addition, compared to 
PIK3CA-KD mutant patients, PIK3CA-HD carriers had 
an even higher ER/PR-positive rate. 
 
Poor prognosis with PIK3CA mutations in helical 
domain 
 
All included patients failed and progressed in the early–
line (≤2) salvage therapy. Then, the later line regimen 
was given by TPC (treatment physician choice). The 
median PFS for patients with WT, PIK3CA-KD, 
PIK3CA-HD, PIK3CA-OD, other PI3K/AKT (P/A) 
mutations were 7.7 months (95% CI: 5.4-9.6), 5.1 
months (95% CI: 3.5-13.0), 3.2 months (95% CI: 2.1-
4.2), 11.2 months (95% CI: 3.0-NE), and 4.6 months 
(95% CI: 3.3-14.8), respectively (Figure 2). Apart from 
PIK3CA-HD mutations, patients with PI3K/AKT 
pathway aberrations had similar PFS to WT patients 
(Logrank p=0.63). PIK3CA-HD mutant patients had a 
significantly lower PFS than WT patients (Logrank 
p<0.0001), PIK3CA-KD mutant patients (Logrank 
p=0.02), PIK3CA-OD mutant patients (Logrank 
p=0.0006) and P/A aberrant patients (Logrank p=0.01). 
 
ctDNA mutation profile 
 
Due to the metastatic tumor burden, we could detect 
ctDNA mutations in most MBC patients [5]. Compared 
to WT patients, patients with PI3K/AKT pathway 
aberrations had significantly higher rates of TP53, 
ERBB2, FAT1, and FGFR aberrations (Table 2). In 
addition, patients with PIK3CA-HD mutations had an 
obviously distinct ctDNA mutation profile (Figure 1). 
For example, compared to the PIK3CA-KD mutations, 
PIK3CA-HD mutant patients had a higher FGFR 
aberration rate (Fisher’s exact test, p=0.10), a higher 
NF1 mutation rate (Fisher’s exact test, p=0.07), and a 
lower DNMT3A mutation rate (Fisher’s exact test, 
p=0.04) (Table 2). 
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Figure 1. Circulating tumor DNA (ctDNA) gene mutation profiles for MBC patients who progressed after early-line therapy and had PIK3CA 
mutations in kinase domain (PIK3CA–KD, A) helix domain (PIK3CA–HD, B), other region (PIK3CA–OD, C) and other PI3K/AKT pathway 
aberrations (P/A, D). 
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Table 1. Clinical characteristics of MBC patients with wild-type PIK3CA and PI3K/AKT pathways aberrations. 

Variables Levels WT (n=100) 
PI3K/AKT pathway aberrations 

p-value*† p-value**† PIK3CA-KD 
(n=36) 

PIK3CA-HD 
(n=26) 

PIK3CA-OD 
(n=10) 

P/A (n=21) 

Age at diagnosis 
(years) 

 
43.7 ± 8.9, 42.9 

(36.3, 49.8) 
45.0 ± 9.5, 42.9 

(37.9, 51.6) 
45.9 ± 9.9, 44.6 

(38.1, 51.0) 
45.0 ± 11.4, 47.0 

(37.6, 55.3) 
41.7 ± 11.4, 40.0 

(35.1, 52.0) 
0.55 0.70 

Age at metastasis 
(years) # 

 
46.4 ± 9.2, 46.2 

(38.8, 52.3) 
49.3 ± 9.3, 50.1 

(41.9, 56.4) 
51.2 ± 9.8, 52.5 

(40.3, 56.4) 
48.7 ± 12.1, 54.0 

(38.0, 57.3) 
44.4 ± 10.8, 42.2 

(37.2, 52.3) 
0.09 0.45 

TTM ##  
2.6 ± 2.8, 1.6 

(0.3, 4.3) 
4.4 ± 4.3, 2.8 

(1.5, 5.4) 
5.1 ± 3.6, 5.0 

(3.4, 6.4) 
3.7 ± 4.7, 2.3 

(0.4, 3.0) 
3.3 ± 2.9, 2.2  

(0.6, 5.9) 
0.001 0.53 

ER Positive 40 (40.0%) 22 (61.1%) 21 (80.8%) 5 (50.0%) 16 (76.2%) 0.0003 0.10 

 Negative 60 (60.0%) 14 (38.9%) 5 (19.2%) 5 (50.0%) 5 (23.8%)   

PR Positive 33 (33.0%) 19 (52.8%) 19 (73.1%) 6 (60.0%) 13 (61.9%) <0.0001 0.10 

 Negative 67 (67.0%) 17 (47.2%) 7 (26.9%) 4 (40.0%) 8 (38.1%)   

HER2 Positive 30 (30.0%) 11 (30.6%) 4 (15.4%) 4 (40.0%) 1 (4.8%) 0.21 0.23 

 Negative 70 (70.0%) 25 (69.4%) 22 (84.6%) 6 (60.0%) 20 (95.2%)   

HR/HER2 subtype TNBC 36 (36.0%) 5 (13.9%) 2 (7.7%) 2 (20.0%) 5 (23.8%) 0.27 0.46 

 HR+/HER2- 34 (34.0%) 20 (55.6%) 20 (76.9%) 4 (40.0%) 15 (71.4%)   

 HR-/HER2+ 21 (21.0%) 6 (16.7%) 2 (7.7%) 2 (20.0%) 0 (0%)   

 HR+/HER2+ 9 (9.0%) 5 (13.9%) 2 (7.7%) 2 (20.0%) 1 (4.8%)   

Metastasis sites ### Bone-only 16 (16.0%) 2 (5.6%) 4 (15.4%) 2 (20.0%) 4 (19.1%) 0.54 0.22 

 Visceral 47 (47.0%) 28 (77.8%) 18 (69.2%) 5 (50.0%) 14 (66.7%) 0.001 0.45 

 Soft tissue 53 (53.0%) 26 (72.2%) 16 (61.5%) 3 (30.0%) 12 (57.1%) 0.25 0.37 

Note: Patients with PI3K/AKT pathway aberrations were divided into four groups: WT (wild-type group), PIK3CA-KD (PIK3CA 
kinase-domain mutation) group, PIK3CA-HD (PIK3CA helix-domain mutation) group, PIK3CA-OD (other PIK3CA mutation) 
group, and P/A (other PI3K/AKT pathway mutations) group.  
p-values† were calculated using Student’s t-tests for continuous variables and using Chi-square tests (Mentel-Haenszel for >2 
levels comparison), or Fisher’s exact tests (n<5) for categorical variables 
p-values* compared variables between wild-type patients and PI3K/AKT aberrant patients; p-value** compared variables 
between PIK3CA-KD mutant patients and PIK3CA-HD mutant patients.  
Age at metastasis # represented the age (in year) of patients when the metastasis occurred. TTM ## represented the time (in 
year) from diagnosis to metastasis. 
Metastatic sites ### compared the patients with bone-only metastases, visceral metastases (such as liver, lung, brain, ovary, 
etc), and soft tissue metastases (lymphnode, mediastinum, plura and contra-lateral breast). 
Abbreviation: ER (Estrogen Receptor), PR (Progesterone Receptor), HER2 (Human Epidermal Growth Factor Receptor-2). 
 

High TMB in helical domain mutant patients 
 
Tumor mutation burden (TMB) has been considered as 
a marker for immunotherapy. The more mutations the 
tumor has, the higher possibility of production and 
subsequent presentation of tumor-associated antigens 
(TAA) on MHC molecules, which leads to a higher 
tumor cell cytotoxicity after the inhibition of immune 
checkpoint signals [17, 18]. BCs are “cold” tumors with 
less TAAs than “hot” tumors (non-small cell lung 
cancer and malignant melanoma) [19, 20]. In this study, 
we defined TMB-H if the TMB was larger than the top 
25% TMB value of all BC samples in Geneplus 
database (9 Muts/Mb). This cut-off value of 9 Muts/Mb 
was reasonable because it was equal to the lung cancer 

of 9 Muts/Mb (the third third tertile) [21] and close to 
the gastric cancer of 12 Muts/Mb (top 20%) [22]. Here, 
we found that PIK3CA-HD mutant MBC patients had a 
significantly higher TMB level than patients with 
PIK3CA-KD mutations (p=0.006), PIK3CA-OD 
mutations (p=0.045), or other P/A pathway mutations 
(p=0.01) (Figure 3). 
 
Risk prognostic factors for MBC patients with late-
line therapy 
 
Cox regression analyses suggested that none of the 
clinical indicators had significant impacts on PFS for 
late-line therapies, including the age of diagnosis, age of 
BC metastasis, TTM, primary BC laterality, ER, PR, 
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HER2 status and the sites of metastatic lesions 
(Supplementary Table 1). However, we found that some 
genetic indicators, including PIK3CA-HD mutations, 
FGFR aberrations, and high TMB levels, were significant 
risk factors for poor PFS for late-line therapy in MBCs 

(Table 3). Multivariate Cox regression analyses showed 
that compared to PI3K/AKT pathway WT MBCs, the 
hazard ratios (HR) for patients with PIK3CA-HD 
mutations, TP53 mutations, FGFR aberrations, and high 
TMB levels were 2.0 (95% CI = 1.02-3.93, p=0.045), 

 

 
 

Figure 2. Kaplan-Meier (KM) curves for progression-free survival (PFS) probabilities. (A) KM curves for PFS probabilities stratified 
by wild-type (WT) and PIK3CA–KD mutations, PIK3CA–HD mutations, PIK3CA–OD mutations, and other PI3K/AKT pathway aberrations (P/A). 
(B) KM curves for PFS probabilities stratified by wild-type (WT) and PIK3CA–KD mutations, PIK3CA–OD mutations, and other PI3K/AKT 
pathway aberrations (P/A). (C) KM curves for PFS probabilities stratified stratified by wild-type (WT) and PIK3CA–HD mutations. (D) KM 
curves for PFS probabilities stratified stratified by PIK3CA–HD mutations and PIK3CA–KD mutations. (E) KM curves for PFS probabilities 
stratified by PIK3CA–HD mutations and PIK3CA–OD mutations. (F) KM curves for PFS probabilities stratified by PIK3CA–HD mutations and 
other PI3K/AKT pathway aberrations (P/A).  
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Table 2. Somatic mutations accompanied with PI3K/AKT pathway gene aberrations. 

Variables WT 
(n=100) 

PI3K/AKT pathway mutations# 
p-value*† p-value**† PIK3CA-KD 

(n=36) 
PIK3CA-HD 

(n=26) 
PIK3CA-OD 

(n=10) P/A (n=21) 

TP53 33 (32.0%) 26 (72.2%) 14 (53.9%) 9 (90.0%) 14 (66.7%) <0.0001 0.14 
ERBB2 8 (8.0%) 10 (27.8%) 8 (30.8%) 2 (20.0%) 0 (0%) 0.008 0.80 
FAT1 3 (3.0%) 9 (25.0%) 2 (7.7%) 1 (10.0%) 2 (9.5%) 0.004 0.10 
ESR1 5 (5.0%) 6 (16.7%) 4 (15.4%) 0 (0%) 0 (0%) 0.18 0.90 
DNMT3A 6 (6.0%) 7 (19.4%) 0 (0%) 2 (20.0%) 2 (9.5%) 0.15 0.04 
FGFR 7 (7.0%) 4 (11.1%) 8 (36.4%) 0 (0%) 3 (14.3%) 0.05 0.10 
NF1 4 (4.0%) 1 (2.8%) 5 (19.2%) 1 (10.0%) 0 (0%) 0.36 0.07 
TMB-High 5 (5.0%) 8 (22.2%) 14 (53.9%) 3 (30.0%) 4 (19.1%) <0.0001 0.01 

Note: #Patients with PI3K/AKT pathway aberrations were divided into four groups: WT group, PIK3CA-KD group, PIK3CA-HD 
group, PIK3CA-OD group, and P/A (other PI3K/AKT pathway mutations) group. 
p-values† were calculated using Student’s t-tests for continuous variables and using Chi-square tests (Mentel-Haenszel for >2 
levels comparison), or Fisher’s exact tests (n<5) for categorical variables. 
p-values* compared variables between WT patients and PI3K/AKT pathway aberrant patients; p-value** compared variables 
between PIK3CA-KD mutant patients and PIK3CA-HD mutant patients. 
 

 
 

Figure 3. Tumor mutation burden (TMB) for different metastatic breast cancer subtypes. (A) Comparison of TMB levels 
(mutations per million bases, muts/Mb) among four types of PI3K/AKT pathway aberrations. p-value for PIK3CA-HD vs PIK3CA-KD (*), PIK3CA-
HD vs PIK3CA-OD (**) and PIK3CA-HD vs P/A (***) were calculated by using non-parametric wilcoxon rank-sum test. (B) Barplot compared 
the percentages of TMB-High (red) and TMB-Low (blue) patients among four different types of PI3K/AKT pathway aberrations. 
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Table 3. Cox regression analyses of genetic risk factors for PFS in MBC patients. 

Covariates Level 
Univariate Cox Model  Multivariate Cox Model 

HR (95% CI) p-value  HR (95% CI) p-value 
PI3K/AKT pathway WT Ref   Ref  
mutations PIK3CA-HD 2.99 (1.64, 5.44) 0.0004  2.00 (1.02, 3.93) 0.045 
 PIK3CA-KD 1.22 (0.72, 2.09) 0.45  0.75 (0.39, 1.42) 0.37 
 PIK3CA-OD 0.64 (0.23, 1.80) 0.39  0.40 (0.14, 1.18) 0.10 
 P/A 0.95 (0.49, 1.85) 0.88  0.80 (0.40, 1.57) 0.51 
TP53 aberration No Ref   Ref  
 Yes 2.25 (1.43, 3.54) 0.0004  2.22 (1.35, 3.66) 0.002 
ERBB2 aberration No Ref   Ref  
 Yes 1.54 (0.93, 2.55) 0.09  1.45 (0.80, 2.65) 0.23 
FAT1 aberration No Ref   Ref  
 Yes 2.06 (1.06, 4.00) 0.03  1.48 (0.74, 2.98) 0.27 
ESR1 aberration No Ref   Ref  
 Yes 1.16 (0.56, 2.43) 0.69  1.25 (0.58, 2.71) 0.60 
DNMT3A aberration No Ref   Ref  
 Yes 1.05 (0.54, 2.04) 0.88  0.93(0.45, 1.91) 0.84 
FGFR aberration No Ref   Ref  
 Yes 1.87 (1.05, 3.33) 0.03  2.17 (1.17, 4.02) 0.01 
NF1 aberration No Ref   Ref  
 Yes 1.03 (0.38, 2.81) 0.96  0.6 (0.30, 1.56) 0.37 
TMB index Low Ref   Ref  
 High 1.94 (1.19, 3.16) 0.008  1.62 (1.00, 2.66) 0.05 
 Unknown 0.73 (0.36, 1.47) 0.38  0.88 (0.43, 1.79) 0.72 

 

2.22 (95% CI = 1.35-3.66, p=0.0002), 2.17 (95% CI = 
1.17-4.02, p=0.01), and 1.62 (95% CI = 1.00-2.66, 
p=0.05), respectively. 
 
KM curves after PMS 
 
Since ER/PR status, TP53 mutations, FGFR aberrations 
and TMB levels were imbalanced between PIK3CA-HD 
mutant and PIK3CA-KD mutant MBC patients, we 
performed a 1:1 propensity score matching (PSM) 
strategy to avoid the potential bias. Kaplan-Merier (KM) 
curves after PSM still showed a marginally significant 
difference between PIK3CA-HD mutant and PIK3CA-
KD mutant MBCs (Supplementary Figure 1, Logrank 
p=0.13), suggesting PIK3CA-HD mutation itself to be an 
important risk factor for poor prognosis for MBCs in 
late-line therapy. 
 
DISCUSSION 
 
For progressed MBCs after the early-line (≤ 2-line) 
therapies, there is no consensus on the late-line therapy. 
Potential choices for hormone receptor (HR)-positive 
MBCs include mTOR inhibitor, FGFR inhibitor, 
Estradiol and Progestin [23, 24]. Candidates for 

metastatic TNBCs might be PD1/PD-L1 inhibitors, anti-
VEGFR, etc [25, 26]. Novel TKIs and PD-L1 inhibitors 
might be useful in HER2-positive patients [27, 28]. In 
this study, we found that the conception of HR/HER2 
status was gradually obscured in late-line therapy. 
Instead, the genetic aberrations and immune checkpoints 
became more and more important. 
 
After early-line therapies, MBC tumors become more 
heterogenous and have more somatic gene aberrations. 
PIK3CA, ESR1 and GATA3 mutations increased in 
progressed patients after chemotherapy [15]. The rate of 
ESR1 mutations increased after AI treatment [29]. After 
the treatment of CDK4/6 inhibitors, RB1 mutation could 
be detected by ctDNA testing [30]. Based on these 
observations, we hypothesize that after multi-line 
therapies, the genotype of MBC tumors will change 
significantly, which may lead to the resistance of MBC 
tumors to the standard therapies that were designed 
based on HR/HER2 status. In addition, MBC tumors 
might become “warmer” after multi-line therapies, 
because the new mutations might generate and present 
many novel TAAs. Therefore, in terms of late-line 
therapy, we need to consider more about tumor 
genotype and immune checkpoints. 
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In recent years, the usage of antibodies to block the 
immune checkpoint PD-1 / PD-L1 has become a 
promising treatment strategy for cancer patients. 
However, many patients have failed to respond to PD-1 
/ PD-L1 treatment. Therefore, plenty of researches have 
focused on the biomarkers to distinguish the responders 
and non-responders for PD-1/PD-L1 antibody treatment 
[31]. IMpassion 130 study showed that the low 
positivity rate of 1% PD-L1 expression rate could be 
sufficient for patients to have a better response to PD-
L1 antibody in triple-negative breast cancers (TNBC) 
[32]. In addition, a higher non-synonymous mutation or 
candidate neoantigen burden in tumors (TMB) 
improved the treatment response of PD-1 antibody in 
lung cancers [19]. In this study, PIK3CA-HD mutations 
were concentrated in HR-positive patients, and more 
than half of these patients were TMB-H (Figure 3). 
Thus, for this group of patients, PD-1 antibody might be 
a reasonable choice. 
 
In this study, we found that in MBC patients with 
PI3K/AKT pathway aberration, TP53, ERBB2, FAT1, 
and FGFR aberrations increased significantly (Table 2). 
In particular, FGFR aberration and TMB-high patients 
concentrated in PIK3CA-HD mutant MBC patients, 
suggesting this specific genotype might be particularly 
related to poor prognosis and immune checkpoints 
disruption. This study categorized PI3k/AKT mutations 
precisely, and clearly identified the specific genotype 
(PIK3CA-HD) for novel treatment strategies, such as 
PD-1 inhibitors, FGFR inhibitors, etc. 
 
Here, we found that both PIK3CA-HD mutations and 
FGFR aberration seemed to concentrate in HR-positive 
MBC patients. Is there any potential molecular 
mechanism underlying the coincidence? However, there 
is no report about the interaction between PIK3CA-HD 
mutations and FGFR aberration. In FGFR2mutant 
endometrial cancer, the sub-therapeutic doses of PI3K 
inhibitors could enhance the efficacy of anti-FGFR 
therapies [33]. Such a synergic anti-tumor effect 
suggested PIK3CA mutation and FGFR aberration 
might be independent to each other. If they have 
interaction, inhibiting each of them might also affect the 
other one. Only when they were independent, PI3K 
inhibitors and anti-FGFR therapies have synergic 
effects. 
 
PIK3CA-HD mutant MBC patients showed resistance to 
mTOR inhibitor Everolimus. More than 70% of patients 
who received Everolimus in late-line therapy progressed 
within six months. Due to the limited sample number, 
we did not demonstrate a concrete result here. However, 
we still suggested that for PIK3CA-HD mutant MBC 
patients, mTOR inhibitor Everolimus might be not as 
effective as in other PI3K/AKT pathway aberrant 

patients. PD-1 inhibitor plus FGFR inhibitor might be a 
promising option. 
 
This study involved 193 MBC patients who received 
late-line therapies from three affiliated hospitals in 
Central South University. The limitation was the 
relatively small sample size for each PI3K/AKT 
pathway aberrant category. The sample size is even 
smaller after PSM. In the foreseeable future, we would 
accumulate many more samples to further validate our 
hypothesis. For now, we raised our hypothesis and 
provided clues for reasonable treatment strategies, 
which might be beneficial for MBC patients who have 
no choice. 
 
CONCLUSION 
 
MBC patients with PIK3CA mutations in helical 
domain had a specific ctDNA profile with high TMB 
and high FGFR aberration rate, which might lead to 
poor PFS for late-line therapy. PD-1/PD-L1 inhibitor 
and FGFR inhibitor could be promising as a late-line 
option for MBC patients with this specific genotype. 
 
MATERIALS AND METHODS 
 
Patients 
 
This study included MBC patients who were within 2 
weeks after progression of the early-line (≤2) salvage 
treatment. All patients had a confirmed pathology 
diagnosis (histology type: invasive ductal carcinomas or 
lobular carcinomas). According to RECIST 1.1 
standards, patients had at least one measurable distant 
disease lesion. All patients had an Eastern Cooperative 
Oncology Group/World Health Organization 
Performance Status (ECOG/WHO PS) of 0 or 1. Patients 
with inflammatory BC, multiple primary malignancies, 
immunodeficiency or organ transplantation history were 
excluded. Patients who have received mTOR inhibitor 
treatment were also not eligible for the study. 
 
Study design 
 
This multicenter study was conducted across three local 
cancer centers. MBC patients who failed in early-line 
(≤2 lines) standard chemotherapies or standard 
chemotherapies combined with anti-HER2 therapies or 
endocrine therapies received big-panel NGS for ctDNA 
testing. After ctDNA testing, patients received late-line 
therapy. 
 
The primary endpoint was PFS, defined as the number 
of days from the beginning date of late-line therapy to 
progressive disease, defined as: 1) >20% growth of 
measurable target lesions and the absolute increase of 
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target lesions >5mm, or 2) presence of new lesions [34]. 
There was no predetermined per-patient follow-up 
period. Patients visited clinics every week. Disease 
progression was assessed at every visit by imaging tools 
(MRI, CT, ECT and ultrasound, etc) [34]. 
 
ctDNA testing and TMB calculation 
 
Peripheral blood samples were collected within 7 days 
before treatment. We performed ctDNA testing according 
to protocol described previously [5, 35, 36]. The main 
steps included DNA extraction, target capture, NGS and 
sequencing data analysis. Tumor mutation burden (TMB) 
is an important prognostic factor [19]. Usually, TMB is 
calculated from whole exome sequencing data or big 
gene panels [17, 37]. TMB was determined by analyzing 
the somatic mutations per mega-base (Mb). TMB 
analysis interrogated SNVs and small indels with the 
variant allele frequency (VAF) ≥3%. TMB-U (unknown) 
is defined as the maximum VAF <3%. A cut-off of the 
top 25% of the TMB of all BC samples from Geneplus 
database was 9 mutations (Muts) / Mb. In this study, 
TMB greater than 9 Muts / Mb was defined as TMB-H 
(high). TMB less than 9 Muts / Mb was defined as TMB-
L (low). 
 
Statistical analysis 
 
To search for significant ctDNA aberrations, the R 
package “ComplexHeatmap” was used to rank the hot 
genetic aberrations in PI3K/AKT pathway aberrant 
subgroups. A two-sided log-rank test was used to test the 
influence of PI3K/AKT pathway aberrations in terms of 
late-line treatment PFS in MBCs. To reduce the potential 
bias between subgroups, we also performed 1:1 
propensity score matching (PSM) analysis as described 
previously [38]. Both the univariate and multivariate 
Cox proportional hazards regression analyses were used 
to evaluate the prognostic factors for PFS. All statistical 
analyses were conducted by using SAS 9.4 and R 3.6.0 
software. All tests of hypotheses were two-tailed and 
conducted at a significance level of 0.05 and at a 
marginal significance level of 0.15. 
 
Ethics 
 
The study protocol and informed consent form were 
censored by the independent ethics committee for each 
center. In our study, each participant filled and signed 
an approved written informed consent provided by the 
independent ethics committee. 
 
Statement of translational relevance 
 
12 years ago, Barbareschi M's team reported PIK3CA 
mutations in the helical domain exon 9 were associated 

with significantly worse prognoses in breast cancer. 
That study used frozen samples from 163 surgery 
patients. Here, we demonstrate the effect of PIK3CA 
helic domain mutations in metastatic breast cancer with 
late-line therapy by using plasma ctDNA. MBC patients 
with PIK3CA mutations in helical domain had a specific 
ctDNA profile with high TMB and high FGFR 
aberration rate, leading to poor PFS for late-line 
therapy. Our findings directly reflect the effect of 
genetic aberrations on treatment outcome and suggest 
potential strategies for MBC patients. PD-1/PD-L1 
inhibitor and FGFR inhibitor could be promising as a 
late-line option for MBC patients with this specific 
genotype. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 
 

 
 

Supplementary Figure 1. KM curves stratified by PIK3CA-HD mutations and PIK3CA-KD after PMS. 
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Supplementary Table 
 
Supplementary Table 1. Univariate Cox regression analyses of clinical risk factors for PFS in MBC patients. 

Covariates Level Hazard ratio (95% CI) p-value 
Age at diagnosis (of BC)  1.008 (0.986, 1.031) 0.49 
Age at brain metastasis (years)  1.011 (0.988, 1.034) 0.36 
TTM (years)*  1.010 (0.951, 1.072) 0.75 
BC Laterality Left Ref  
 Right 0.821 (0.529, 1.275) 0.38 
 Double 0.568 (0.138, 2.344) 0.43 
ER Negative Ref  
 Positive 0.968 (0.635, 1.475) 0.88 
PR Negative Ref  
 Positive 1.102 (0.723, 1.678) 0.65 
HER2 Negative Ref  
 Positive 0.869 (0.537, 1.404) 0.57 
HR/HER2 subtypes Triple Negative 1.239 (0.755, 2.032) 0.40 
 HR+/HER2- 1.024 (0.672, 1.560) 0.91 
 HR-/HER2+ 0.732 (0.417, 1.285) 0.28 
 HR+/HER2+ 1.147 (0.552, 2.383) 0.71 
Metastasis# Bone-only 0.892 (0.281, 2.828) 0.85 
 Visceral 1.435 (0.861, 2.391) 0.17 
 Soft tissue  1.263 (0.748, 2.132)  0.38 

Note: 
TTM* indicated the time from diagnosis of BC to the diagnosis time of metastasis. 
Abbreviation: ER (Estrogen Receptor), PR (Progesterone Receptor), HER2 (Human Epidermal Growth Factor Receptor-2). 


