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INTRODUCTION 
 

The reproductive profile of women has been changing 

over the last few decades. Older maternal age by the 

first gestation and an increased number of pregnancies 

after 40 years of age are phenomena observed 

worldwide, impacting directly on gestational results [1]. 

Studies in humans and animals suggest a strong 

relationship between pregnancy loss and maternal age 

[2, 3]. In addition to advanced age, other gynecological 

conditions are related to fertility, such as polycystic 

ovary syndrome, leiomyomas, and endometriosis [4]. It 

is known that ovarian dysfunction is the major factor  

 

responsible for these poor reproductive outcomes, but 

other reproductive organs are involved in this complex 

process [2]. 

 

Uterine tissue from mice and women share some 

important characteristics. These include the type of 

placentation, i.e. hemochorial placentae; mice have a 

bicornuate uterus, while women have a pear-shaped 

uterus; both species have an endometrial layer covering 

the myometrium; while endometrial stroma in mice 

consists of loosely arranged reticular connective tissue, 

human endometrium is composed of glands, specialized 

stroma and has an irregular interface with the 
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ABSTRACT 
 

The uterine fibrosis contributes to gestational outcomes. Collagen deposition in the uterus is related to uterine 
aging. Senolytic therapies are an option for reducing health complications related to aging. We investigated 
effects of aging and the senolytic drug combination of dasatinib plus quercetin (D+Q) on uterine fibrosis. Forty 
mice, 20 young females (03-months) and 20 old females (18-months), were analyzed. Young (Y) and old (O) 
animals were divided into groups of 10 mice, with one treatment (T) group (YT and OT) and another control (C) 
group (YC and OC). Comparative analysis of Pi3k/Akt1/mTor and p53 gene expression and related microRNAs 
(miR34a, miR34b, miR34c, miR146a, miR449a, miR21a, miR126a, and miR181b) among groups was performed 
to test effects of age and treatment on collagen deposition pathways. Aging promoted downregulation of the 
Pi3k/Akt1/mTor signaling pathway (P = 0.005, P = 0.031, and P = 0.028, respectively) as well as a reduction in 
expression of miR34c (P = 0.029), miR126a (P = 0.009), and miR181b (P = 0.007). D+Q treatment increased p53 
gene expression (P = 0.041) and decreased miR34a (P = 0.016). Our results demonstrate a role for the 
Pi3k/Akt1/mTor signaling pathway in uterine aging and suggest for the first time a possible anti-fibrotic effect 
in the uterus of D+Q senolytic therapy. 
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myometrium [5]. Importantly, human endometrial cycle 

consists of proliferative, secretory, and menstrual 

phases, while the mice cycles are divided in preestrus, 

estrus, metestrus and diestrus [5]. An increase in uterine 

volume with aging is common in some species of 

rodents, mostly due to endometrial cystic hyperplasia, 

as opposed to what occurs in menopausal women, in 

whom uterine atrophy is usually evident [3, 6]. The 

most obvious histological change in the aged uterus is 

the collagen deposition (fibrosis) in the muscle layers 

and stroma [3]. Mechanisms involved in this uterine 

fibrosis remain unclear [7]. Collagen deposition in 

tissues occurs as a result of chronic inflammatory 

processes involving several pathways: inflammatory 

interleukins, growth factors, caspases, oxidative stress 

products, and accumulation of senescent cells [7]. These 

chronic inflammatory pathways are also involved in 

undesired obstetric outcomes such as loss of 

pregnancies and preterm delivery [8]. 

 

The phosphoinositide 3-kinase (Pi3k)/ protein kinase B 

(Akt)/ mammalian target of rapamycin (mTor) pathway 

is an intracellular signaling mechanism that regulates 

several cellular functions, including cell growth, 

proliferation, differentiation, transformation, and 

survival, among others. Etiological processes 

underlying many gynecological conditions have not yet 

been completely identified. The Pi3k/Akt1/mTor and 

p53 signaling pathways appear to be involved in the 

pathophysiological mechanisms of gynecopathies 

including polycystic ovarian syndrome, premature 

ovarian failure, leiomyoma, endometriosis, and 

gynecological cancers [9–16]. This signaling pathway 

has also been implicated in fibrosis in different tissues, 

such as the kidney, lung, and liver [17–21]. 

 

Pi3k can be activated by binding of growth factors and 

steroid hormones to cell surface receptors, promoting 

conversion of phosphatidylinositol-4,5 bisphosphate 

(PiP2) to phosphatidylinositol-3,4,5 triphosphate (PiP3) 

[22]. The other components of the signaling pathway 

(Akt-mTor) are activated after Pi3k. Pi3k is a shared 

activator of two pro-fibrotic signaling pathways: PAK2-

Abl and Akt-mTor. The activity of Pi3k is downregulated 

by enzymes phosphatases such as phosphatase and tensin 

homolog (Pten), which has been studied extensively with 

regard to mechanisms of gynecological cancers [12, 22]. 

The Pi3k/Akt1/mTor and p53 signaling pathways may 

also be jointly regulated by several microRNAs [18, 19, 

23]. MicroRNAs are non-coding RNAs that act as 

transcriptional silencers and are involved in different 

cellular functions through post-transcriptional regulation 

of gene expression. Several microRNAs have been 

associated with the fibrosis process in different tissues 

(lung, liver, kidney, heart, skin) involving different 

mechanisms. Some of the most studied microRNAs in the 

process of fibrosis are: the miR34 family, miR126, 

miR181, miR21, miR146a, and miR 449 [23–25]. In this 

sense, p53 has been described as a regulator of different 

microRNAs expression levels. The miR34 family 

includes the first miRNAs described as being regulated by 

p53 [26], miR21 is regulated by Akt expression [23] and 

miR126a, miR146a, miR449a, miR181b, miR126 are 

related to the Pi3K pathway. 

 

Targeting senescent cells with senolytic drugs might 

slow down or prevent fibrosis processes in different 

tissues and organs [17, 27–29]. Currently, quercetin 

(Q) and dasatinib (D), administered alone or in 

combination (D+Q), are the most studied senolytic 

drugs [30]. Different authors have reported anti-

fibrotic effects of these drugs in tissues such as 

kidney, lung, and liver [27–29]. Quercetin is a 

flavonoid with antioxidant, anti-inflammatory, 

immunoprotective, and even anticarcinogenic effects 

[31]. Quercetin appears to have both estrogenic and 

antiestrogenic effects on the uterus, depending on the 

dose. However, studies about potential antifibrotic 

and senolytic effects of these drugs in the uterus are 

few, and there is no published study about effects of 

the D+Q combination on the uterus [32]. Dasatinib is 

an antineoplastic drug used to treat chronic myeloid 

leukemia and acute lymphoblastic leukemia [33]. 

Dasatinib’s anti-fibrotic effect has been described 

during the last decade to its action on different 

signaling pathways such as Pi3k/Akt1/mTor, p53, and 

inflammatory pathways [27, 34, 35]. It is important to 

mention that although these drugs alone have a 

senolytic potential, their combination selectively 

targets a broader range of senescent cell types than 

either agent alone [36]. Besides that, these drugs have 

been shown to reverse several age-related conditions, 

increasing average lifespan in treated mice without 

any side-effects [37]. Some initial trial in human also 

showed improvement and no side-effects [38, 39]. 

Therefore, there is an urge to test the safety and effect 

of these drugs in different conditions.  

 

It is important to understand more completely the 

physiological mechanisms of uterine aging, as well as to 

discover therapies that delay this process. This could 

contribute to improvement in gestational outcomes. The 

aim of our study was to test the impact of aging on 

uterine fibrosis and the potential anti-fibrotic structural 

and molecular effects of the senolytic D+Q combination 

on uterine aging. 

 

RESULTS 
 

During tissue dissection, it was noted that in old 

animals, 7 out of 20 mice (35%) had a dilated uterus. 

Among all old mice that had uterine dilation, 4/10 
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(40%) were from the D+Q group (OT) and 3/10 (30%) 

were from the control group (OC). There was no 

effect of treatment on the percentage of mice with a 

dilated uterus (P =0.639). Importantly, there were no 

cases of dilated uterus in young animals. The uterine 

tissue from mice with dilated uteruses was excluded 

from further experiments, which left remaining 6 old 

animals in the D+Q group (OT) and 7 old animals in 

the control group (OC). 

Collagen deposition (fibrotic process) was observed in 

the muscular and endometrial uterine layers in 

histological analyses using Masson’s trichrome staining 

and confirmed by the presence of type 1 collagen in the 

uterine samples. Collagen deposition was significantly 

higher in old mice compared to young mice (age effect, 

P <0.001, Figure 1) and there was no difference in 

fibrosis in treated groups compared to placebo 

(treatment effect, P =0.503, Figure 1). 

 

 
 

Figure 1: Uterine type 1 collagen deposition evaluation. (A) Collagen-1 statistical Western Blot analysis, letters indicate differences 

between groups (P<0.05), values were plotted as mean ± standard error of the mean. (B) Collagen-1 and β-actin Western Blot bands. (C) 
Representative Masson’s Trichrome stained images of uterine tissue. OT: old treatment (n=4); OC: old control (n=4); YT: young treatment 
(n=4); YC: young control (n=4). My (OL): myometrium (outer layer); My (IL): myometrium (inner layer). Fibrosis are stained in blue.  
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Evaluation of uterine expression of different genes 

related to the Pi3k/Akt1/mTor signaling pathway 

revealed that aging was associated with inhibition of 

Pi3k and its downstream mediators, Akt1 and mTor. The 

relative expression of Pi3k, Akt1 and mTor was 

significantly lower in old mice compared to young mice 

(P =0.005, P =0.031, P =0.028, respectively, Figure 

2A–2C). However, there was no treatment effect on the 

expression of Pi3k, Akt1, or mTor (P=0.051, P =0.153, 

P =0.409, respectively, Figure 2A–2C). Regarding the 

gene expression of Pten, there was no effect of either 

treatment or age (P =0.394, P =0.064, respectively, 

Figure 2D). Interestingly, p53 mRNA was upregulated 

with the D+Q treatment compared to control groups  

(P =0.041, Figure 2E), while there was no aging effect 

(P =0.140, Figure 2E). 

 

Analysis of expression of different uterine microRNAs 

related to fibrosis pathways revealed that miR126a, 

miR34c, and miR181b were downregulated in old  

mice compared to young animals (P =0.009,  

P =0.029, P =0.007, respectively, Figure 3C, 3G, 3H), 

however D+Q treatment did not affect expression  

levels in these miRNAs (P =0.958, P =0.352,  

P =0.446, respectively, Figure 3C, 3G, 3H). Moreover, 

expression of miR34a was significantly decreased by 

D+Q treatment compared with the placebo control 

(P =0.016, Figure 3A), while there was no uterine 

aging effect on miR34a expression (P =0.269, Figure 

3A). Additionally, aging and treatment did not affect 

the levels of miR146a (P =0.116 and P =0.067, 

treatment and age respectively, Figure 3D), miR449a 

(P =0.632 and P =0.956, Figure 3E), miR21a  

(P =0.416 and P=0.737, Figure 3F), and miR34b  

(P =0.388 and P =0.490, Figure 3B). 

 

DISCUSSION 
 

The main morphological changes observed during the 

mice uterine aging were increased uterine volume and 

fibrosis. In our study, dilated uterus was observed in 

35% of the old mice, with no cases observed in any 

young mice. Interestingly, the D+Q treatment did not 

reduce the prevalence of uterine dilatation in old mice, 

while previously reported by Wilkinson et al a high 

prevalence of dilated uterus during aging (87%, 13/15 

of old mice compared to 7%, 1/15 among young mice) 

was reduced by a high dose (42ppm) of rapamycin, a 

drug that inhibits the mTOR signaling pathway. 

However, in this study the authors continued the 

treatment for 13 months (from 9 to 22 months of age) 

which could prevent the development uterine dilatation, 

rather than reverse it [6]. Despite that, D+Q treatment 

dose and time (10 weeks), which was started late in life 

 

 
 

Figure 2: Analysis of relative uterine gene expression in treatment and control groups at different ages. (A). Phosphoinositide 3-

kinase (Pi3k). (B). Protein kinase B (Akt). (C). Mammalian target of rapamycin (mTor). (D). Phosphatase and tensin homolog (Pten). E. p53. 
Values are shown as mean ± standard error of the mean. Two-way ANOVA was performed and the p values for age, treatment, and their 
interaction are presented (P<0.05). Old treatment (n=6); Old control (n=7); Young treatment (n=10); Young control (n=10). 
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in our study were not sufficient to observe a reduction 

in the prevalence of dilated uterus among the old mice. 

It might require long-term treatment starting in middle 

aged animals to observe possible preventive effects of 

D+Q on dilated uterus. Yet, due to upregulation of the 

Pi3k/Akt/mTor signaling pathway in endometrial 

hyperplasia and gynecological cancer, the samples with 

these pathological changes were removed from further 

genetic and histochemical analysis [10, 12]. 

 

The main feature of the uterine fibrosis process is 

collagen deposition, determined primarily by estrogen, a 

Pi3k/Akt/mTor signaling pathway activator [3, 40]. 

Therefore, uterine fibrosis observed in uterine aging is a 

chronic process, related to long and cyclical uterine 

exposure to estrogen. The Pi3k/Akt/mTor signaling 

pathway is downregulated in menopause due to a 

hypoestrogenic state [41]. Chong et al demonstrated that 

the change in gene expression in uterine muscle is 

dependent on exposure to female hormones, suggesting 

that the longer interval between menarche and first 

pregnancy worsens obstetric morbidity due to impaired 

myometrial function [42]. The literature reports an 

importance of Pten in improving longevity, due to its 

inhibitory action on Pi3k [43]. The increase in Pten 

gene expression could also contribute to Pi3k/Akt/mTor 

signaling pathway downregulation and consequently 

decrease collagen deposition [43]. 

 

Therefore, downregulation of the Pi3k/Akt/mTor 

signaling pathway at different points may be a useful 

treatment that can prevent the progression or  

even reverse fibrosis [44, 45]. One of the proposed 

therapies is single or combined use of D+Q that has an 

 

 
 

Figure 3: Analysis of relative uterine microRNA levels in the treatment and control groups at different ages. (A). mmu-miR-34a-

5p (miR34a). (B). hsa-miR-34b-5p (miR34b). (C). mmu-miR-34c-5p (miR34c). (D). mmu-miR-146a-5p (miR146a). (E). mmu-miR-449a-5p 
(miR449a). (F). mmu-miR-21a-5p (miR21a). (G). mmu-miR-126a-5p (miR126a). (H). hsa-miR-181b-5p (miR181b). Values are shown as mean ± 
standard error of the mean. Two-way ANOVA was performed and p values for age, treatment, and their interaction are presented (P<0.05). 
Old treatment (n=6); Old control (n=7); Young treatment (n=10); Young control (n=10). 
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anti-fibrosis effect on different tissues such as lung, 

liver, kidney, and heart, but there is no report in the 

literature on the effect of these drugs on the uterine 

fibrosis process [27–29, 35, 46, 47]. Gao et al found that 

the cardiac anti-fibrotic effect of isorhamnetin, a 

quercetin methylated metabolite, occurs due to blockage 

of the Pi3k/Akt/mTor signaling pathway [48]. Cao et al 

found that quercetin is able to reduce the TGF-β-

induced fibrotic process in human tubular epithelial 

HK-2 cells through miR-21 suppression and PTEN up-

regulation [49]. Zhang et al in an in vitro study of the 

imatinib-resistant chronic myeloid leukemia cell line 

K562 (K562RIMT) demonstrated the inhibitory effect of 

dasatinib on the Pi3k/Akt/mTor signaling pathway and 

observed a slight upregulation of Pten at high doses of 

the drug [50]. Yilmaz et al observed that isolated use of 

dasatinib (8mg/kg/day for 21 days) was effective in 

reducing pulmonary fibrosis in an animal model by 

raising Pten levels [34]. Animal and human studies 

have shown that senolytic interventions provide a 

promising therapeutic possibility in cases of pulmonary 

fibrosis [30, 51, 38]. However, Roos et al reported that 

D+Q alleviated established vasomotor dysfunction in 

aged or atherosclerotic mice with no anti-fibrotic effect 

on the vascular intimal layer, which may suggest tissue 

and dose-dependent anti-fibrotic effects [52]. 

 

In our experiment, we showed the effect of aging on 

downregulation of the Pi3k/Akt1/mtTor signaling 

pathway in uterine tissue, but interestingly D+Q 

treatment did not promote an inhibitory effect on this 

pathway by either reducing Pi3k/Akt1/mTor gene 

expression or increasing Pten mRNA. As reviewed 

above, the effect of single or combined use of these 

drugs may be dose-, duration of treatment-, as well as 

tissue-dependent. In our study, the specific D+Q 

protocol used may explain the absence of a uterine anti-

fibrotic effect due to the short duration of the 

intervention. 

 

Importantly, our study indicated that D+Q treatment 

significantly increased the expression of p53 mRNA, 

the tumor suppressor gene that is related to a higher 

incidence of cancer in elderly people, which is not only 

due to a high frequency of mutant forms but its decline 

in its function with advancing age [14]. Several authors 

have described an increase in p53 levels with the 

isolated use of quercetin or dasatinib. Srivastava et al 

observed higher p53 expression in quercetin-treated 

tumor tissues [53]. The use of dasatinib also increased 

p53 acute myeloid leukemia stem cell gene expression 

[54]. p53 has also been described as a regulator of 

different microRNAs expression levels. The miR34 

family includes the first miRNAs described as being 

regulated by p53 [26]. MiR34a has been found to be 

pro-fibrotic in various tissues such as lung, kidney, and 

heart [24, 55, 56]. The therapeutic inhibition of miR34a 

was effective in improving cardiac function after 

myocardial infarction in an animal model [57]. In our 

study, it was observed that the D+Q treatment promoted 

downregulation of miR34a, which could indicate a 

possible antifibrotic effect. Although the major 

regulatory pathway for miR34a expression is directly 

related to p53 levels, other p53-independent regulatory 

pathways are also known to be involved [58]. 

Therefore, p53-independent regulation of pro-fibrotic 

miR34a could contribute to the low expression of 

miR34a together with the high expression of p53 in our 

sample. Other members of the miR34 family were not 

impacted by D+Q treatment, and only miR34c was 

downregulated with aging. This is consistent with 

findings showing Pi3k pathway attenuation of the 

fibrotic process with age. 

 

MiR21 is another fibrotic microRNA and it is regulated 

by Akt expression [23]. In our sample, although Akt1 

was downregulated with age, we did not observe similar 

downregulation of miR21a. Other pro-fibrotic 

microRNAs such as miR126a and miR181b were also 

downregulated in old uterine tissue, while miR146a and 

miR449a did not change in their expression either with 

age or treatment. The effect of age on serum and tissue 

microRNA levels has been tested in normal and long-

lived (Ames dwarf) mice. Schneider et al observed an 

effect of age on levels of 22 microRNAs (out of 404 

detected in sequencing) present in ovarian tissue from 

normal mice, and in 33 miRNAs from Ames dwarf mice 

[59]. Victoria et al also showed genotype-specific 

changes in the circulating levels of 21 miRNAs during 

aging. [60]. Therefore, this suggests that regulation of 

miRNA expression during aging is central to adaptation 

of body responses. As we have shown in our current 

study, although miR-34a was not directly regulated by 

age, the reduction in its expression is associated to the 

positive effects of the D+Q treatment on uterine 

fibrosis. More functional studies with miR-34c,miR-

126a and miR-181b are needed to understand its 

implication in uterine aging and potential effects of its 

regulation by other drugs. 

 

CONCLUSIONS 
 

In summary, our findings suggest that uterine fibrosis is 

associated with the Pi3k/Akt1/mTor signaling pathway, 

with possible interaction and mediation of known pro-

fibrotic microRNAs. Importantly, age-related fibrosis 

appears to be a slow and continuous process that might, 

over time, cause development of serious pathological 

complications, including those observed in our animals: 

a dilated uterus. Due to slow development of this age-

related disease, D+Q senolytic therapy in the present 

protocol may not have been continued long enough for 
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attenuating uterine collagen deposition. However, 

alteration of p53 mRNA and significant reduction of 

pro-fibrotic miR34a expression by D+Q suggest that 

implementing the intervention earlier in life and for a 

longer duration might provide protection from uterine 

age-related fibrotic changes. Conceivably, this might 

increase reproductive age as well as provide some 

protection against gynecological cancers. Based on 

these results, further, longer, and more mechanistic 

studies are required to determine whether 

Pi3k/Akt1/mTor pathway downregulation as well as 

inhibition of some microRNAs may provide new 

therapeutic targets to prevent uterine collagen 

deposition and, consequently, improve the reproductive 

performance of this organ in older females. 

 

MATERIAL AND METHODS 
 

Animal studies 

 

The Institutional Animal Care and Use Committee of 

the University of Central Florida approved all 

procedures in this study. BALB/c mice were obtained 

from NIA Office of Biological Resources and the NIA 

Aged Rodent Colonies and were maintained in a 

pathogen-free facility under temperature- and light- 

controlled conditions (22 + 2°C, 12h light/dark 

regimen) with free access to food and water. A total of 

40 mice (females) were divided into four groups 

procedures: 1) Young controls: 3 month old mice given 

placebo treatment (YC; n=10); 2); Young treatment: 3 

month old mice given dasatinib plus quercetin (D+Q) 

treatment (YT; n=10); 3) Old controls: 18 month old 

mice given placebo (OC; n=10); and 4) Old treatment: 

18 month old mice given D+Q (OT; n=10). All females 

used in this study were virgin. 

 

Based on previous studies, the intervention (D+Q or 

placebo) was performed for 3 consecutive days every 2 

weeks over a 10 weeks period. Dasatinib was purchased 

from LC Laboratories (Woburn, MA) and Quercetin 

from Sigma-Aldrich (St Louis, MO). Dasatinib (5 mg/kg) 

plus Quercetin (50 mg/kg) was prepared in a diluted 

solution composed of 10% ethanol (Sigma-Aldrich 

E7023; St Louis, MO), 30% polyethylene glycol 400 

(Sigma-Aldrich 91893; St Louis, MO), and 60% Phosal 

50 PG (Lipoid LLC, Newark, NJ). For both treatment 

groups (YT and OT), D+Q was administrated by oral 

gavage in 100–150µL and the control groups (YC and 

OC) received placebo solution by oral gavage. [37] 

 

Histology/ Masson’s trichrome assay 

 

Uterus samples were collected and dissected and small 

tissue fragments were placed into 10% neutral-buffered 

formalin immediately after necropsy and fixed for  

24 hours. Thereafter, the samples were dehydrated in 

ethanol, clarified in xylol, and embedded in Paraplast. The 

samples were sectioned (5µm) and stained with a 

Masson’s Trichrome 2000TMStain kit (American 

Mastertech Scientific INC, McKinney, TX-USA) to 

detect deposition of interstitial collagen. The histological 

preparations were examined using a microscope (Axio 

Obeserver A1, Zeiss) with 4, 10, and 20x lenses. 

 

Western blotting 

 

The uterine tissue samples were homogenized in lysis 

buffer T-PER (Thermo Scientific, Waltham, MA, USA) 

containing a mixture of protease and phosphatase 

inhibitors. A total of 30µg protein was separated by 

electrophoresis and transferred to PVDF membranes. 

Nonspecific binding of antibodies was blocked with 5% 

milk in TBS-T for 1 hour at room temperature and 

probed with diluted antibodies specific for Collagen-1 

(1:1000, ab88147, Abcam, Cambridge, UK) and β-actin 

(1:1000, G043, abm, Richmond, CA), followed by 

incubation with appropriate specific secondary 

antibodies. Immunoreactive bands were quantified by 

densitometry using the ImageJ software (Image 

Processing and Analysis in Java; U.S. National 

Institutes of Health Bethesda, MD, USA). 

 

RNA extraction and gene expression 

 

About 50 mg of the uterine tissue samples were 

homogenized with 1.0 mm zirconium oxide beads and 

700 μL of Qiazol (Qiagen, Valencia, CA, USA). Total 

RNA was isolated using Qiagen RNeasy Mini Kit 

(Qiagen) columns following the manufacturer’s 

instructions. RNA concentration was measured by 

spectrophotometer and 1 μg of total RNA was 

converted into complementary DNA (cDNA) using an 

iScript reverse transcription kit (Bio-Rad Laboratories, 

Hercules, CA, USA). The cDNA samples were diluted 

to 10 ng/uL and stored at −20°C. 

 

Real-time PCR using SYBR Green dye was used to 

evaluate uterine gene expression. The primers used in 

this study are listed in Table 1. PCR reactions were 

performed in duplicate, by adding 5μL of SYBR Green 

Master Mix (Applied Biosystems, Foster City, CA, 

USA), 0.4μL of forward and reverse primers (10μM 

solution), and 2μL of each cDNA sample, in a total 

volume of 20μL. Fluorescence was quantified using the 

Applied Biosystems QuantStudio™ 7 Flex System Fast 

RT-PCR system (Applied Biosystems™). For each 

assay, 40 PCR cycles were run (95°C for 3s and 62°C 

for 30s), and a dissociation curve was performed at the 

end of the reaction to verify the amplification of a single 

PCR product. Each assay included a negative control 

using RNase-free water. 
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Table 1. Primer pairs (forward and reverse) used in the experiment. 

Genes Primers sequences (forward and reverse) Product Size Reference NCBI 

Beta-2 microglobulin 

(β2m) 

F: 5’-AAGTATACTCACGCCACCCA-3’ 217 NM_009735.3 

R: 5’-CAGGCGTATGTATCAGTCTC-3’ 

Phosphoinositide-3-kinase 

(Pi3k) 

F: 5’-TAGCTGCATTGGAGCTCCTT-3’ 119 NM_011083.2 

R: 5’-TACGAACTGTGGGAGCAGAT-3’ 

Protein kinase B (Akt1) F:  5’-CCGGTTCTTTGCCAACATCG-3’ 168 NM_001331107.1 

R: 5’-ACACACTCCATGCTGTCATCTT-3’ 

Mammalian target of 

rapamycin (mTOR) 

F: 5’-CGGCAACTTGACCATCCTCT-3’ 101 NM_020009.2 

R: 5’-TGCTGGAAGGCGTCAATCTT-3’ 

Phosphatase and Tensin 

homolog (PTEN) 

F: 5’-AGGCACAAGAGGCCCTAGAT-3’ 74 XM_006526769.2 

R: 5’-CTGACTGGGAATTGTGACTCC-3’ 

p53 F: 5’-TCACAGTCGGATATCAGCCT-3’ 172 NM_001127233.1 

R: 5’-ACACTCGGAGGGCTTCACTT-3’ 

 

Data were normalized using beta-2 microglobulin 

(β2m) as a housekeeping gene. To calculate relative 

expression, the equation 2A−B/2C−D was used, where A is 

the threshold cycle number of the first control sample of 

the gene of interest, B is the threshold cycle number in 

each gene of interest sample, C is the threshold cycle 

value of the first β2m in the control sample, and D is 

the threshold cycle number of β2m in each sample. This 

formula resulted in a relative expression of 1 for the 

first control sample, and then all the other samples were 

calculated in relation to the first sample. After that, the 

average of the YC group was calculated and used as a 

denominator for the other groups’ averages to calculate 

the fold change in gene expression compared to the 

control group [61]. 

 

MicroRNA expression 

 

A total of 10ng of RNA was converted into 

complementary DNA (cDNA) using the TaqMan® 

Advanced miRNA Assays (Applied Biosystems™). The 

cDNA samples were diluted at 1:10 and stored at 

−20°C. The reactions were as per the manufacturer’s 

recommendation. Briefly, real-time PCR reactions were 

performed in duplicate, by adding 10 μL of TaqMan® 

Fast Advanced Master Mix (2X), 1 μL of TaqMan® 

Advanced miRNA Assay (20X), 4 μL of RNase-free 

water, and 5 μL of the diluted cDNA template to each 

reaction well in the plate. The total volume was 20 μL 

per reaction well. Fluorescence was quantified using the 

Applied Biosystems QuantStudio™ 7 Flex System Fast 

RT-PCR system (Applied Biosystems™). For each 

assay, 40 PCR cycles were run (95°C for 1s and 60°C 

for 20s). Each assay included a negative control using 

RNase free water. The TaqMan® Advanced miRNA 

Assays (Applied Biosystems™) used were: mmu-miR-

16-5p (477860_mir), mmu-miR-146a-5p (478399_mir), 

mmu-miR-449a-5p (478561_mir), mmu-miR-21a-5p 

(477975_mir), mmu-miR-126a-5p (477888_mir), 

mmu-miR-34a-5p (478048_mir), hsa-miR-34b-5p 

(478050_mir), mmu-miR-34c-5p (478052_mir), and 

hsa-miR-181b-5p (478583_mir). 

 

Data were normalized using miR16-5p as a 

housekeeping microRNA. To calculate relative 

expression, the equation 2A−B/2C−D was used, where A is 

the threshold cycle number of the first control sample of 

the miRNA of interest, B is the threshold cycle number 

in each miRNA of interest sample, C is the threshold 

cycle value of the first miR16 in the control sample, and 

D is the threshold cycle number of miR16-5p in each 

sample. The formula resulted in a relative expression of 

1 for the first control sample, and then all the other 

samples were calculated in relation to the first sample. 

After that, the average of the YC group was calculated 

and used as a denominator for the other groups’ 

averages to calculate the fold change in gene expression 

compared to the control group [61]. 

 

Statistical analysis 

 

Statistical analysis was performed using GraphPad 

Prism 7 software (GraphPad Software Inc., La Jolla, 

CA, USA). Gene expression (mRNA), miRNA 

expression, and protein levels were compared between 

groups by 2-way ANOVA and p values for age, 

treatment, and its interaction are presented. When the 

interaction was significant, a multiple comparisons test 

was performed using Tukey’s test. Categorical variables 

were compared using the chi-square test. A P value 

lower than 0.05 was considered statistically significant. 
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