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INTRODUCTION 
 

Liver cancer accounts for more than 840,000 new 
cases and about 780,000 deaths annually, representing 
the sixth most common cancer and the fourth most 

frequent cause of cancer death, respectively, globally 
[1]. Hepatocellular carcinoma (HCC) is the primary 

cancer most commonly encountered in the liver 
(comprising about 90% of cases). The main risk 
factors for HCC are chronic infection with hepatitis B 

(HBV) or C (HCV) viruses, alcohol abuse, and non-
alcoholic fatty liver disease (NAFLD).  
 

In recent years, the prognosis of patients with HCC  
at early- or intermediate-stages has significantly 

improved because of advancements in diagnosis and 

curative treatments. However, HCC prognosis is still 
extremely poor, since it is highly resistant to curative 
treatments, such as surgical resection or ablation, and 

therefore, 70% of patients have tumor recurrence 
within 5 years.  
 

Most of HCCs are diagnosed at advanced stage when 
curative therapies are not feasible. Nevertheless, 

systemic therapy in the advanced stage was quite 
limited until 2007, when the scenario changed 
drastically by the introduction of the molecular-targeted 

agent sorafenib, an oral multi-kinase inhibitor targeting 
RAF kinase, as well as vascular endothelial growth 
factor receptors (VEGFRs) and additional kinases. 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC), is the sixth most frequent form of cancer and leads to the fourth highest number 
of deaths each year. HCC results from a combination of environmental factors and aging as there are driver 
mutations at oncogenes which occur during aging. Most of HCCs are diagnosed at advanced stage preventing 
curative therapies. Treatment in advanced stage is a challenging and pressing problem, and novel and well-
tolerated therapies are urgently needed. We will discuss further advances beyond sorafenib that target additional 
signaling pathways and immune checkpoint proteins. The scenario of possible systemic therapies for patients with 
advanced HCC has changed dramatically in recent years. Personalized genomics and various other omics 
approaches may identify actionable biochemical targets, which are activated in individual patients, which may 
enhance therapeutic outcomes. Further studies are needed to identify predictive biomarkers and aberrantly 
activated signaling pathways capable of guiding the clinician in choosing the most appropriate therapy for the 
individual patient. 
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However, currently systemic sorafenib monotherapy 
has modest clinical benefits, and it has relatively 

severe side effects. Thus, HCC treatment in advanced 
stage is a challenging and pressing problem, and novel 
and well-tolerated therapies are urgently needed for 

this disease.  
 

HCC development is a multifactorial and a complex 
multistep process. In fact, a series of genomic and 
epigenomic alterations, resulting in progression from 

pre-cancerous lesions, which develop in cirrhotic liver, 
to the so-called dysplastic nodules, to HCC has been 
documented. HCC is a disease of aging and most 

victims are adults and not children [2]. 
 

The increase in age is a very well known risk factor for 
the development of HCC, but the increase in its 
incidence in the elderly cannot be only related to the 

aging of the general population. The reasons for this 
progressive aging of the population with HCC are 
mainly related to the epidemiological variations of its 

main risk factors [3]. 
 

It is known that HCC occurs predominantly 
(approximately 90%) on liver cirrhosis, and both these 
diseases share the same risk factors. In particular, HBV 

and HCV viruses, alcohol abuse, and in some 
geographical areas aflatoxin exposure are considered 
the most frequent. NAFLD, autoimmune and cholestatic 

diseases, while predisposing to its onset, appear to have 
a minor epidemiological role. In this regard, however, it 
should be noted that non-alcoholic steatohepatitis 

(NASH), most likely in the coming years, will be the 
main risk factor [4–7]. 

 
The increase in age at diagnosis of HCC depends 
largely on the population and risk factors; patients with 

HCC living in geographic areas with high incidence 
rates have a younger age than those living in areas with 
lower incidence [3, 8]. This behaviour depends very 

much on the age at which the viral infection is 
contracted and on the duration of the infection, in 

endemic areas patients come in contact with viruses at 
birth, or while infant, therefore the appearance of liver 
cirrhosis and consequently of HCC occurs at a younger 

age [7, 9, 10]. 
 
Several studies comparing the age at diagnosis of HCC 

over the last decade compared to that of the previous 
decades have reported, especially in HCV-infected 
subjects, a significant aging of patients passing from an 

average age at diagnosis of about 60-65 years in the last 
decade of the last century to 70-72 in the last ten years 

[11–13]. In Italy, the ARTIUM report demonstrated that 
the frequency of HCC increases in relation to the 
average age of the population [14]. 

It should also be emphasized how the health prevention 
campaigns and antiviral therapies have affected these 

changes. In fact, the spread of HBV vaccination and the 
careful screening of HCV, the use of disposable needles 
and syringes, and changes in various medical 

procedures, have helped to reduce new viral infections 
[7]. Today, the subjects with chronic liver diseases are 

mostly those who contracted the disease in the 1960’s 
and 1970’s. [15]. Furthermore, antiviral therapies 
against HBV and HCV have contributed to the aging of 

patients with HCC contributing to cause it to arise later 
rather than to abolish its risk at all [16]. 
 

In contrast to the reduction of the role of HBV and 
above all of HCV, which is taking place in some 

countries, the role of HCC related to NAFLD is 
becoming increasingly evident. Even in these cases, it 
seems that HCC is diagnosed at an age greater than 65-

70 years, sometimes not on cirrhotic liver and with very 
severe prognosis [7, 17]. 
 

MOLECULAR ALTERATIONS IN HCC 
 
Several alterations have been detected in HCC, 

including CTNNB1 (β-catenin), AT-Rich Interaction 
Domain 1A (ARID1A), ARID1B, AXIN, telomerase 
reverse transcriptase (TERT), c-MYC, epidermal 

growth factor (EGF), hepatocyte growth factor (HGF), 
as well as RAS and TP53 mutations, fibroblast growth 
factor 19 (FGF19) amplification, cyclin dependent 

kinase inhibitor 2A (CDK2A) downregulation and 
insulin growth factor 2 (IGF2) overexpression due to 

epigenetic modifications [18]. These molecular 
alterations ultimately lead to activation of signaling 
pathways, which have pivotal roles in HCC 

tumorigenesis. 
 
Unfortunately, there does not appear to be a unique 

signaling pathway which is predominantly altered in 
HCC [18], this likely results from the inter-tumor 
molecular heterogeneity observed in HCC [19, 20]. 

There are several molecular HCC subtypes, presenting 
different molecular aberrations, responsible for cell 

proliferation and survival, while other alterations, which 
are present in almost all HCCs, involve limitless 
replicative potential, angiogenesis, resistance to anti-

proliferative signals and checkpoint controls [18, 21]. 
Only a minority of alterations found in HCC are 
targetable with drugs currently available, most of them 

are not clinically-actionable today. 
 

However, various approaches have been used or are 
being developed for HCC treatment. Therapies 
currently used to treat HCC are fundamentally based on 

pharmacological approaches, which include: traditional 
cytotoxic chemotherapeutic drugs, small-molecule 
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inhibitors, such as sorafenib, and monoclonal antibodies 
(MoAbs), which target a specific molecule(s) 

implicated in HCC pathogenesis. In addition, 
combination therapies of small-molecule inhibitors with 
traditional cytotoxic drugs, or with another inhibitor that 

acts on a specific molecule in the same or in different 
signal transduction pathways, or with MoAbs, are also 

being tested.  
 
Until now, the US FDA has approved over 20 small-

molecule inhibitors and more than 65 MoAbs for 
clinical treatment of cancer. Some examples of small-
molecule inhibitors and MoAbs, which we discuss in 

this review, include agents acting on the following 
signaling pathways: RAS/RAF/mitogen-extracellular 

activated protein kinase kinase (MEK)/extracellular 
signal-regulated kinase (ERK); phosphatidylinositol-3-
kinase (PI3K)/AKT/mammalian target of rapamycin 

(mTOR); EGF/EGF receptor (EGFR); platelet-derived 
growth factor (PDGF)/PDGF receptor (PDGFR); 
vascular endothelial growth factor (VEGF)/VEGF 

receptor (VEGFR); FGF19/FGF receptor 4 (FGFR4); 
transforming growth factor β receptor (TGFβR); c-

MET; cyclin-dependent kinases (CDKs); aurora kinases 
(AURKs); histone deacetylases (HDACs); programmed 
death 1 (PD-1); cytotoxic T lymphocyte antigen-4 

(CTLA-4).  
 
Recently, the development of immune-oncologic agents 

has opened new therapeutic opportunities for cancer 
treatment, including HCC. These agents target mainly two 
immune checkpoints, PD-1 and CTLA-4, which are 

negative regulators of T-cell immune function, resulting 
in reversal of immune exhaustion, and activation of 

immune response. Immune checkpoint inhibitors (ICIs) 
have been shown to be effective for the treatment of 
various cancer types including: non-small cell lung cancer 

(NSCLC), melanoma, renal cell carcinoma and advanced 
urothelial bladder cancer. There is high expectation that 
these new drugs may help to develop new therapies for 

HCC, used as single agent, or in combination with each 
other or with molecular targeted agents. 

 
In this review, we summarize the major signaling 
pathways and molecular targets involved in HCC 

pathogenesis (Figures 1–6) and discuss the current 
status and the prospects for the near future of systemic 
therapies, including immunotherapies, for HCC 

management (Tables 1 and 2). We performed Medline 
searches from 2000-2019 and ClinicalTrials.gov to 
obtain information for this review. 

 

SIGNALING PATHWAYS IN HCC 
 

Several components of signaling pathways, such  
as RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, VEGF/ 

VEGFR, EGF/EGFR, etc. are promising targets in HCC 
[18, 22, 23]. Schematic overviews of the most important 

signaling pathways, as well as sites of intervention with 
small molecule inhibitors and MoAbs, are presented in 
Figures 1–6. Most small-molecule inhibitors act on a 

single target (e.g., erlotinib, BLU-554, everolimus and 
others), while some are promiscuous (e.g., sorafenib, 

regorafenib, lenvatinib and others), i.e. they act 
simultaneously on more than one molecule, however, this 
multiple targeting could increase their therapeutic 

efficacy (Figure 1). 
 
Activation of these pathways play key roles in the 

control of cell proliferation and in the resistance to 
apoptosis of tumor cells. Moreover, they contribute to 

stimulation of tumor angiogenesis, promotion of 
cellular invasiveness and metastasis. 
 

In the last 20 years, many advances have been made in 
understanding the interactions among pathway 
components, as well as the mechanisms by which 

different pathways interact with each other. 
Furthermore, numerous discoveries have been made 

into the mechanisms by which mutations of some 
components of these pathways are able to cause 
aberrant signaling, loss of control of cell proliferation 

and ultimately alterations in response to targeted 
therapies. 
 

Background and strategies based on targeting 

EGF/EGFR  
 

EGF/EGFR signaling (Figure 1) is dysregulated in 
many cancers including: breast, gastric, HCC, lung and 

ovarian [24]. The EGFR signaling pathway has been a 
key therapeutic target for decades now. Various 
approaches have been developed to target the 

EGF/EGFR pathway including small molecule tyrosine 
kinase domain inhibitors as well as MoAbs [25]. The 
effects of targeting the EGFR in HCC with small 

molecule kinases inhibitors, such as erlotinib and 
gefitinib, have been evaluated [26, 27]. The EGFR 

inhibitor suppressed liver fibrosis and the development 
of HCC [26].  
 

In addition, the effects of anti-EGFR MoAbs, such as 
cetuximab (Erbitux®, Bristol-Myers Squibb; Merck 
Serono) and nimotuzumab, have been examined on 

HCC. In one study, an elderly HCC patient treated with 
nimotuzumab resulted in a complete remission [28].  
 

Clinical trials with EGFR inhibitors and HCC and other 
cancers have been performed and some are in progress 

[18]. Gefitinib, by itself was not observed to be effective 
in treatment of HCC [29]. The effects of combining an 
EGFR inhibitor and an inhibitor of another pathway, or 
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by a chemotherapeutic drug, or an immunotherapeutic 
approach are being examined. They are listed in Table 1. 

The effects of combining the EGFR inhibitor erlotinib 
with the chemotherapeutic drug docetaxel have been 
examined in the NCT00532441 phase II clinical trial 

[30]. In this study, combining erlotinib with docetaxel did 
not appear to result in enhancement of survival in 

comparison to patients treated with erlotinib by itself. 
The effects of combining the VEGFA inhibitor 
bevacizumab and erlotinib have been examined in the 

NCT0336591 phase II clinical trial [31]. Unfortunately, 
this study observed that combining erlotinib with 
bevacizumab only resulted in a minimal activity in 

patients with advanced HCC. The authors have suggested 
that the inclusion of molecularly-selected HCC patients 

with particular mutation profiles could have enhanced the 
outcome. 
 

An ongoing HCC clinical trial (NCT03329459) consists 
of determining the effects of combining FATE-NK100, 
an allogeneic donor-derived natural killer (NK) cell 

based cancer immunotherapy, with the anti-EGFR 
MoAb cetuximab. FATE-NK100 consists of adaptive 

active memory NK expressing the maturation marker 
CD57. No results from this study appear to have been 
published yet (January 2020). 

 

Background and strategies based on targeting 

PDGF/PDGFR and VEGF/VEGFR 

 
Angiogenesis and metastases are two of the major 
obstacles for overcoming the challenges of cancer 

treatment. The molecular basis of these processes 
revealed alterations in different molecular signaling 

pathways, including the PDGF and VEGF pathways. 
 
PDGFR is a member of the class III family of receptors 

with tyrosine kinase activity (RTK) [32]. Two different 
monomeric forms of PDGFR are known, namely 

PDGFRα and PDGFRβ. Structurally, they are 
characterized by an extracellular domain containing five 
immunoglobulin-like motifs, a single trans-membrane 

region, and an intracellular domain with tyrosine-kinase 
(TK) activity. The binding of PDGF to its receptor 
induces PDGFR homo- or heterodimerization that results 

in auto-phosphorylation of specific tyrosine residues 
present in its intracellular domain. This results in 

conformational changes of the intracellular domain of 
receptor that is necessary for its complete activation, and 
to induce binding and phosphorylation of Src homology-

2 (SH2)-domain containing–molecules, leading to 
activation of various signaling pathways, such as 
RAS/RAF/MAPK and PI3K/PDK1/AKT signaling 

(Figure 1). Alterations of PDGF/PDGFR pathway are 
reported in several malignancies and expression of 

PDGFR is associated with poor prognosis and metastatic 
potential in different tumor types, such as breast and 
gastric cancer [33, 34]. 

 
The VEGFR family consists of three monomeric forms 
known as VEGFR-A, -B and -C. The family members 

are characterized by an extracellular region containing 
seven immunoglobulin-like domains, a single trans- 
membrane region and an intracellular domain with TK

 

 
 

Figure 1. Schematic overview of VEGFR, PDGFR, EGFR and FGFR signaling pathways stimulated after binding of growth 
factor (GF). 
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Table 1. Different molecular targeted agents, and their combinations with other agents under clinical evaluation in 
HCC (as of December 2019)1. 

Target Agent(s) (trade name; code name; 

Company) 

Phase Status Clinicaltrials.gov 

Identifier 

EGFR Inhibitors 

EGFR/HER2 FATE-NK100 + either Cetuximab 

(Erbitux®; Bristol-Myers Squibb, Merck 

Serono) or Trastuzumab (Herceptin®; 

Roche) 

I recruiting NCT03319459 

MEK1 Inhibitors 

MEK1 Trametinib (Mekinist®; GlaxoSmithKline) I recruiting NCT02070549 

MEK1, RAF and other 

kinases 

Sorafenib  (Nexavar®, Bayer) + 

Trametinib 

I active, not recruiting NCT02292173 

PI3K Inhibitors 

PI3K, PD1 SF1126 and Nivolumab I active, not recruiting NCT03059147 

PI3K-β and other kinases GSK2636771 and other kinase inhibitors I recruiting NCT02465060 

mTORC1 

mTORC1 Sirolimus and liver transplantation II/III not recruiting yet NCT03500848 

mTORC1 and RAF kinases Temsirolimus and sorafenib II active, not recruiting NCT01687673 

mTORC1 and estrogen 

receptor 

Everolimus and leuprolide and letrozole II active, not recruiting NCT01642186 

Dual mTORC1/mTORC2     

mTORC1, mTORC2 CC-223 I recruiting NCT03591965 

VEGFR/PDGFR inhibitor 

VEGFR Cabozantinib (XL184; Cabometyx®, 

Cometriq®, Exelixis Inc.) 

III active, not recruiting NCT01908426 

 Lenvatinib (Lenvima®; Eisai), III active, not recruiting NCT01761266 

 Ramucirumab (LY3009806, IMC-1121B, 

Cyramza®; Eli Lilly and Company) 

III recruiting NCT02435433 

VEGFR, PDGFR Regorafenib (Stivarga®, Bayer) III completed NCT01774344 

FGFR4 

FGFR4 BLU-554 (Blueprint Medicines 

Corporation) 

I recruiting NCT02508467 

 H3B-6527 (H3 Biomedicine Inc.) I recruiting NCT02834780 

TGFβs 

TGF β NIS793 (Novartis Pharmaceuticals) + 

PDR001 (Novartis Pharmaceuticals) 

I/Ib recruiting NCT02947165 

TGFβRI LY2157299 (Galunisertib®; Eli Lilly)  + 

Sorafenib 

II active, not recruiting NCT02178358 

 LY2157299  + Nivolumab (Opdivo®; 

Bristol-Myers Squibb Pharma EEIG) 

II active, not recruiting NCT02423343 

 LY2157299  + Radiation: Stereotactic 

Body Radiotherapy (SBRT) 

II active, not recruiting NCT02906397 

CDKs inhibitor 

CDK4, CDK6 Palbociclib (Ibrance®; Pfizer) I/II active, not recruiting NCT01356628 

Combination of HCDCi with sorafenib 

Class I, II and IV Vorinostat ( Zolinza ®; Merck Sharp 

Dohme) + Sorafenib 

I completed, no results 

posted 

NCT01075113 

Multi-target inhibitor 

AURKB, VEGFR2, 

VEGFR1, VEGFR3, 

PDGFRα, c-KIT, CSF-1R 

Chiauranib (Shenzhen Chipscreen 

Biosciences, Ltd., China) 

I recruiting NCT03245190 

1More through discussion of the results of clinical trials, when available, is presented in the text of this manuscript. 
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activity. Activation of VEGFR signaling requires the 
binding of its specific ligand (VEGFs) to the extracellular 

domains and the ligand-induced dimerization or 
multimerization of receptor monomers. Once activated, 
the receptor interacts with SH2 domain of its molecular 

targets and induces phosphorylation and activation of 
different molecules, such as ERK and AKT, switching on 

VEGFR signaling inside the cells (Figure 1). Aberrant 
expression of VEGF and VEGFR are observed in several 
cancer types, such as gastric, pancreatic, breast and 

colorectal cancer, where they mediate tumor 
angiogenesis and expansion [35–38]. 
 

VEGFR and PDGFR represent promising targets for 
treatment of several malignancies. Many authors have 

reported that overexpression of PDGFRs and VEGFRs, 
and their ligands PDGFs and VEGFs, frequently occurs 
in HCC and is associated with poor prognosis and  

worse overall survival (OS) [39–43]. In addition, 
overexpression of these factors, and their specific 
receptors, is linked with recurrence of liver cancer after 

tumor surgical resection [39, 42]. Several clinical studies 
have been conducted and are ongoing to evaluate the 

effects of inhibition of VEGF/VEGFR and PDGF/ 
PDGFR pathways in management of HCC treatment.  
 

Sorafenib (BAY 43-9006; Nexavar®, Bayer), an oral 
multi-kinases inhibitor targeting VEGFR, PDGFR and 
other kinases, represents first-line systemic therapy 

available for patients with advanced HCC and not 
eligible for tumor resection or liver transplantation. 
The international phase III study known as Sorafenib 

Hepatocellular Carcinoma Assessment Randomized 
Protocol (SHARP) in patients with advanced HCC, 

who had not received any prior drug, demonstrated 
that, in comparison to placebo, sorafenib 
administration resulted in increased OS (10.7 months 

vs 7.9 months) and median time to progression (TTP) 
(5.5 versus 2.8 months) (NCT00105443) [44]. 
Unfortunately, it was demonstrated that sorafenib 

administration was not able to prolong patient’s OS 
over one year and caused several (even if 

manageable) side effects, such as hand-foot skin 
reaction, hypophosphatemia and weight loss [44]. 
Thus, new therapeutic approaches are needed for 

improvement of HCC treatment.  
 
Regorafenib (Stivarga®, Bayer), structurally similar to 

sorafenib, is an oral multi-kinases inhibitor with 
pharmacological activity against factors involved in 
tumor angiogenesis (such as VEGFRs), in tumor cell 

proliferation (such as c-KIT, RAF and RAS) and tumor 
microenvironment (such as PDGFRs and FGFRs). The 

international phase III RESORCE study 
(NCT01774344) (Table 1), including patients with 
advanced HCC that received sorafenib as first-line 

treatment, demonstrated that, in comparison to the 
control group, patients who received regorafenib had 

benefits in terms of OS (10.6 months vs 7.8 months; HR 
0.63; 95% CI: 0.50–0.79; p<0.0001) and median TTP 
(3.6 months vs 1.5 months). In subsequent analyses of 

clinical outcomes obtained from RESORCE study, Finn 
et al. [45] revealed that the median time of OS from 

start of sorafenib treatment to death, was notably 
prolonged in regorafenib group compared to control 
group (26.0 months vs 19.2 months). However, 

correlation of serum levels of the prognostic markers 
alpha-fetoprotein (AFP) and c-MET with clinical 
outcomes obtained from RESORCE study revealed that 

regorafenib benefits were independent from AFP and c-
MET protein levels for prediction of both OS and 

median TTP [46].  
 
Sunitinib (Sutent®, Pfizer Inc.) is another multi-kinases 

inhibitor with antitumor and anti-angiogenic activities 
that acts against a wide range of RTK partially 
overlapping with sorafenib targets, such as VEGFR and 

PDGFR. Several preclinical studies demonstrated that 
sunitinib was able to delay cell growth and proliferation 

of endothelial cells, inhibiting new vessels formation 
and causing tumor regression in in vivo models of 
murine xenografts derived from different tumor cell 

lines, such as gastric and colon-rectal cancer [47]. 
Different phase II clinical trials displayed antitumor 
effects of sunitinib monotherapy in patients with 

advanced HCC with manageable adverse effects [48–
50]. Thus, a phase III study (NCT00699374) was 
performed to compare effects of sunitinib and sorafenib 

administration in patients with unresectable HCC. 
However, this trial was rapidly interrupted because of 

the lack of purposed sunitinib administration advantages 
in OS of HCC patients. OS from sunitinib 
administration were not superior, or equivalent, but 

significantly inferior to sorafenib treatment in HCC 
patients enrolled in this study. 
 

Similarly, linifanib (ABT-869), a selective inhibitor of 
all VEGFRs and PDGFRs, showed promising antitumor 

effects in phase II clinical trials [51], but failed in phase 
III study (NCT01009593) the first endpoint when 
compared with sorafenib treatment, and revealed equal 

advantages in terms of OS (9.1 months vs 9.8 months). 
Moreover, most of patients that received linifanib had 
more serious side effects than those observed in the 

group of patients receiving sorafenib [52]. 
 
Brivanib (BMS-582664; Bristol-Myers Squibb) is a TK 

inhibitor (TKI) which targets VEGFRs and FGFRs 
pathways. Several phase II clinical trials in patients with 

advanced HCC revealed promising antitumor activities of 
the drug, used as both first-line treatment or in second-line 
treatment, in patients which received prior sorafenib 
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administration [53, 54]. However, different randomized 
open-label phase III studies (BRISK) did not yield 

satisfactory results of brivanib treatment in HCC patients. 
In particular, in the BRISK-FL study (NCT00858871), 
brivanib failed to achieve the first endpoint of non-inferior 

OS when compared to sorafenib (9.1 months vs 9.5 
months), both drugs had similar antitumor activity with 

comparable safety profile [55]. In the BRISK-PS study 
(NCT00825955), brivanib was orally administered in 
patients that previously received sorafenib treatment. In 

this cohort of patients, brivanib treatment did not yield 
any advantages in terms of OS and caused treatment-
related side effects in 23% of patients [56]. Similar 

negative results and no effects in improvement of OS 
were obtained from another international randomized 

phase III study (NCT00908752) in which brivanib was 
used as adjuvant in transarterial chemoembolization 
(TACE) treatment of patients with intermediate stage of 

unresectable HCC [57].  
 
Cabozantinib (XL184; Cabometyx®, Cometriq®, 

Exelixis Inc.) is a small oral TK inhibitor which may 
inhibit several TKs frequently overexpressed in several 

malignancies, such as MET, RET and VEGFRs. Dual 
blockade of MET and VEGFR2 mediated by 
cabozantinib treatment significantly reduced HCC cell 

proliferation and metastatic potential both in vitro and in 
vivo xenograft models [58]. A phase II open-label 
discontinued clinical study was conducted with nine 

types of solid tumor patients, including HCC. This study 
(NCT00940225) observed that, even if no significant 
differences were revealed between placebo and 

cabozantinib treatment groups in terms of progression 
free survival (PFS), cabozantinib reduced tumor 

progression, induced disease stabilization, with an 
associated reduction of serum levels of AFP in more than 
50% of patients. A phase III randomized double-blind 

study (CELESTIAL; NCT01908426), conducted with 
707 patients with advanced HCC pre-treated with 
sorafenib, revealed encouraging results regarding the 

clinical activity of the drug. Cabozantinib treatment 
resulted in longer OS (10.2 months vs 8 months) and PFS 

(5.2 months vs 1.9 months) than placebo. However, 
cabozantinib did induce two-times more grade 3 and 4 
adverse events than placebo (68% vs 36%) [59]. 

Nevertheless, on 14 January 2019, the US FDA approved 
cabozantinib for patients with HCC who have been 
previously treated with sorafenib. The recommended 

dose is 60 mg once a day.  
 
Another orally available small TK inhibitor, lenvatinib 

(Lenvima®; Eisai), was evaluated in a phase III study 
(REFLECT; NCT01761266) as first-line treatment in 

patients with advanced HCC, and showed non-inferior 
clinical activity compared to sorafenib in terms of median 
OS (13.6 months vs 12.3 months), and a statistically 

significant improvement in PFS, and comparable toxicity 
profile [60]. Based on REFLECT study, lenvatinib has 

been approved by US FDA on August 2019, for first-line 
treatment of patients with unresectable HCC. 
 

In addition to small TKIs, there is another class of 
molecules with anti-angiogenic activity that includes 

MoAbs against VEGF or VEGFR, such as bevacizumab 
(Avastin®; Genentech/Roche) and ramucirumab 
(LY3009806, IMC-1121B, Cyramza®; Eli Lilly and 

Company), respectively. 
 
In particular, bevacizumab, is a MoAb against VEGF, 

that is able to block interaction between VEGF and its 
receptor VEGFR, reducing VEGFR activation and 

inhibiting angiogenesis. Despite encouraging results 
obtained both in vitro and in vivo in xenograft models 
derived from HCC cell lines [61, 62], several phase II 

clinical studies using bevacizumab alone, or combined 
with other drugs, or as adjuvant in TACE-treated 
patients, failed to demonstrate improvement [63–67].  

 
Ramucirumab is a humanized MoAb against 

extracellular domain of VEGFR-2. A phase II clinical 
trial (NCT00627042) involving patients with advanced 
HCC revealed that intravenous administration of 

ramucirumab in monotherapy yielded notable results in 
terms of median OS (12 months) and median PFS (4.0 
months). These positive results prompted initiation of 

the phase III REACH clinical trial [68] in which 
ramucirumab and placebo were used as second-line 
treatment in patients that previously received sorafenib. 

Despite manageable side effects, ramucirumab did not 
appear to improve significantly median OS compared to 

placebo (9.2 months vs 7.6 months) and PFS (2.9 vs 
2.1). However, efficacy of ramucirumab was observed 
in a subgroup of patients with elevated levels of AFP (at 

least 400 ng/ml). In the REACH-2 phase III clinical trial 
(NCT02435433), ramucirumab was administered as a 
second-line treatment after sorafenib in patients with 

advanced HCC and had at least 400 ng/ml of serum 
AFP. The study reached the primary endpoint with 

improvement of median OS (8.5 vs 7.3) and PFS  (2.8 
vs 1.6) and represents the first phase III study with 
encouraging results concerning the effectiveness of 

ramucirumab in second-line therapy of HCC [69]. 
Based on these results, on May 10, 2019, the US FDA 
approved ramucirumab for treatment of HCC patients 

for patients who have been previously treated with 
sorafenib and have an AFP of ≥ 400 ng/mL. 
 

Background and strategies based on targeting 

FGF19/FGFR4 

 
FGF19 is a component of the large family of FGFs that 
are involved in regulating many biological processes, 
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including cell growth and survival, metabolic and 
neuronal signaling. FGF19 acts as a hormone with 

endocrine functions. Its actions are mediated by its 
binding to specific receptor FGFR4, highly expressed in 
the liver. Although, FGF19 can bind independently to its 

receptor FGFR4, the presence of its co-activator beta-
Klotho (KLB), a trans-membrane protein, is necessary 

for complete activation of FGFR4 signaling [70].  
 
FGFR4 is a trans-membrane receptor with an 

extracellular region consisting of three immunoglobulin-
like domains, a hydrophobic trans-membrane region, and 
two intracellular regions with TK activity. When FGF19 

binds to extracellular region of FGFR4, in the presence of 
its co-activator KLB, the intracellular region of FGFR4 is 

auto-phosphorylated and activated. Activation of FGFR4 
causes phosphorylation of different adaptor proteins 
involved in the RAS/RAF/MEK/ERK, and PI3K/AKT 

signaling pathways (Figure 1). FGFR4 regulate 
epithelial-to-mesenchymal transition (EMT) by 
modulating the glycogen synthase kinase 3β (GSK3β)/β-

catenin pathway and expression of E-cadherin, a key 
epithelial cell adhesion protein (Figure 1). 

 
Aberrant activation of FGF19/FGFR4 signaling has 
been observed in many different human malignancies, 

including HCC [71, 72]. Multiple lines of evidence 
support the hypothesis that over-activation of 
FGF19/FGFR4 pathway, as well as FGF19, FGFR4 and 

KLB gene amplifications, may promote HCC growth, 
malignant progression, metastasis and drug resistance 
[73–76]. Miura et al. [75] demonstrated that FGF19 was 

highly expressed in HCC tissues compared to normal 
liver tissues and that its expression correlated with 

tumor progression and poor prognosis. Recently, it has 
been proposed that FGF19 and KLB are potential 
biomarkers for prediction of early tumor recurrence in 

patients with resectable HCC [60]. Manipulation  
of FGF19 gene expression resulted in different  
HCC cell responses to sorafenib treatment. FGF19 

overexpressing-HCC cells displayed the lowest 
sensitivity to sorafenib treatment while, small 

interfering RNA (siRNA)-mediated FGF19 knockdown 
significantly increased drug sensitivity [75]. 
 

Given the potential oncogenic role of FGF19/FGFR4 
pathway, the search for selective FGFR4 inhibitors has 
intensified. Some of these inhibitors are currently in 

phase I/II clinical trials (Table 1). Ponatinib (Iclusig®, 
Ariad Pharmaceuticals) is a third-generation FGFR4 
inhibitor. It was approved in 2012 by the US FDA for 

treatment of two rare types of leukaemia. Ponatinib 
synergizes with sorafenib and significantly reduces HCC 

cell viability [75]. Different clinical studies are ongoing 
using both pan-FGFR inhibitors, such as erdafinib (JNJ-
42756493; Balversa ®, Janssen Pharmaceutical) [77], 

and selective FGFR4 inhibitors, such as BLU-554 
(Blueprint Medicines) and BLU-9931 [78]. In a phase I 

study, the pharmacokinetics and safety of erdafinib were 
evaluated in different cohorts of patients with solid tumor 
including: breast, lung, gastric, head and neck cancer, 

cholangiocarcinoma and lymphoma. Initially, patients  
(n = 193) with unresectable tumors were enrolled and 

treated with increasing doses of the drug to determine the 
well-tolerated dose. Erdafinib displayed acceptable 
toxicity with hyperphosphatemia being the most  

common side effect. Subsequently, a phase I/II study 
(NCT02421185) was performed and recently completed 
to evaluate the safety and pharmacokinetics properties of 

erdafinib in fifty-two Asian participants with advanced 
HCC. The results of this trial are currently unknown. 

 
BLU-9931 is a potent irreversible and selective FGFR4 
inhibitor developed to treat patients with advanced HCC 

with aberrant activation of FGFR4 signaling. This 
compound bound to Cys552, which is localized in the 
hinge region of FGFR4 and not found in the other 

FGFRs. In a preclinical study, Hagel et al. [79] 
demonstrated that BLU-9931 has potent dose-dependent 

antitumor effects on cancer cell lines exhibiting 
alterations in FGFR4 pathway. BLU-9931 strongly 
inhibited phosphorylation of FGFR4 downstream 

targets, such as p-ERK1/2 and p-AKT, and its efficacy 
was dependent on the expression of fully functional 
expression of FGF19, KLB and FGFR4 complex [79].  

 
BLU-554 is another potent FGFR4-selective inhibitor 
that has been tested in a phase I dose-escalation/dose-

expansion study in advanced HCC [80]. As stated 
previously, there are multiple FGFs. Recently it was 

shown that FGF19 acts as a driver mutation in HCC in 
certain patients. Selective patient screening was 
performed to identify HCC patients which might be 

selective to BLU-554 which targets the FGF19 
signaling pathway. These patients were identified by 
immunohistochemistry (IHC) for aberrant FGF19 

activation. Recently, a phase I first-in-human trial was 
performed to determine safety, pharmacokinetics (PK) 

and pharmacodynamics (PD). Fisogatinib (BLU-554), a 
small molecule kinase inhibitor, was determined to 
inhibit FGF19-positive growth of HCC [80]. 

Administration of fisogatinib was well tolerated with 
relatively minor side effects. The ORR was 17 % (11 
out of 66 patients). As of December 2019, there was one 

complete response and ten partial responses. Three 
patients remained in response until the time of data cut 
off. The median duration of response in patients with 

FGF19 positive tumors was 5.3 months. The median 
PFS was 3.3 months. Additional studies with fisogatinib 

and FGF19 activation and survival of HCC patients are 
underway. Interesting and relevant for interpretation of 
these results, the authors observed that there was no 
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beneficial response in thirty-two patients who were 
FGF19-negative. Additional combinational approaches 

may also be pursued. 
 
In addition, BLU-554 is also being tested in phase I 

study (NCT02508467) in patients with advanced HCC 
to evaluate safety, PK and PD of the drug. This study is 

ongoing.  
 
Recently, Joshi et al. [81] synthetized another potent 

selective FGFR4 inhibitor named H3B-6527, which 
covalently binds to Cys552 present in the ATP-binding 
domain of FGFR4 but not in the other FGFRs. This 

compound exhibited selective potent inhibitory effects 
on FGFR4 signaling in HCC cells over-expressing 

FGF19, due to FGF19 gene amplification, and in a 
murine xenograft model [81]. H3B-6527 is currently 
being tested in a phase I study (NCT02834780) to 

evaluate tolerability, safety, pharmacokinetics and 
pharmacodynamics of the drug in patients with 
advanced HCC. 

 

Background and strategies based on targeting 

RAS/RAF/MEK/ERK pathway 
 
The RAS/RAF/MEK/ERK pathway is also frequently 

dysregulated in human cancer due to mutations in 
upstream receptors molecules which pass their 
proliferative signals through this pathway, as well as 

mutations in component genes of the pathway, and 
regulatory molecules which normally serve to harness 
the pathway (e.g., phosphatases). The biochemical 

aspects of this pathway as well as the targeting of this 
pathway have been reviewed [82, 83]. This pathway is 

also frequently associated with the drug resistance of 
various cancers, including HCC [84, 85]. The multi-
kinase inhibitor sorafenib was originally proposed to be 

a RAF inhibitor and as described previously it has been 
used to treat HCC patients [22, 86]. 
 

There have been multiple clinical trials with HCC 
patients and inhibitors that target RAF/MEK/ERK 

signaling. The effects of sorafenib on younger HCC 
patients is currently being examined in a phase II 
clinical trial (NCT01502410). The effects of the novel 

multikinase inhibitor donafenib have been examined in 
a clinical study (NCT02229071) with advanced HCC 
patients [87]. The effects of combination of sorafenib 

and tegafur/uracil (UFUR) have been examined in a 
phase II clinical trial (NCT00464919). This study 
correlated the ability of dynamic contrast-enhanced 

magnetic resonance imaging (DCE-MRI) to measure 
the vascular response with the clinical outcome. 

 
The pharmacokinetic parameter K(trans) parameter, as 
measured by DCE-MRI, was determined to correlate 

well with tumor response and survival in HCC 
patients who underwent sorafenib and UFUR 

treatment [88]. The effects of combined RAF 
(sorafenib) and MEK1 (AZD6244) inhibitors on HCC 
patients have been examined in a phase Ib clinical 

trial (NCT01029418). A problem with treatment of 
various cancers with certain chemotherapeutic drugs 

or signal transduction inhibitors is the induction of 
MEK1. This trial demonstrated that the maximum 
tolerated dose (MTD) of the AZD6244 inhibitor was 

75 mg daily when combined with 400 mg sorafenib 
twice a day in HCC patients. The authors stated that 
acceptable adverse events were observed [89]. Thus, it 

may be appropriate to treat certain patients with 
inhibitors that target two different signaling molecules 

in the same pathway. This may eliminate potential 
feedback loops (positive and negative) within the 
pathway. 

 
A phase I clinical trial (NCT01668017) with the 
MEK1 inhibitor pimasertib was performed in Japan 

but was terminated by the sponsors. A phase II clinical 
trial (NCT01915589) examining the effects of the 

BAY86-9766 MEK inhibitor (refametinib) on HCC 
patients with mutant RAS has been performed. No 
results appear to have been posted as of December 

2019. A phase I safety study was performed on 
combining refametinib and sorafenib and demonstrated 
acceptable safety profiles [90]. Therefore, a phase II 

clinical trial (NCT01204177) to examine the effects of 
combining the drugs refametinib and sorafenib was 
performed with HCC patients [91]. Interestingly, the 

best responses in this trial were observed with patients 
having RAS mutations. In this study, dose 

modifications were necessary to avoid side effects in 
most patients, however, antitumor activity was 
observed. The side effects included: aspartate 

aminotransferase elevation, diarrhea, nausea, rashes, 
and vomiting. 
 

An additional phase II clinical trial (NCT01915602) 
examining the effect of combining refametinib and 

sorafenib in HCC patients with mutant RAS was 
performed. This trial was completed, but no results have 
been posted. 

 
A phase II clinical trial (NCT02042443) with HCC 
patients with the MEK1 inhibitor trametinib 

(Mekinist®, GlaxoSmithKline; GSK1120212) has been 
performed. A phase I clinical trial (NCT02292173) 
examining the effects of treating HCC patients with 

trametinib and sorafenib was completed recently in 
2019. Therefore, it is clear that there are numerous 

clinical trials examining the effects of combining the 
multi-kinase inhibitor sorafenib and various MEK 
inhibitors. 
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Background and strategies based on targeting 

PI3K/AKT/mTOR pathway 

 
The PI3K/AKT/mTOR pathway is another signaling 
pathway that is often deregulated in human cancer due 

to mutations/amplifications of upstream growth factor 
receptors, gene mutations in intrinsic pathway 

component, or mutations in phosphatases which serve to 
regulate the pathway (e.g., PTEN) [92–95]. 
 

The effects of the dual PI3K/bromodomain 4 (BRD) 
inhibitor SF1126 and the immune checkpoint inhibitor 
PD-1 MoAb nivolumab are being examined in the phase 

I clinical trial (NCT03059147) with HCC patients. This 
trial is still active, but not recruiting patients. No results 

of this trial appear to be available yet. The BRD 
inhibitor suppresses the expression of certain MYC-
mediated factors. Nivolumab blocks the binding of PD-

1 to its ligand. Nivolumab is approved for treatment of 
HCC. NCT02465060 (The MATCH Screening Trial) is 
a phase II clinical trial which will examine the effects of 

combinations of various inhibitors, including the PI3K-
β inhibitor (GSK2636771) in HCC and other cancers. 

This trial is still recruiting patients. The purpose of the 
MATCH trial with multiple inhibitors as well as 
numerous cancer types is to determine, after initial 

standard anti-cancer therapy, how effective additional 
treatments based on genetic testing (genomics) is in 
patients that have progressed. 

 
AKT lies downstream of PI3K and is a key molecule in 
the PI3K/PTEN/AKT/mTOR signaling pathway that is 

frequently dysregulated in various cancers, including 
HCC. There have been some clinical trials with AKT 

inhibitors. The AKT inhibitor MK2206 was in a clinical 
trial (NCT01239355) with HCC patients, however, that 
trial was discontinued due to discouraging results.  

 
There have been at least thirty-four clinical trials with 
mTOR blockers/inhibitors. Everolimus (a.k.a. Rad001; 

Afinitor®, Novartis) has been evaluated in at least six 
clinical trials with HCC.  The results of clinical trials 

with everolimus have been published in some cases. 
NCT00390195 was a phase I/II clinical trial with HCC 
patients. This study determined that the recommended 

daily dose of everolimus was 7.5 mg daily and that 
prophylactic anti-viral therapy should be provided to 
HBsAg-seropositive patients [96].  

 
The effects of everolimus has been examined in at least 
one phase III clinical trial (NCT01035229) in HCC 

patients who failed on sorafenib treatment [97]. 
Unfortunately, this study did not reveal an increase in 

OS after everolimus treatment in advanced HCC 
patients either during sorafenib treatment or after failure 
on sorafenib. 

The combination of everolimus and sorafenib has been 
evaluated in at least four additional clinical trials with 

HCC patients. The results of a phase II clinical trial 
(NCT01005199) which examined the effects of 
sorafenib with or without everolimus in advanced HCC 

patients have been published [98]. This trial revealed 
that combining 5 mg everolimus with full-dose 

sorafenib was possible, but it was more toxic than 
treatment with sorafenib by itself.  Unfortunately, this 
study indicated that combining sorafenib with 

everolimus did not increase the efficacy of sorafenib by 
itself.   
 

The combination of everolimus and estrogen receptor 
deprivation therapy has been evaluated in at least one 

phase II clinical trial (NCT01642186) with HCC 
patients. This trial is active, but not recruiting patients 
and no results appear to have been posted yet. The 

combination of everolimus and the anti-VEGF MoAb 
bevacizumab has been evaluated in at least one phase II 
clinical trial (NCT00775073) with HCC patients. This 

trial has been completed but results do not appear to 
have been published yet. 

 
The mTORC1 blocker temsirolimus (a.k.a CCI-779; 
Torisel®, Wyeth Pharmaceuticals) has been examined 

in clinical trials with HCC patients. The combination of 
temsirolimus and sorafenib has been evaluated in at 
least one phase I clinical trial (NCT00775073) and one 

phase II (NCT01687673) with HCC patients. This trial 
is active, but not recruiting patients. No results appear 
to have been published yet. 

 
The combination of temsirolimus and bevacizumab has 

been evaluated in at least one phase II clinical trial 
(NCT01010126) with HCC patients [99]. While some 
side effects were observed, the study indicated an 

overall response rate (ORR) of 19 % and OS of 14 
months. The number of patients (n = 26) examined in 
this trial was relatively low. The authors suggested that 

drug concentrations need to be optimized. The 
combination of temsirolimus and lenalidomide has been 

evaluated in at least one phase I clinical trial 
(NCT01183663) with HCC patients.  
 

The mTORC1 blocker rapamycin (a.k.a. sirolimus; 
Rapamune®, Wyeth Pharmaceuticals) has been 
examined in at least seven clinical trials with HCC 

patients. The combination of rapamycin and 
bevacizumab has been evaluated in at least one phase I 
clinical trial (NCT00467194) with HCC patients. This 

study demonstrated that phase II dose of rapamycin 
should be 4 mg when used in combination with 

bevacizumab. The authors indicated that this 
combination had promising clinical activity and anti-
vascular activity was detected [100].  
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The combination of rapamycin and liver transplantation 
has been evaluated in at least three clinical trials 

(NCT00355862, phase III; NCT01374750, phase II; 
NCT03500848, phase II and III) with HCC patients. 
The phase III study demonstrated that rapamycin 

treatment after liver transplantation in HCC patients did 
not improve the long-term relapse-free survival (RFS) 

past 5 years. However, a benefit was observed in RFS 
and OS in rapamycin-treated liver transplant patients for 
the first three to five years. This benefit was observed 

more predominantly in the low-risk patients [101]. 
Finally, the dual mTORC1 and mTORC2 inhibitor CC-
223 is being examined in at least one phase II trial 

(NCT03591965) with HBV positive HCC patients. This 
trial is currently recruiting HCC patients who had 

received one prior line of systemic therapy. Thus, there 
remains considerable interest in targeting the 
PI3K/AKT/mTORC1 pathway for treatment of HCC. 

Targeting may occur by a single inhibitor or a combined 
approach with either a kinase or immune checkpoint 
inhibitor.  

 

Background and strategies based on targeting 

TGFβ/TGFβR 
 
TGFβs, activins, inhibins, nodal, growth and 

differentiation factors (GDFs), and bone morphogenetic 
proteins (BMPs), all belong to the TGFβ superfamily 
[102, 103]. In humans, thirty-three functional genes 

encode the TGFβ family polypeptides [104]. These 
polypeptides are composed of a signal peptide, required 
for secretion, a long pro-polypeptide, that, as a dimer, 

binds and activates the receptors. Initially TGFβs are 
synthesized and secreted as precursors that are 

processed by extra-cellular convertases to produce 
biologically active dimeric ligands [105]. 
 

In cancer, TGFβs have dual roles [106]. In early-stage 
tumors, the TGFβ pathway promotes cell cycle arrest 
and apoptosis [107–109] whereas, at advanced stages, 

the TGFβ pathway promotes tumor progression and 
metastasis by stimulating cancer cell motility, invasion, 

EMT, and cell stemness [107]. This functional switch is 
known as the “TGFβ paradox” [110]. TGFβ cytokines 
signal through a transmembrane receptor serine-

threonine kinase complex (Figure 2). Two receptors 
have been identified: the Type I and Type II receptors. 
During activation, TGFβ first binds to the constitutively 

active Type II receptor (TβRII), which recruits and 
activates the TGFβ Type I receptor (TβRI). For some 
ligands, additional co-receptors are required for optimal 

ligand binding and activation of the type I-type II 
receptor heterodimer. The TβRI-TβRII complex starts 

the so-called canonical TGFβ signaling through C-
terminal phosphorylation of the receptor-activated 
SMADs (R-SMADs), SMAD2 and SMAD3. Activated 

R-SMADs then form a complex with SMAD4 (Co-
SMAD, common mediator SMAD) that shuttles to the 

nucleus where it can associate with other transcriptional 
co-factors at DNA elements of target genes, thereby 
regulating TGFβ target gene expression (Figure 2)  

[111, 112]. Together with SMAD-mediated canonical  
TGFβ signaling, the TGFβ receptors can also activate  

other intracellular pathways, referred as non-SMAD 
signaling pathways (Figure 2). The non-canonical (non-
SMAD) TGFβ signaling pathways include: the 

PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, p38
MAPK

 and 
JNK cascades, and pathways downstream of Rho-like 
GTPase signaling intermediates [113–115].  

 
A large body of evidence indicates that TGFβ1 is an 

important cytokine that promotes tumor progression, as 
it induces EMT and activates the WNT pathway. In 
HCC patients, elevated plasma levels of TGFβ1 are 

correlated with shorter survival time [116]. TGFβ1 
plays a pivotal role in processes such as fibrogenesis, 
angiogenesis, immunosuppression, and invasiveness. 

High concentrations of TGFβ1 are considered as potent 
negative prognostic markers in unresectable HCC 

patients [117]. Moreover, an inverse correlation 
between circulating TGFβ1 and E-cadherin levels has 
been reported in patients with HCC, a condition that 

recapitulates the EMT process [118, 119]. 
 
Different responses to TGFβ1 have been observed 

depending on the liver cell type. Thus, TGFβ triggers 
the activation of hepatic stellate cells into 
myofibroblasts, which start to produce extracellular 

matrix (ECM) components that initiate the fibrogenic 
process. In hepatocytes, TGFβ induces both cell death 

and EMT [120]. 
 
TGFβ induces EMT of malignant hepatocytes through 

stimulating cancer-associated fibroblasts (CAFs) 
proliferation. Activated CAFs modulate growth, 
intravasation and metastatic spread of HCC cells [121]. 

TGFβ activation of CAFs is related to down-regulation 
of E-cadherin and to the up-regulation of the 

SNAIL/PDGF signaling pathway [122–123]. Reduced 
expression of E-cadherin has been associated with poor 
HCC tumor prognosis and shorter disease-free survival 

[124]. TGFβ signaling was suppressed after treatment 
with the dual type I and type II TGFβR kinase inhibitor 
LY2109761, which restored E-cadherin expression and 

reduced the migration of HCC cells [125, 126]. A 
reduction of connective tissue growth factor (CTGF)-
mediated cross talk between HCC cells and CAFs was 

observed after treatment with the inhibitor. Also 
decreased blood vessel formation occurred due the 

VEGF released from HCC cells [121, 127]. Recently, it 
was shown that LY2157299 (Galunisertib®, Eli Lilly), 
but not the D10 MoAb against TGFβRII, blocked  
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both the canonical and non-canonical TGFβ pathways 
[128, 129]. 

 
Several studies have been started to evaluate safety and 
effectiveness of the TGFβRI kinase inhibitor 

galunisertib in patients with advanced HCC. A 
randomized phase II trial (NCT02178358), with the 

primary endpoint being evaluation of OS, of 
galunisertib in the presence and absence of sorafenib is 
ongoing. 

 
A phase II clinical trial evaluating the MTD of 
galunisertib in combination with the anti-PD-1 MoAb 

(nivolumab) (NCT02423343) is in progress. A phase I 
trial galunisertib plus stereotactic body radiotherapy 

(SBRT) (NCT02906397) is also active, but not 
recruiting patients. Results of these studies have not 
been published yet. 

 
A phase I study (NCT02947165), with the aim to 
characterize safety and tolerability as single agent of 

NIS793, a MoAb that specifically targets and binds to 
TGFβ, started in 2017. NIS793 is also being evaluated 

in combination with PDR001 (an anti-PD-1 MoAb) in 
patients with advanced malignancies, including HCC 

(NCT02947165). 
 

Background and strategies based on targeting 

Aurora kinase 
 

Mitotic events are regulated by reversible protein 
phosphorylation events powered by specific protein 
kinases and phosphatases, among them the Aurora 

kinases (AURKs). Aurora kinases belong to a family of 
serine/threonine kinases consisting of three members: 
Aurora A (AURKA), Aurora B (AURKB) and Aurora 

C (AURKC). Aurora kinases are composed of an N-
terminal domain (39-139 aa), a kinase domain (250-300 

aa) and a C-terminal domain (15-20 aa). The C-terminal 
domain of the kinase domain display a conserved 
residue at Thr288 (AURKA), Thr232 (AURKB) and 

Thr195 (AURKC), which upon phosphorylation induces 
a conformational change essential for the kinase activity 
[130, 131]. In the N- and the C-terminal domains are 

degrons that regulate the degradation of Aurora proteins 
at the end of mitosis. 

 

 
 

Figure 2. A simplified overview of canonical and non-canonical TGFβ signaling. 
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Therefore, AURKs play pivotal roles in cell division and 
duplication, despite this, or perhaps because of this, it was 

observed that both AURKA and AURKB are upregulated 
in most human solid tumors [132–134], including HCC 
[135]. Usually their altered expression levels in cancer is 

considered a poor prognosis factor [132–134]. In tumor 
cells, AURKA induces cell proliferation, survival and 

drug resistance through interacting with oncogenic 
pathways, such as MYC, PKC/RAF/MEK/ERK, 
BCR/ABL, NF-κB, Wnt/β-catenin or the PI3K/AKT 

pathways [136–138], modulating pro-apoptotic (BCL2, 
MCL1) and anti-apoptotic (BAX, BIM, PUMA, APAF) 
proteins [136]. In addition, AURKB is involved in tumor 

cell proliferation and survival regulating CDK1, TP53 and 
inhibiting caspase-3 expression [139, 140]. Therefore, 

AURKs have become attractive drug targets for cancer 
therapy [141, 142]. The Aurora kinase B, in particular, 
may be an appropriate anticancer target as its inhibition 

rapidly results in mitotic catastrophe followed by 
senescence [143, 144]. The mitotic catastrophe occurs via 
TP53-independent cell death, which is likely a 

consequence of premature or inappropriate entry into 
mitosis [145].  

 
Currently, over a dozen AURKs inhibitors have entered 
clinical trials [141]. Some are Aurora sub-type 

selective, i.e. AURKA selective, such as MLN8054, 
MLN8237, VX-689/MK-5108 and ENMD 2076; or 
AURKB selective, such as AZD1152 and 

GSK1070916. Other inhibitors are pan-selective, 
AURKA and AURKB selective, such as VX-680, PHA-
739358, CYC116, SNS-314, PF3814735, AT-9283, R-

763/AS-703569, AMG 900 and KW-2449 [141]. 
 

In human HCCs, AURKA and AURKB are 
overexpressed and are associated with aggressiveness, 
early recurrence and poor prognosis [145, 146]. Most of 

antitumor studies on AURKs inhibitors in HCC are still 
in preclinical phase.  
 

The AURKA inhibitor, MLN8237 (Alisertib®, 
developed by Takeda) is a new reversible oral small-

molecule selective inhibitor. MLN8237 inhibits cell 
viability in dose-dependent manner and strongly 
synergizes with sorafenib in inhibition of HCC 

progression, by inducing cell cycle arrest and apoptosis. 
These drug combinations affects also migration, 
invasion, through inhibition of p-AKT and p-p38

MAPK
 

and their downstream genes, such as VEGFA, cyclin D1 
(CCND1) and cyclin-dependent kinase 4 (CDK4) [147]. 
These results suggest that the MLN8237 and sorafenib 

combination may be a novel therapeutic approach for 
HCC treatment. 

 
The pan-Aurora kinase inhibitor PHA-739358 
(Danusertib®, Nerviano Medical Sciences), is an 

AURKA/B/C inhibitor, which has been tested in several 
phase II trials in solid and haematological tumors. In 

HCC cells, it inhibits cell proliferation and induces 
autophagy through the PI3K/AKT/mTOR signaling 
pathway [148]. 

 
The AURKA inhibitor VE-465 suppressed proliferation, 

histone H3 (Ser10) dephosphorylation, events involved 
in mitosis and apoptosis in HCC cells. Treatment with 
VE-465 induced apoptosis and inhibited tumor 

formation in a human HCC xenograft model [149]. 
These results suggest that AURKA is a promising 
antitumor target, and that AURKA inhibitor may be a 

valuable agent against HCC. 
 

PHA-739358 is a novel pan-selective AURKA 
inhibitor. PHA-739358 completely suppressed HCC cell 
proliferation in vitro and inhibited HCC growth in vivo 

in an animal model. In addition, combination of PHA-
739358 with sorafenib resulted in an additive effect on 
tumor growth inhibition [150], thus highlighting that 

inhibition of AURKA, either alone, or in combination 
with sorafenib, may be a promising therapeutic 

approach for HCC. Currently PHA-739358 is under 
evaluation in a phase II clinical trial in patients with 
different types of solid tumors, however, this trial does 

not include HCC. 
 
A selective inhibitor of AURKB, AZD1152 

(Barasertib®, AstraZeneca) acts by suppressing histone 
H3 phosphorylation, resulting in accumulation of 
aneuploid (4N) cells and cell death [151]. Furthermore, 

treatment with AZD1152 significantly inhibited tumor 
growth of subcutaneous human HCC xenografts, as well 

as decelerated tumor growth and increased survival in 
an orthotopic HCC model [151]. These results 
suggested that AZD1152 could be a promising drug for 

the treatment of HCC. 
 
The kinase inhibitor R1498 targets multiple Aurora 

kinases and other proteins, including AURKA, AURKB 
and VEGFR2, and affects both angiogenic and mitotic 

pathways. The in vivo antitumor efficacy of R1498 was 
tested in human cancer xenograft models using a panel 
of gastric cancer and HCC cell lines. R1498 treatment 

displayed growth inhibition and tumor regression [152].  
 
Chiauranib is an AURK inhibitor in a clinical trial in HCC 

(Figure 3). Chiauranib is a novel orally active multi-target 
inhibitor that simultaneously inhibits the angiogenesis-
related kinases (VEGFR2, VEGFR1, VEGFR3 and 

PDGFRα), as well as kinases involved in stimulating cell 
proliferation, such as c-KIT and colony stimulating factor-

1R (CSF-1R). Chiauranib is in a phase I clinical trial with 
HCC patients (NCT03245190). This clinical trial is in the 
recruiting stage. 
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Background and strategies based on targeting CDKs 
 

HCC can develop from uncontrolled cellular 
proliferation that results from disruption of normal cell 
cycle regulatory checkpoints [153, 154]. The cyclin-

dependent kinases (CDKs) are serine/threonine kinases 
proteins that control cell cycle progression (Figure 3). 

CDK activity depends on their association with non-
catalytic regulatory subunits, referred as cyclins. There 
are four essential CDKs required for cell cycle 

progression: CDK1, CDK2, CDK4, and CDK6. Each 
CDK is associated with a regulatory cyclin subunit. 
Activation of the respective CDK determines cell cycle 

progression starting from the resting state (G0), to the 
growth phase (G1), through DNA replication (S), and 

finally to cell division phase (M). Cells enter the G1 
phase after stimulation with mitogenic signals, with the 
intracellular increase of D-type cyclins (D1, D2 and 

D3), resulting in cyclin D/CDK4 and cyclin D/CDK6 
complexes [154, 155]. This complex determines the 
phosphorylation and inactivation of the retinoblastoma 

(RB) protein, which leads to the release of E2F 
transcription factors, which induce expression of cyclin 

E. Cyclin E binds CDK2 and causes the transition into S 
phase. The G1/S transition is a critical point of the cell 
cycle progression. The S phase is characterized by DNA 

replication. Cyclin A binds CDK2 to drive the cell cycle 
from the S phase to G2. CDK1/cyclin B complex 

controls the transition into the G2/M phase. Finally, the 
complex CDK3/cyclin C regulates exit from the cell 

cycle at G0 phase (Figure 3) [156, 157]. 
 
CDK overexpression is often observed in HCC, which 

can result from inactivation of CDK inhibitory proteins, 
such as p16

Ink4
, p21

WAF1/CIP1 
and p27

KIP1
 [153, 154, 

158]. Therefore, CDK inhibitors constitute an attractive 
therapeutic option for HCC treatment [154, 159]. 
 

CDK1 expression is upregulated in liver samples from 
HCC patients in comparison to non-tumor tissues [160]. 
Moreover, high levels of CDK1 expression is predictive 

of tumor recurrence [160]. 
 

Various CDK1 inhibitors are being evaluated, including 
P276-00 (Riviciclib®, Piramai Enterprises Ltd.) and 
flavopiridol (Alvocidib®, Tolero Pharmaceuticals, Inc.). 

Interestingly, synergistic effects on the induction of 
apoptosis upon combination of alvocidib and doxorubicin 
were observed in an in vivo HCC model [161]. In the 

clinical setting of a phase II trial (NCT00087282), the 
combination of alvocidib and irinotecan was evaluated in 

patients with advanced HCC. Sequential irinotecan and 
alvocidib administration did not appear to have clinically 
relevant antineoplastic activity. Ten patients were 

evaluable for response: one had stable disease (SD) >1 
year and nine had disease progression. 

 

 
 

Figure 3. Schematic overview of proteins involved in the control of cell cycle. 
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CDK2 regulates the G1-S phase by binding cyclin E 
and cyclin A. The CDK2-cyclin E complex contributes 

to the uncontrolled growth of HCC [162–164]. The 
complex is endowed with catalytic activity, which 
determines the phosphorylation of the E2F2 factor that 

is necessary for termination of S phase. CDK2 was 
reported to be hyperactive in 80% of the cases of HCC 

[165]. Xylocydine, a CDK2 specific inhibitor that 
selectively down-regulates CDK2 activity, had 
significant growth inhibitory effects in HCC cells in 

vitro, as well as suppressed tumor growth in vivo in 
murine xenografts [166]. 
 

CDK4 is another kinase that is expressed at high levels 
in HCC. The levels of CDK4 mRNA and protein were 

analysed in fifty-nine pairs of HCCs and adjacent 
normal tissues [167]. CDK4 was upregulated in 73% of 
the HCC samples and expression of CDK4 correlated 

with tumor size and stage [167]. Moreover, gene 
expression profiles revealed overexpression of CDK4 
mRNA in HCC tissues [168]. CDK4 is a potential 

prognostic marker for HCC [167, 168]. 
 

Given the importance of CDK4 in liver cancer, CDK4 
inhibitors are utilized in HCC treatment. Palbociclib (PD-
0332991; Ibrance®, Pfizer), is a reversible, selective 

CDK4/6 inhibitor. Palbociclib has been recently approved 
by the US FDA for treatment of patients with breast 
cancer [169]. In HCC cell lines, palbociclib promotes a 

reversible cell cycle arrest and the induction of cellular 
senescence, alone or in association with sorafenib [170] 
and enhances radiosensitivity [171]. A phase II clinical 

trial (NCT01356628) testing palbociclib in HCC patients 
is underway as a second-line therapy after sorafenib 

failure. 
 
An atypical CDKs member is CDK5, this protein does 

not participate in cell cycle progression and is not 
activated by cyclins. CDK5 is indispensable for normal 
brain development, neuronal survival and synaptic 

plasticity [172–174]. In HCC, CDK5 is highly expressed 
in tumor tissues, regulates DNA damage response, and 

promotes angiogenesis through interactions with 
inducible hypoxia factor 1α (HIF-1α) [175, 176]. 
 

Combination analysis of immunohistochemistry (IHC) 
with high-throughput RNA sequencing (RNAseq), and 
microarray data from The Cancer Genome Atlas 

(TCGA), confirmed the relationship between CDK5 
levels and progression of HCC [177]. Furthermore, the 
same authors demonstrated that CDK5 knockdown 

(KD) by siRNA inhibited cell growth and induced 
apoptosis in vitro [177]. Combining sorafenib and 

CDK5 inhibition, either by genetic KD by short hairpin 
RNA (shRNA), or pharmacologic inhibition with 
dinaciclib (a.k.a SCH-727965), synergistically 

compromised HCC progression in vitro or in an in vivo 
animal model [178]. 

 

Background and strategies based on targeting 

HDACs 

 
Histone acetylation and deacetylation are epigenetic 

regulatory mechanisms that play critical roles in the 
modulation of chromatin and the regulation of gene 
expression [179]. Changes in acetylation/deacetylation 

patterns regulate transcription [180]. These changes 
may be due to altered expression or mutation of genes 
that encode histone acetyltransferase (HAT), histone 

deacetylase (HDAC) enzymes, or their binding 
partners. These events may contribute in part to 

carcinogenesis [181].  
 
There are multiple HDAC classes with different 

functional characteristics and with specific cellular 
localization: class I (HDAC1, HDAC2, HDAC3, 
HDAC8), class IIa (HDAC4, HDAC5, HDAC7, 

HDAC9), class IIb (HDAC6, HDAC10), and class IV 
(HDAC11). There is also a class III of HDACs, which 

are named sirtuins (SIRT1, SIRT2, SIRT3, SIRT4, 
SIRT5, SIRT6, SIRT7) (Figure 4). 
 

Aberrant regulation of HDACs can lead to initiation 
and progression of HCC [182]. Gene expression 
analysis revealed increased expression of HDAC1, 

HDAC2 and HDAC3 in HCC tissues with respect to 
non-tumor areas. HDAC overexpression correlated 
with tumor dedifferentiation and proliferative activity 

[183–185]. In a cohort of 334 human HCCs, aberrant 
expression of several HDACs, and increased copy 

numbers of the HDAC3 and HDAC5 genes were 
observed [186]. 
 

In several studies, sirtuins serve as useful prognostic 
biomarkers in HCC [187]. Overexpression of SIRT1, 
SIRT2 and SIRT7 was linked to increased expression 

of oncogenic cell cycle genes. SIRT1 levels are 
elevated in HCC tissues in comparison to non-

malignant tissues [188]. Contrasting results on the 
role of SIRT6 in HCC have been reported. It was 
shown that downregulation of SIRT6 induced 

hepatocarcinogenesis and inhibited apoptosis [189], 
while another study revealed that SIRT6 
overexpression inhibited apoptosis [190]. Thus, 

HDAC inhibitors (HDACi) represent a promising 
therapy for HCC treatment, either as monotherapy or 
in combination with other anticancer drugs.  

 
Trichostatin A (TSA) is a hydroxamate HDCAi. TSA 

inhibits the growth of hepatic tumors through cell 
cycle blocks and activation of apoptosis [191]. 
Recently, Chen et al. [192] have shown that the 
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effects of TSA on HCC cells may be increased by pre-
treatment with sorafenib, via the inhibition of 

RAF/MEK/ERK and NF-κB signaling pathways. 
Furthermore, TSA increases the killing of HCC cells 
indirectly by increasing natural killer (NK) activities, 

through increasing the expression of NKGD2 ligands 
(MICA/B and ULBP1/2/3) and directly increasing 

apoptosis [193]. 
 
Another hydroxamate HDACi exhibiting preclinical 

antitumor activity in HCC is vorinostat (suberoylanilide 
hydroxamic acid, SAHA; Zolinza ®, Merck Sharp & 
Dohme Ltd). Vorinostat, blocks proliferation of HCC 

cells and activates cell death through apoptosis [194] 
and autophagy [195]. Vorinostat inhibits HIF-1α, which 

results in inhibition of angiogenesis [196] and 
upregulation of microRNAs (miRs), which act as tumor 
suppressors [197]. Co-treatment with vorinostat and 

oxaliplatin exhibited synergistic anticancer effects in 
HCC cells in vitro and in an in vivo in animal model 
[198]. A phase study I (NCT01075113) is currently 

investigating the side effects and the best doses of 
vorinostat when given together with sorafenib in 

patients with advanced HCC. 
 
Panobinostat (LBH589; Farydak®, Novartis), is a new 

hydroxamic acid-derived HDACi with promising 
anticancer effects. In 2016, the FDA approved 
panobinostat for treatment of patients with multiple 

myeloma. Panobinostat activates alternative apoptotic 
pathways in HCC cells, also in TP53-deficient cells, and 
reduced angiogenesis in tumor xenografts [199], 

through modulation of extracellular signaling cascades 
via a CTGF-dependent pathway [200]. Moreover, 

panobinostat in combination with sorafenib led to 
strong antitumor effects in vitro and in vivo, through the 
activation of apoptosis and autophagy, and inhibition of 

vessel density and tumor volume [186]. Combination of 
panobinostat with sorafenib has been evaluated in HCC 

patients in two phase I clinical trials (NCT00873002, 
NCT00823290). Clinical trial NCT00873002 was 
terminated due to severe dose-limiting toxicity, whereas 

results of the NCT00823290 study are not available yet. 
 
Resminostat (4SC-201, RAS2410) is an inhibitor for 

class I HDACs. This HDAC induced cell death in HCC 
cells, and co-treatment with sorafenib had synergistic 

effects in mesenchymal HCC cells, which were resistant 
to sorafenib-induced apoptosis [201]. In the SHELTER 
study (NCT00943449) the therapeutic combination of 

sorafenib and resminostat prolonged survival in patients 
with advanced HCC. In this study, efficacy, evaluated 
as PFS was 12.5% for resminostat and 62.5% for 

resminostat plus sorafenib. Median TTP and OS were 
1.8 and 4.1 months for resminostat and 6.5 and 8.0 

months for the combination, respectively [202]. In 
contrast, in a phase I/II follow-up study, this therapeutic 
combination evaluated in Asian HCC patients did not 

reveal benefits in OS (NCT02400788).  
 
Belinostat (PXD101; Beleodaq®, TopoTarget) is a 

hydroxamate HDACi that in 2014 was approved by the 
FDA for treatment of patients with peripheral T-cell 
lymphoma (PTCL). Preclinical data obtained in HCC 

 

 
 

Figure 4. Schematic overview of different HDAC classes. 
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cells, revealed that belinostat inhibited cell growth and 
induced apoptosis [203]. In addition, a synergistic effect 

was observed in HCC cells after combining belinostat 
with the proteasome inhibitor bortezomib [204]. 
Recently, it was shown that combination of belinostat 

with ICIs enhanced its antitumor efficacy in a murine 
HCC model [205]. However, in a phase I/II trial 

(NCT00321594) while belinostat was well tolerated in 
patients with unresectable HCC, no efficacy was 
reported [206]. 

 

IMMUNOTHERAPY IN HCC 
 

The development and progression of a tumor depends 
on evasion of immunological surveillance. Although the 
immune tolerance mechanisms are complex and not 

completely understood, nevertheless they have provided 
the main rationales for the development of 
immunotherapy as an effective therapeutic strategy in 

cancer, including HCC treatment [207]. These 
mechanisms include dysfunction of effector T-cells, 
defects in antigen presentation, alterations in immune 

checkpoint molecules and aberrant cytokine profiles. 
 

Immune checkpoint proteins are defined as surface 
glycoproteins that send inhibitory signals for immune 
cells, mainly T cells or natural killer (NK) cells, 

preventing their activation. The immune checkpoints 
are therefore fundamental for the induction and 
maintenance of the immune tolerance of tumors. Under 

physiologic conditions, these molecules resolve T-cell 
activation during immune responses in such a way as to 

limit collateral tissue damage.  
 
The two most widely studied immune checkpoints to 

date in human cancer are the PD-1 (a.k.a. CD279) and 
the CTLA-4 (a.k.a. CD152), which were discovered in 
1992 and 1995, respectively [208, 209]. 

 
These two immune checkpoints are known to control 
different phases and signaling processes of the 

immunological surveillance. In the initial phase of 
"priming" of naïve T cell activation, the binding of the 

CTLA-4 to its receptor inhibits the stimulatory signals, 
and blocks the development of potentially self-reactive 
T cells [210]. In the next "effector" phase of the 

immune response, the interaction of PD-1 with its 
ligand, PD-L1, plays an important role, leading to the 
regulation of cytotoxic T lymphocytes (CTLs) that were 

previously activated during the priming phase [211]. 
However, there are many other proteins, such as 

lymphocyte activation gene-3 (LAG-3, CD223), B and 
T cell lymphocyte attenuator (BTLA, CD272), T cell 
immunoglobulin-3 (TIM-3), etc., which play important 

roles in the immune response to cancer, although their 
mechanisms of action remain unclear [212]. 

Background and strategies based on targeting 

CTLA-4 

 
CTLA-4 is a type 1 transmembrane glycoprotein of the 
CD28-B7 immunoglobin superfamily, and is found as a 

homodimer of 41-43 kDa on the cell surface of 
activated T cells, regulatory T cells (Tregs), and naïve T 

cells [213]. CTLA-4 is an intracellular protein in resting 
T cells, and it translocates to the cell surface after a 
costimulatory signal through CD28 and T cell receptor 

(TCR) engagement. At the cell surface, CTLA-4 
competes with CD28 for binding to its ligands such as 
the B7 molecules B7.1 (a.k.a. CD80) and B7.2 (CD86) 

expressed on the surface of an antigen-presenting cell 
(APC) (Figure 5).  

 
CTLA-4 binds to CD80 and CD86 with greater 
affinity/avidity than CD28. Since the cytoplasmic tail of 

CTLA-4 has no intrinsic enzymatic activity, the delivery 
of negative signal is probably due to its ability to 
associate with different signaling molecules, including 

the serine/threonine phosphatase PP2A (PP2A) and the 
SH2 domain-containing tyrosine phosphatase-2 (SHP-2) 

through association with the YVKM motif (Figure 5).  
 
After binding to its ligands, CTLA-4 delivers inhibitory 

signaling into the T cell, with subsequent arrest of both 
proliferation and activation. Therefore, CTLA-4 blockade 
can lead to the removal of this molecular "brake" and 

consequently restore the activation of T cells.  
 
In 2000, two CTLA-4–blocking MoAbs, ipilimumab 

and tremelimumab, entered clinical trials for treatment 
of patients with cancer. Currently, only ipilimumab 

(MDX-010; Yervoy
®
, Bristol-Myers Squibb) has been 

approved by FDA for cancer treatment. 
 

Ipilimumab is a fully humanized IgG1 MoAb that was 
initially approved in 2011 as monotherapy for treatment 
of patients with advanced melanoma [214, 215]. It is 

under investigation in a phase II trial (NCT03222076), 
in HCC patients, which are resectable in the context of 

pre-surgical therapy. 
 
Tremelimumab (CP-675, 206; Astra-Zeneca) is a fully 

humanized IgG2 MoAb. It has been evaluated in 
numerous phase III trials for treatment of several cancer 
types, but it has not yet received FDA approval. A small 

phase II trial (NCT01008358) of 21 HCC patients with 
underlying chronic HCV infection was conducted in 
2013 [216]. Although this study demonstrated antiviral 

effects, associated with an enhanced specific anti-HCV 
immune response, and antitumor activity, associated 

with an ORR of 17.6%, a disease control rate (DCR) of 
76.4%, and median TTP of 6.5 months, concerns were 
raised about the toxicity associated with this 
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monotherapy compared to anti-PD-1 therapy. However, 
the favorable antitumor efficacy of tremelimumab 

opened new opportunities for its use as monotherapy 
(NCT02519348), in combination therapies with other 
immune checkpoint inhibitors (ICIs) (NCT03298451; 

NCT02519348), or with loco-regional therapies (LRT) 
(NCT01853618). 

 

Background and strategies based on targeting PD-1 

and PD-L1 

 
PD-1 is a monomeric transmembrane protein of 50-55-
kDa, structurally related to CTLA-4 and CD28, with 

immunoglobulin-like extracellular domains, a 
transmembrane domain and a cytoplasmic tail 

containing two tyrosine-based signaling motifs, i.e. an 
immunoreceptor tyrosine-based inhibitory motif (ITIM) 
and an immunoreceptor tyrosine-based switch motif 

(ITSM) (Figure 6) [217]. These two cytoplasmic motifs 
are involved in PD-1-mediated immunosuppressive 
effects. PD-1 is expressed at the cell surface of activated 

T cells, B cells, NK cells, Tregs, monocytes, and 
dendritic cells (DCs) [218]. 

The ligands of PD-1 (PD-L1 and PD-L2) belong to the 
B7 members. PD-L1 (a.k.a. B7-H1) and PDL-2 (B7-

DC) are both type I transmembrane proteins. PD-L1 
shows broader cell and tissue distribution. PD-L1 is 
constitutively expressed by T cells, B cells, 

macrophages and DCs, and its expression is increased 
following activation of these cells. Expression of PD-L2 

is limited to professional APCs. PD-L1 and PD-L2 are 
also expressed in different tumor types, including HCC 
where their expression correlates with survival and 

tumor recurrence [219–223]. 
 
The binding of PD-1 with its ligands, PD-L1 or PD-L2, 

inhibits activation of CD8-positive T-cell by blocking 
TCR- and CD28-mediated signaling pathways [224]. 

Upon interactions between PD-1 and either PD-L1 or 
PD-L2, SHP2 is recruited to the ITSM domain of the 
PD-1 cytoplasmic tail, leading to inhibition of 

PI3K/AKT signaling, which in turn leads to arrest of T 
cell proliferation and activation (Figure 6), achieving a 
status known as of T cells exhaustion [225]. Tumor 

cells, which express PD-L1 and PD-L2 molecules at 
their surface, use this mechanism to avoid immune 

 

 
 

Figure 5. A simplified overview of CTLA-4 signaling. 
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surveillance and to survive via activation of 
antiapoptotic signals mediated by PD-L1. Therefore, 

blockade of PD-1/PD-L1 (or PD-1/PD-L2), by anti-PD-
1 or anti-PD-L1 (anti-PD-L2) can lead to growth 
inhibition and restoration of T cells activation. 

 
Several anti-PD-1 antibodies have been developed 

(Table 2). Nivolumab (Opvido®, Brystol-Myers 
Squibb) is a fully humanized MoAb. Based on a phase 
I/II trial (CheckMate 040; NCT 01658878), in 2017, 

nivolumab received accelerated FDA approval for 
treatment of patients with advanced HCC who had 
previously received sorafenib [226]. This study revealed 

an ORRs of approximately 20% in all patients, 
irrespective of etiology (presence or absence of HBV or 

HCV infection), and an ORR of 23% and OS rate of 
82% at 9 months in naive patients, thus supporting the 
evaluation of nivolumab as a first-line therapy for 

patients with advanced HCC [226]. Although the 
expression of PD-1 and PD-L1 on tumor-infiltrating 

lymphocytes was not evaluated in this study, objective 
responses occurred regardless of PD-L1 expression on 

tumor cells. The positive results of this phase I/II trial 
stimulated the launch of an open-label phase III 
randomized trial of nivolumab, in a first-line setting, 

versus sorafenib for comparisons of PFS and OS 
(CheckMate 059; NCT02576509). This study is 

ongoing. 
 
Pembrolizumab (MK-3475; Keytruda®, Merck Sharp 

and Dohme) is a humanized mAb against human PD-1. It 
has been investigated in the KEYNOTE-224 phase II 
trial, as a second-line treatment in HCC patients 

previously treated with sorafenib [227]. In this study, 
results were similar to those obtained with nivolumab, 

with on ORR of 17% observed in all patients regardless 
of etiologies. Median PFS and OS were 4.9 months and 
12.9 months, respectively. Pembrolizumab has been 

evaluated in two phase III trials as a second-line therapy 
in HCC patients who had progressed on, or were 

 

 
 

Figure 6. A simplified overview of PD-1 signaling. 
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Table 2. ICIs under clinical evaluation in HCC (as of December 2019). 

Targets Agent(s) (trade name; code name; Company) Phase Status 

ClinicalTrials

.gov 

Identifier 

Single agent 
    

CTLA-4 Tremelimumab II recruiting NCT02519348 

 

Ipilimumab (Yervoy
®
, MDX-010, Bristol-Myers 

Squibb) 
II recruiting NCT03222076 

PD-1 Nivolumab (Opvido®; Brystol-Myers Squibb) III active, not recruiting NCT02576509 

  
III recruiting NCT03383458 

 

Pembrolizumab (Keytruda®; MK-3475; Merck 

Sharp and Dohme) 

I 

II 

recruiting 

active, not recruiting 

NCT02595866 

NCT02702414 

  
II recruiting NCT03419481 

  
II recruiting NCT03163992 

  
III recruiting NCT03062358 

  
III active, not recruiting NCT02702401 

 
Tislelizumab (BGB-A317; BeiGene) II active, not recruiting NCT03419897 

 

Camrelizumab (SHR-1210, HR-301210; Jiangsu 

Hengrui Medicine/Incyte) 

II 

 

active, not recruiting 

 

NCT02989922 

 

PD-L1 

 

Durvalumab (Imfinzi®; MEDI4736; Astra 

Zeneca/MedImmune) 

III 

II 

active, not recruiting 

active, not recruiting 

NCT03298451 

NCT03389126 

 
Avelumab (Bavencio®; EMD Serono, Inc.) I active, not recruiting NCT02699515 

 
MSB0011359C (M7824; Merck KGaA)    

Combination of ICIs 
    

CTLA-4, PD-1 Ipilimumab + Nivolumab I/II active, not recruiting NCT01658878 

  
II recruiting NCT03222076 

CTLA-4, PD-L1 Tremelimumab + Durvalumab III active, not recruiting NCT03298451 

  
II recruiting NCT02519348 

Combination of ICI with targeted agents 
   

PD-1, TKIs Nivolumab + Sorafenib I/II active, not recruiting NCT01658878 

 
Nivolumab + Cabozatinib I/II active, not recruiting NCT01658878 

 
Nivolumab + Lenvatinib I active, not recruiting NCT03418922 

 
Pembrolizumab + Sorafenib I/II recruiting NCT03211416 

 
Pembrolizumab + Lenvatinib I/II recruiting NCT02501096 

 
Pembrolizumab + Regorafenib I recruiting NCT03347292 

 
Spartalizumab (PDR001; Novartis) + Sorafenib II active, not recruiting NCT02988440 

PD-L1, TKIs 
Atezolizumab + Cabozantinib (Cabometyx® , 

Exelixis, Inc.) 
III recruiting NCT03755791 

PD-1, VEGF Nivolumab + Bevacizumab I active, not recruiting NCT03382886 

PD-L1, VEGF Durvalumab + Bevacizumab II recruiting NCT02519348 

 

Atezolizumab (Tecentriq®; Genentech) + 

Bevacizumab 
III recruiting NCT03434379 
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PD-L1, VEGF, KIT, 

PDGFR 

 

Avelumab + Axitinib 

 

I 

 

completed, 

no results posted 

NCT03289533 

 

Combination of ICI with loco-regional therapy 
   

DEB-TACE, PD-1 DEB-TACE + Nivolumab II recruiting NCT03572582 

TACE, PD-1 TACE + Pembrolizumab I/II recruiting NCT03397654 

TACE, RFA, 

CTLA-4 
TACE + Tremelimumab; RFA + Tremelimumab I active, not recruiting NCT01853618 

SBRT, CTLA-4, 

PD-1 
SBRT + Ipilimumab + Nivolumab I recruiting NCT03203304 

DEB-TACE, 

CTLA-4, PD-L1 
DEB-TACE+ Tremelimumab + Durvalumab II recruiting NCT03482102 

Radiation, CTLA-4, 

PD-L1 
Radaition, Tremelimumab + Durvalumab II recruitting NCT03482102 

adverse events (AEs);  Treatment-emergent adverse events (TEAEs); Objective Response Rate (ORR); Transarterial 
chemoembolization (TACE); stereotactic body radiotherapy (SBRT); radiofrequency ablation (RFA);  dose limiting toxicities 
(DLTs); Drug-eluting Bead Transarterial Chemoembolization (DEB-TACE); serious adverse events (SAEs) 
 

intolerant, to sorafenib (KEYNOTE-240, 

NCT02702401; KEYNOTE-394, NCT03062358). 
However, as revealed by press information on February 
19, 2019, KEYNOTE-240 trial failed to reach its co-

primary endpoints, i.e. PFS and OS [228], compared to 
placebo and best supportive care. The other 
randomized, double-blind phase III trial, KEYNOTE-

394, is still recruiting Asian patients with advanced 
HCC, who were previously treated with sorafenib. This 

study is evaluating pembrolizumab in combination with 
best supportive care, versus placebo in combination 
with best supportive care. In addition, there are 

numerous ongoing trials examining pembrolizumab in 
combination with other treatments. 
 

Clinical trials evaluating the effects other anti-PD-1 
MoAbs, such as tislelizumab (BGB-A317; BeiGene) 

and camrelizumab (SHR-1210, HR-301210; Jiangsu 
Hengrui Medicine/Incyte) as single agents are also 
ongoing in HCC. In addition, other anti-PD-1 MoAbs, 

such as spartalizumab (PDR001; Novartis), are used in 
combination with other therapies. 
 

Finally, several anti-PD-L1 antibodies have been 
developed (Table 2). Durvalumab (Imfinzi®, Astra 
Zeneca/MedImmune), a human MoAb to PD-L1, 

received accelerated approval by the FDA in May 2017 
to treat patients with cancers in the bladder and urinary 

tract. In HCC, a phase I/II trial in a cohort of 40 patients 
with advanced stage of disease was completed [229]. 
The ORR of this study was 10.3%, the median OS was 

of 13.2 % and median PFS was 2.7 months. A phase III 
trial (NCT03298451) of durvalumab as first-line 

treatment in patients with advanced HCC is currently 

underway. 
 

Avelumab (Bavencio®, EMD Serono, Inc.) is a fully 

humanized MoAb that was initially approved by the 

FDA in 2017 as first-line treatment for metastatic 

Merkel cell carcinoma (MCC). A phase II study 

(NCT03389126) is currently investigating avelumab as 

monotherapy in patients with advanced HCC, after prior 

sorafenib treatment. 

 

Combination of immune checkpoint inhibitors with 

other HCC treatments 

 

Many ICIs are currently being investigated in 

combination with other ICIs, with kinase inhibitors, 

with molecular targeted agents, or with loco-regional 

therapies, such as TACE, radiofrequency ablation 

(RFA), and radiation (Table 2). 

 

A phase II study (NCT02519348) evaluating safety  

of combination of two ICIs, durvalumab and 

tremelimumab, in forty patients with unresectable HCC, 

with or without associated HBV or HCV infection who 

progress on, are intolerant to, or have refused sorafenib 

therapy, has been conducted [230]. The study revealed 

an objective response rate of 40% in the 20 uninfected 

patients (no HBV or HCV) and of 25% in all forty 

patients [230]. No unexpected safety problems were 

observed in the patients included in this study. Thus, a 

larger phase III trial (NCT03298451) is currently 

recruiting participants. 
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Atezolizumab (Tecentriq®) is a PD-L1 blocking MoAb 
developed by Genentech, and has been approved by the 

FDA (May, 2016) for the treatment of bladder and 
urinary tract cancers (urothelial carcinoma), and 
subsequently (October, 2016) for the treatment of 

metastatic non-small cell lung cancer (NSCLC). A 
multicenter phase Ib trial (COSMIC-021; 

NCT03170960) evaluating atezolizumab in combination 
with TKI cabozantinib is currently recruiting patients 
with advanced HCC to determine the MTD and ORR 

(COSMIC-021; NCT03170960). This combination is 
also being studied in an ongoing multicentre phase III 
trial, (COSMIC-312; NCT03755791) which expects to 

recruit about 640 patients, with the aim to evaluate the 
potential in first-line therapy of cabozantinib and 

atezolizumab in comparison with sorafenib for patients 
with advanced HCC (Table 2). The primary endpoints 
for the study are the duration of PFS and OS. 

 
Recently, the results from the phase Ib study of 
atezolizumab in combination with the anti-VEGF 

MoAb bevacizumab in sixty-eight patients with 
advanced HCC were reported at the ESMO 2018 

Congress [231]. The ORR was 34% and PFS rate at 6 
months was 71%, whereas median duration of response 
(DOR) and median OS have not yet been reached. 

Interestingly, responses were observed in all patient 
subgroups, including those with AFP ≥400 ng/ml. Due 
to the encouraging results, a phase III IMbrave150 trial 

(NCT03434379) is currently recruiting patients. 
 
Loco-regional therapies are commonly used as primary 

treatments in patients with unresectable HCC. Now they 
are being evaluated in combination with ICIs in patients 

with advanced HCC. The rationale for this approach is 
based on the assumption that killing cancer cells with 
these therapies, promote the release into the blood of 

tumor-associated antigens and neoantigens. This results 
in the activation of immune response that can recognize 
and kill cancer cells that survived. Therefore, addition 

of ICIs could reinforce these effects. In particular, a 
phase II trial (NCT03572582) of combination of 

nivolumab with TACE has been initiated with the aim 
to evaluate ORR. Other clinical trials of combination of 
LRTs (RFA, TACE, radiation) with pembrolizumab 

(NCT03397654), or tremelimumab (NCT01853618), or 
ipilimumab + nivolumab (NCT03203304), or 
durvalumab + tremelimumab (NCT03482102), are 

active but not recruiting or are still recruiting patients, 
most of them should be completed in 2020-2021. 
 

THERAPY IN ELDERLY HCC PATIENTS 
 
The definition of elderly patient is traditionally of a 

subject aged >65 years. However, a real cut off point 
cannot be defined as the aging process is an individual 

process so, according to the definition of the World 
Health Organization (WHO), it is necessary to talk 

about Healthy Aging and the age above which this 
concept is most frequent is >60 years. Nevertheless, 
most of the clinical studies on HCC classify the 

population as elder if 75 years old and extremely old if 
over 80 years [232–234]. 

 

For various socio-economic reasons, life expectancy in 

the last 20 years has increased all over the world when 

compared to 1900. According to WHO in Europe there 

has been an increase from 76.7 years in 2010 to 77.9 

years in 2015, and Italy ranks second in Europe and 

eighth in the world as regard the life expectancy being 

82.7 years in all-population, divided in males 80.5 and 

in females 85 years [235]. With the increase in life 

expectancy there is also an increase in the frequency 

and incidence of degenerative diseases, in particular of 

neoplasms, which in the age group > 65 years have an 

incidence 11-fold higher than in the younger population 

[236]. 

 

International guidelines suggest to choose therapeutic 

options in relation to the dimension of the lesion, the 

stage of liver cirrhosis and the performance status, 

according to Barcelona Clinic Liver Cancer (BCLC) 

classification [8, 237, 238]. Current treatments for HCC 

include surgical resection, radio-frequency thermal 

ablation (RFTA), microwave ablation, alcoholization 

(percutaneous ethanol injection, PEI), liver 

transplantation, transarterial chemoembolization 

(TACE), transarterial radioembolization (TARE), 

targeted therapy with sorafenib and the recently 

approved first-line lenvatinib.  

 

In elderly HCC patients, the therapeutic choices have 

not always been applied according to the suggestions of 

the guidelines as one of the main problems in the 

management of the treatment choice is the frequent 

presence of co-morbidities and usually a longer history 

of disease that limits the therapeutic options. Aging is in 

fact frequently associated with a functional reduction of 

the organs, including liver, conditions of disability, 

cognitive impairment, metabolic co-morbidities, such as 

diabetes or cardiovascular diseases, which contribute to 

define the elderly patients as “fragile”, whose prognosis 

is worse and with an expectation of survival that does 

not depend only on the staging of HCC. For these 

reasons, in the past patients in BCLC class 0 or A were 

treated with loco regional therapies such as RFTA, PEI 

or TACE instead of being treated with hepatectomy 

[239, 240]. Recently, the improvement of surgical 

procedures and perioperative management is, however, 

modifying this therapeutic approach. 
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Surgical therapy 
 

Most of the studies on liver surgery in populations of 
elderly or extremely old patients have been conducted 
in Japan, which is the country that has the highest life 

expectancy in the world 84.2 years [241]. 
 

Several studies have demonstrated that there are no 
substantial differences in complications among younger 
and elderly patients when the populations are correctly 

selected according to the guidelines [240–249], 
although some studies have reported a Grade 2 and 3 of 
complications according to the Clavien-Dindo 

classification [247, 248]. 
 

In the study by Wu et al., which reported on a series 
consisting mainly of octogenarians, there was a longer 
postoperative period than the young [249]. On the 

contrary, the study by Horiuchi et al. [250], assessing 
surgical outcome and long-term survival after elective 
hepatic resection for HCC in patients aged 80 years or 

more, found that incidence of postoperative 
complications, in-hospital mortality, and postoperative 

OS in the extremely elderly group were comparable 
with those of the elderly group. Finally, a recent 
Japanese nationwide study on the treatment 

optimization for HCC in the elderly, analyzing 6,940 
HCC patients aged ≥75 years, concluded that hepatic 
resection was the best therapeutic option (vs RFTA and 

TACE) because decreased recurrence risk and improved 
OS in patients aged ≥75 years with primary HCC 
tumors <3.0 cm [251]. 

 
Anyways, globally considered, data on OS and duration 

of disease that these studies have reported as optimal, 
have some bias from a methodological point of view, 
therefore, it is reasonable to state that in elderly 

patients, selected according to the guidelines and 
carefully subjected to geriatric evaluation, surgery can 
be a valid therapeutic option [252]. 

 

Radio-frequency thermal ablation 

 
Radio-frequency thermal ablation (RFTA) is a very 
widespread method, which uses electric current and 

allows tumor necrosis due to heat production [253]. In 
elderly patients, especially if they have co-morbidities, 
RFTA is the therapy of choice in clinical practice. 

Several studies have shown survival rates comparable 
with those of the young [253–255], even if data on local 
progression are conflicting [254, 256]. Most of studies 

were conducted on Asian populations. However, a 
recently published paper conducted in Austria with a 

more innovative technique, confirmed previous 
observations obtained with RFTA, demonstrating that 
stereotactic radiofrequency ablation (SRFA) in 

octogenarians is a safe, feasible and useful option in the 
therapy of HCC with no significant difference in 

outcomes compared to a younger control group [257]. 
 

Percutaneous ethanol injection 

 
Percutaneous ethanol injection (PEI) therapy was the 

treatment of choice before the advent of RFTA and still 
today has some indications when for technical reasons 
RFTA is not feasible. In the elderly this approach was 

studied by Teratani et al. [258] who did not observe 
significantly different efficacy, safety profiles and 
survival rates in elderly HCC patients (aged ≥ 70 years) 

treated with PEI in comparison with younger patients.  
 

Transarterial chemoembolization 
 
Transarterial chemoembolization (TACE) is nowadays 

considered the best therapeutic option for unresectable 
HCC in intermediate stage according to BCLC  
but in the past it was considered contraindicated in 

elderly patients [259]. Recent studies performed in 
western and eastern populations concluded that there 

were no observed differences in post-procedural 
complications depending on the age of patients, and that 
TACE was a safe and effective procedure in elderly 

patients [260, 261]. 
 
However, in a Japanese population of octogenarians, 

Cheng et al. [262] found that the performance status 
(ECOG 0) was the only independent prognostic 
significant factor, and that adverse events and OS rates 

were not different in the octogenarians. 
 

Targeted therapies 
 
The frequent diagnosis of HCC at an advanced stage 

with the only therapeutic choice of systemic therapy in 
elderly has raised the question of how to manage this 
kind of therapy and its side effects in this category of 

patients. In fact, due to their more fragile conditions, 
they are generally considered more prone to suffer from 

toxic side effects which lead to dose reduction or 
interruption of therapy. Currently, treatment with 
sorafenib represents the oldest standard systemic 

therapy for advanced HCC in patients with preserved 
liver function (Child-Pugh class A). The trials of 
sorafenib, the SHARP and the Asia-Pacific trials, 

however, had median ages of patients of 64.9 and 51 
years, respectively, even if in the subgroup analyses 
clinical benefits of the drug were proved similar in both 

younger (<65 years) and older (≥65 years) patients 
[263, 264]. Successively, the global investigation of 

therapeutic decision and of  its treatment with sorafenib 
(GIDEON) study, a global, prospective, non-
interventional study undertaken to evaluate the safety of 
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sorafenib in patients with unresectable HCC in real-life 
practice, comparing safety profiles of sorafenib in 

patients <65 years and ≥65 years, showed that the 
incidence of side effects of any severity was 
independent of age [265]. In particular, in the Italian 

cohort of the GIDEON study sorafenib showed to be 
well tolerated and an effective treatment option in both 

younger and elderly patients, moreover elderly had 
longer OS than younger [266]. 
 

Although sorafenib was used as the only molecular 
targeted agent for HCC since 2007, other drugs were 
developed successively, but none of them passed from 

phase II or phase III clinical trials. Recently, novel 
drugs such as: regorafenib, cabozantinib, ramucirumab, 

nivolumab and pembrolizumab emerged from clinical 
trials for clinical use, but only as second line therapies. 
Indeed, lenvatinib is now feasible as an alternative to 

sorafenib as a first-line treatment for advanced HCC 
[267]. However, the safety and efficacy of lenvatinib in 
elderly patients with HCC has not been sufficiently 

investigated due to the limited numbers of elderly 
patients included in the trials. A recent Japanese study 

analyzed 100 patients with HCC who received 
lenvatinib, 50 elderly (age ≥ 75 years) and 50 non-
elderly [268]. The authors found that there were no 

significant differences between the elderly and non-
elderly groups in the frequency of adverse events and 
overall and progression-free survival, and they 

concluded that lenvatinib can be used safely and 
efficaciously regardless of age in patients with HCC 
[268]. 

 

CONCLUSIONS 
 

HCC represents a complicated disease as there is no 
single gene that is mutated in all HCC patients. The 
nature of evolution of HCC cells which can become 

invasive remains an area of intense research. HCC is a 
disease of aging as it is not frequently detected in 
younger people and may require the convergence of 

both complicated environmental and genetic mutational 
events.  Treatment of elderly HCC patients (>75 years) 

remains a more difficult proposition as the safety and 
efficacy of the new target therapies have not been 
sufficiently investigated due to the limited numbers of 

elderly patients included in phase III clinical trials, 
therefore data from real-life practice are urgently 
needed.  

 
Until recently, sorafenib was the only molecular 

targeted agent approved for treatment of advanced HCC 
patients. However, upon approval of lenvatinib in 2018 
as first-line treatment, clinicians have another option of 

choice to treat patients with advanced HCC. In addition, 
with the approval of regorafenib, cabozantinib and 

ramucirumab as second-line treatments many patients, 
who progressed on sorafenib, nowadays may benefits 

for the increased treatment options. In near future, when 
ICIs, such as nivolumab and pembrolizumab, will 
eventually become available, more arms will be 

available to fight HCC. Consequently, a larger number 
of patients will benefit from these treatments, even 

using combination of them, i.e. ICIs and molecular 
targeted agents. In summary, the main issues, which 
remain, are the right drug, or combination of drugs, or 

sequential of drugs, for each given patient which may 
rely on personalized medicine based on genomic and 
other omics approaches.  
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