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INTRODUCTION 
 

Age is a major risk factor for the development of the 

most common musculoskeletal disease, osteoarthritis 

(OA). Primary OA affects more than half of the world’s 

population aged 65 and older. This disease is a leading 

cause of disability worldwide and one of the most 

common chronic illnesses, accounting for 40-60% of 

patients with degenerative diseases [1]. OA can affect 

many articulations, but it is commonly localized in the 

weight-bearing joints and most frequently occurs in the 

knee. This debilitating disease results in a progressive 

alteration of all the joint tissue structures [2]. Although 

aging does not necessarily cause OA, age-related  

 

changes coupled with other risk factors could accelerate 

the development of its pathological process [3, 4].   

 

Currently, there is no cure for OA nor way to prevent 

the disease’s progression. Available treatments are 

effective only in relieving symptoms, and in older 

adults their use could induce major adverse events and 

even mortality [5]. An important difficulty in 

developing disease-modifying OA drugs (DMOADs) is 

identifying patients from an early stage of the disease. 

Further efforts are needed to move toward a better 

understanding of the factors and joint tissues implicated 

early in this disease process and to open up novel 

therapeutic avenues.  
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ABSTRACT 
 

The adipokine adipsin is an emerging mediator of human osteoarthritis (OA) progression. Here, we 
investigated its in vivo role in the development of spontaneous OA in aging mice. We compared articular 
knee joint morphology, histology in knee cartilage, synovial membrane, subchondral bone, meniscus, and 
anterior cruciate ligament (ACL), and chondrogenesis in the ACL from adipsin-deficient (Df-/-) and wild-type 
(Df+/+) in 20-week- and 20-month-old mice. Serum levels of a panel of adipokines, inflammatory factors, and 
metalloproteases known to be implicated in OA were investigated. Data first reveal that the early 
manifestation of OA appeared in the ACL of 20-week-old mice, progressing to severe alterations in the 20 
month-old wild-type mice. Further results demonstrated that adipsin-deficiency protected the articular 
tissues from spontaneous OA progression and triggered significantly higher serum levels of the adipokines 
adiponectin and FGF-21 while lowering levels of the inflammatory factor interleukin 6 (IL-6) in both young 
and old mice. This work further underlines the clinical relevance of adipsin as a novel therapeutic approach 
of human OA. Moreover, this study shows the potential beneficial effect of the adipokine FGF-21 against 
OA, and provides support for this factor to be a new biomarker and/or target of primary OA therapeutic 
avenues.  
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As the evolution of joint structural alterations in human 

OA occurs over an extended period, animals offer the 

advantage of manifesting this disease development 

within a shorter time than humans, enabling 

investigation of this disease in a timely fashion and of a 

more global scope. In animals, OA models have been 

mainly induced following surgery, with the mouse 

model of destabilization of the medial meniscus (DMM) 

of the knee being the most used one [6]. Although 

informative as to the response to a traumatic surgery, it 

does not answer several questions pertaining to the 

events leading to the development in primary OA.  

 

A number of genes and factors have been implicated in 

the OA [7–9] and aging [10, 11] processes. Several pro-

inflammatory cytokines have been found to play a role 

in each process; factors such as interleukin (IL)-6, 

tumor necrosis factor alpha (TNF-α), and C-reactive 

protein (CRP) are significant contributors not only in 

elderly individuals [12–15], but their importance is also 

well-documented in OA development [7, 16–19]. In 

addition, the production of adipokines and 

inflammatory factors by adipose tissues is also 

established [20–22]. Adipokines are molecules that 

regulate energy metabolism as well as the production of 

inflammatory factors [23–25], and the levels of certain 

adipokines have been found deregulated in the above-

mentioned conditions [10, 26–30]. The adipokine 

adipsin is an emerging mediator of human OA 

progression [26–28]. It is mainly produced by the 

adipose tissue and is an integral component of the 

alternative complement pathway [31]. Data revealed 

that adipsin-deficiency delayed OA progression in a 

DMM-induced OA mouse model which appeared to 

result, at least in part, from a decreased activity of the 

alternative complement pathway [27]. Importantly, the 

aberrant activation of the alternative complement 

pathway has been implicated not only in OA and the 

aging process, but also in a number of other age-related 

diseases including diabetes, age-related macular 

degeneration, and Alzheimer’s [32–36]. 

 

We therefore hypothesize that adipsin-deficiency will 

prevent the spontaneous development of OA in mice. 

 

RESULTS 
 

Wild-type and adipsin-deficient mouse model 

 

As mentioned in the Methods section Histology/ 

Histomorphometry, about half of the wild-type (Df+/+) 

aging mice demonstrated severe knee lesions with a 

high cartilage degradation score and were named as 

Df+/+(H); the other Df+/+mice had a lower score and 

were named Df+/+(L). None of the adipsin-deficient 

mice (Df-/-) presented a high cartilage degradation score. 

Further analysis with the Fisher’s exact test revealed 

that the phenotype of the adipsin-deficient mice was not 

due to chance (p=0.015). 

 

Micro-CT (μCT) of the knee joint 

 

As illustrated in Figure 1A, the μCT analysis of the 

joints of the 20-month-old mice showed that compared 

to the adipsin-deficient (Df-/-) and the wild-type (Df+/+) 

(L), the Df+/+(H) knees presented very severe OA knee 

alterations with a high number of osteophytes, large 

subchondral bone sclerosis, and a marked narrowing of 

the joint space in the medial compartment. By using this 

technology, no changes between the Df-/- and the 

Df+/+(L) mice could be identified.  

 

Adipsin-deficient mice are protected from 

spontaneous OA progression 

 

The impact of the lack of adipsin production on the 

evolution of spontaneous OA occurring in aging mice 

was evaluated. Figure 1B–1L compares the joint tissues 

of the 20-month-old Df-/- with those from Df+/+, Df+/+(L) 

and (H) mice. Tissues from the 20-week-old mice are 

not presented, as the comparison of the articular tissues 

(cartilage, subchondral bone, and synovial membrane) 

between Df-/- and Df+/+ mice has already been reported, 

showing no histological differences or early signs of 

OA process in these tissues [27]. 

 

Cartilage 

Figure 1B illustrates cartilage degradation in both 

medial tibial plateau and femoral condyle of the 20-

month-old in which the Df+/+ mice demonstrated a 

higher loss of cartilage integrity, and a high 

Osteoarthritis Research Society International (OARSI) 

score [37], including decreased Safranin-O staining, 

altered cellularity, increased thinning of the cartilage 

and fibrillation. The more severe degradation occurred 

in the cartilage of the Df+/+(H) mice (both for the 

femoral condyle and tibial plateau), as this tissue was 

almost completely eroded. Compared to the Df+/+(H) 

mice, the cartilage from Df+/+(L) and Df-/- had a better 

cartilage structure and less degradation. The histological 

score of the Df-/- mice was significantly lower compared 

to those of Df+/+, Df+/+(L) and (H) mice for the medial 

tibial plateau (Figure 1C) and to those of Df+/+ and 

Df+/+(H) for the femoral condyle (Figure 1D). 

Moreover, significant differences were also seen 

between Df+/+(L) and Df+/+(H) for both compartments.  

 

Meniscus 

The histological examination of the Df-/- meniscus 

revealed a significantly lower level of degradation of 

both the anterior and posterior compartments 

compared to those of the Df+/+ and Df+/+(H) mice 
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(Figure 1B, 1E, and 1F). No differences in the 

histological scores were observed between the Df-/- 

and Df+/+(L) groups, but significance was reached 

between the Df+/+(L) and Df+/+(H) groups for each 

compartment (Figure 1E, 1F). The Df+/+(H) meniscus 

(Figure 1B) presented a high score, in which altered 

cellularity, decreased matrix Safranin-O staining and 

increased fibrillation in both the anterior and posterior 

compartments were found. 

 

Subchondral bone 

The analysis of the subchondral bone (Figure 1B, 1G–

1I) showed that the adipsin-deficient (Df-/-) mice had a 

significant decrease in the percentage of bone, 

trabecular and plate thickness when compared to the 

Df+/+(H) mice, but no significant differences were 

found with the Df+/+(L) subgroup. As for the cartilage 

and meniscus, significantly higher values were 

obtained for the Df+/+(H) mice when compared to 

Df+/+(L) mice. 

 

The tartrate resistant acid phosphatase (TRAP) assay was 

performed to monitor osteoclast activation in the 

subchondral bone. Data showed that only a few TRAP-

positive cells were detected in the subchondral bone 

around the bone marrow. As illustrated at Figure 1J, there 

was no difference in the TRAP positive staining between 

groups.  One could question the finding for the Df+/+ (H) 

mice, however, this data was not surprising since in these 

mice there were important sclerosis (Figure 1B Df+/+ (H)) 

and only few bone marrow remained in which few 

TRAP-positive cells could be detected. 

 

Synovial membrane 

The Df-/- synovial membrane presented a significantly 

reduced score when compared to those of the Df+/+, 

Df+/+(L) and (H) subgroups (Figure 1K–1L). Again, 

Df+/+(H) mice demonstrated a significantly higher level 

of alterations than the Df+/+(L) mice. Of note, there is a 

substantial increase in the synovial membrane thickness 

and hyperplasia of the lining cells in the Df+/+(H) mice 

(Figure 1K). 

 

Anterior cruciate ligament (ACL) 

In the ACL, the earliest changes during the aging 

process and preceding radiological signs of OA are 

mucoid degeneration (degradation of collagen and 

deposition of new glycosaminoglycans), collagen fiber 

disorganization, and the presence of chondrocyte-like 

cells and type II collagen deposition [38–41]. We 

evaluated these parameters in the ACL from 20 week- 

and 20 month-old Df-/- and Df+/+ mice (Figure 2).  

 

Data showed that in young animals, Safranin-O 

staining level was significantly lower in Df-/- compared 

to Df+/+ mice (Figure 2A), suggesting that early 

alteration occurs in the ACL at a young age, at 20-

weeks-old. Moreover, data also revealed that adipsin-

deficiency protected from such an alteration, as 

comparison between the younger and older mice 

revealed that the Safranin-O staining level remained 

stable in the Df-/- animals. In the 20-month-old mice, a 

significantly higher level of Safranin-O staining was 

found in Df+/+mice compared to Df-/- mice, with the 

level about tripled. In these mice, significantly higher 

levels were also found for both Df+/+(L) and (H) 

subgroups than in Df-/-. 

 

Collagen organisation data (sirius staining, green color 

indicating collagen fibers alterations) (Figure 2B) also 

showed that older adipsin-deficient mice were protected 

against this collagen alteration. In contrast, in the 20-

month-old mice, as observed with Safranin-O, the level 

of staining for the Df+/+mice about doubled when 

compared to Df-/- mice; this was also true for both 

Df+/+(L) and (H) mice. No differences in the adipsin-

deficient Df-/- mice were found between 20-week- and 

20-month-old mice.   

 

Determination of type II collagen deposition (Figure 

2C) revealed that this collagen type was virtually absent 

in the 20-week-old Df-/- and Df+/+mice and increased in 

the 20-month-old. As with the two other ACL 

measurements, in the older mice, the adipsin-deficient 

mice had significantly less type II collagen than Df+/+ 

and both Df+/+(L) and (H) subgroups. Of note, there was 

also a statistically significant higher level of type II 

collagen in the Df+/+(H) mice compared to the Df+/+(L). 

 

Altogether, data on the ACL indicates that changes 

occur in this tissue as early as 20-weeks-old and 

progress with age. 

 

Impact of adipsin-deficiency on the serum levels of 

some adipokines/inflammatory factors/proteinase 

 

Considering that the previous results demonstrated that 

adipsin-deficiency significantly reduced the 

spontaneous manifestation of OA in several articular 

tissues, we further evaluated if this was reflected by a 

change in the serum levels of factors related to both OA 

and aging. Among the studied factors, the serum levels 

of granulocyte-macrophage colony-stimulating factor 

(GM-CSF), vascular endothelial growth factor (VEGF), 

S100 calcium-binding protein A8 (S100A8), receptor 

for advanced-glycation-end-products (RAGE), 

interleukin (IL)-7, IL-10, IL-17 and TNF-α could not be 

determined accurately, as values were under the 

detection limit of the assays. Serum levels of hepatocyte 

growth factor (HGF), monocyte chemoattractant 

protein (MCP)-1, matrix metalloproteinase (MMP)-8 

and S100 calcium-binding protein A9 (S100A9) were
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Figure 1. Micro-CT (µCT) and histology of joint tissues of 20-month-old mice. (A) Knee joint µCT of adipsin-deficient (Df-/-), and the 

wild-type Df+/+(L) and (H) mice. Representative 3-dimensional reconstructions of the joint and axial and coronal images of the subchondral 
bone compartment. Black arrows indicate osteophytes, white arrows sclerosis and the white arrowheads joint space in the medial 
compartment. (B) Photomicrographs of representative histological sections of joint tissues: cartilage, meniscus and subchondral bone. The 
dotted lines delineate subchondral plate thickness and the black arrowheads cartilage alterations. Bar = 100 μm. Original magnification X63. 
(C–J) Representative box plots of the Osteoarthritis Research Society International (OARSI) score of the (C) medial tibial plateau, and (D) 
medial femoral condyle; the (E) anterior and (F) posterior menisci; the subchondral bone assessment of the (G) percentage of bone (% bone 
volume [BV]/total volume [TV]), (H) trabecular (tb) thickness, (I) plate thickness, and (J) tartrate resistant acid phosphatase (TRAP) assay. (K) 
Photomicrographs of representative histological sections of the synovial membrane and (L) box plot of the OARSI score of the synovial 
membrane. In (K) the dotted lines delineate synovial membrane thickness. Bar = 100 μm. Original magnification X100. For each box plot, 
values are the median and interquartile range of Df-/- (n=13), Df+/+ (n=13), Df+/+(L) (n=7) and Df+/+(H) (n=6). p values were determined by the 
Mann-Whitney test and only significant values are shown.  



 

www.aging-us.com 2884 AGING 

 
 

Figure 2. Histology and type II collagen deposition in the anterior cruciate ligament (ACL). Photomicrographs of representative 

images and box plots of 20-week-old adipsin-deficient (Df-/-) and wild-type (Df+/+) and 20-month-old Df-/-, Df+/+, Df+/+(L) and (H) mice of (A) 
Safranin-O staining, black arrowheads indicate proteoglycans deposition; (B) Sirius red staining enabling visualization of the collagen fibers. 
The green fibers corresponding to altered collagen were quantified over the total area. White arrowheads indicate thin collagen fibers. (C) 
Immunohistochemistry of type II collagen deposition and a negative control (IgG) performed by substitution with a non-specific rabbit IgG. 
Black arrows indicate positive staining. In (A–C) dotted lines delineate the core portion of the ACL. Bar in (A) = 100 μm. Original magnification 
X100. Values are the median  and interquartile range of Df-/- (n=11), Df+/+ (n=13) for the 20-week-old mice and of Df-/- (n=13), Df+/+ (n=13), 
Df+/+ (L) (n=7) and (H) (n=6) for the 20-month-old mice. p values were determined by the Mann-Whitney test. Only significant differences are 
shown except for those comparing 20-week-old and 20-month-old Df-/- (C, p= 0.0001) and Df+/+ (A, p= 0.006; B, p=0.004; C, p< 0.0001) mice. 



 

www.aging-us.com 2885 AGING 

detectable, but no significant differences were reached 

between Df-/- and Df+/+ mice in either the 20-week- or 

the 20-month-old animals (data not shown).  

 

As presented in Table 1, for the adipokines, significantly 

higher serum levels were found in the Df-/- than Df+/+ mice 

for adiponectin and fibroblast growth factor (FGF)-21 in 

both young and old mice. Leptin had a reverse pattern; 

when the Df-/- was compared to the Df+/+ mice, its levels 

were decreased in the young mice, but increased in the 

older ones. Resistin levels were significantly higher in the 

young Df-/- mice but did not vary in the older mice. 

Interestingly, for the 20-month-old mice, difference 

between the Df-/- with Df+/+(L) and (H) mice subgroups 

revealed that although adiponectin and leptin levels were 

significantly higher compared to the Df+/+(L) group, no 

significant difference was found for the (H) group. For 

FGF-21, Df-/- had significantly higher levels than both 

Df+/+(L) and (H) mice subgroups. 

 

Among the two inflammatory factors, only IL-6 showed 

a trend towards lower levels in the Df-/- mice at both 

time points. No significant change was observed for 

levels of CRP and the matrix metalloproteinase (MMP)-

3, when comparing Df-/- with Df+/+ young and old mice. 

In the 20-month-old animals, comparison between Df-/- 

and Df+/+(L) subgroup in the mice revealed similar 

changes, except for IL-6 where a significantly lower 

value was found. 

 

Age-associated changes showed that the adiponectin 

level did not change, but in the older mice levels of 

FGF-21 and leptin significantly increased in the Df-/- 

mice, while resistin decreased in both Df-/- and Df+/+ 

mice. The levels of the inflammatory factors CRP and 

IL-6 increased significantly with aging in both Df-/- and 

Df+/+ mice, while those of the MMP-3 decreased 

significantly in the aging mice. 

 

Effect of in-vitro adipsin-silencing on adipokine 

expression 

 

As Table 1 demonstrated that the in vivo silencing of 

adipsin in mice resulted in increased serum levels of 

FGF-21 and adiponectin in both young and aged mice, 

we further examined whether the lack of adipsin 

directly impacted FGF-21 expression in vitro. To that 

effect, siRNAs specific for the adipsin gene were 

transfected into the human hepatocyte cell line HepG2, 

as these cells are known to express both adipsin and 

FGF-21. Data revealed that silencing the adipsin gene 

expression with specific siRNAs (n=5) decreased 

adipsin expression (fold change±standard deviation, 

0.77±0.07, p<0.0001) and this decrease resulted in a 

significant increase in expression of FGF-21 

(3.85±2.95, p=0.043) after 24 hours. Adiponectin 

expression was also increased but did not reach 

statistical significance (11.77±13.99, p=0.133). 

Adipsin-silencing did not quite significantly affect the 

expression of another adipokine, leptin (1.62±1.39, 

p=0.060). 

 

DISCUSSION 
 

Our study revealed that in spontaneous OA, the earliest 

sign of articular alteration appears to originate in the 

ACL and the lack of adipsin protects against the 

spontaneous development of OA. Data further showed 

that an increased production of the adipokines FGF-21 

and adiponectin, and a decrease of the inflammatory 

factor IL-6 are possible mechanisms by which this 

protection could occur.  

 

The data showing that adipsin plays an important role in 

articular tissues in OA are further reinforced by those 

from a recent publication in which adipsin-deficiency in 

an immunologically-induced inflammatory arthritis 

mouse model also demonstrates a protective role in 

articular tissues [42]. 

 

OA is now regarded globally as a whole joint disease, 

and our histological data of the wild-type mice (Df+/+) 

concur with this premise. Indeed, human primary OA is 

characterized by the degradation of cartilage and 

meniscus and alterations of the synovial membrane and 

subchondral bone [43, 44]. In this study, an important 

finding is that the ACL appears to be the earliest 

articular tissue to show signs of alterations during 

spontaneous age-related OA. This agrees with the 

notion that changes in the knee ligaments, and more 

particularly in the ACL, may precede cartilage 

degradation by inducing instability, consequently 

leading to articular tissue lesions and degeneration as 

observed in humans [38] and animals [39–41], and a 

recent publication reporting that an early ligamentous 

degeneration preceded the onset of human OA [45]. 

This finding also supports the use of the transection of 

the ACL as a preferred model to mimic the human 

disease. Indeed, in large animals (e.g. dogs), such a 

model was demonstrated to induce the disease with 

alterations strikingly similar to those of the natural 

disease in humans [46]. Moreover, the results obtained 

with two drugs/agents tested in the dog ACL model of 

OA (licofelone [47–49] and doxycycline [50]) were 

translated to human in clinical trials [51, 52].  

 

The finding that adipsin-deficiency resulted in a 

significant increase of the serum levels of FGF-21 and 

adiponectin is interesting as both adipokines were 

reported to have metabolic/anti-inflammatory effects 

and suggested to be instrumental in maintaining joint 

health [53–57]. 
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Table 1. Serum levels of adipokines/inflammatory factors/proteinase. 

  

 20-week-old mice 20-month-old mice Age comparison 

Df-/- 

(n=11) 

Df+/+  p‡ 

(n=13) 

Df-/- 

(n=9) 

Df+/+ p‡ 

(n=11) 

Df+/+(L)  p† 

(n=7) 

Df+/+(H)  p†† 

(n=4) 
(Df-/-) p* (Df+/+) p** 

Adiponectin 

(ng/ml) 

5088  

(4788; 5615) 

4632  

(4397; 4854) 

0.030 

4942  

(4601; 5369) 

4166  

(3562; 4410) 

0.005 

3787  

(3562; 4206) 

0.008 

4410  

(3822; 4588) 

0.076 

0.323 0.132 

FGF-21 

(pg/ml) 

432.1  

(359.5; 

586.8) 

307.8  

(142.0; 430.8) 

0.032 

1688.1  

(901.9; 1697.4) 

398.4  

(219.5; 823.9) 

0.002 

314.0  

(195.4; 630.7) 

0.004 

614.9  

(388.4; 951.8) 

0.037 

0.0005 0.203 

Leptin 

(ng/ml) 

0.7  

(0.3; 1.3) 

1.5  

(1.2; 3.2) 

0.021 

6.5  

(3.5; 7.1) 

1.6  

(0.4; 3.8) 

0.019 

0.7  

(0.1; 3.2) 

0.034 

2.3  

(1.6; 4.0) 

0.105 

0.0005 0.728 

Resistin 

(ng/ml) 

36.4  

(34.7; 38.4) 

27.1  

(25.2; 29.0) 

0.0004 

20.0  

(18.5; 22.8) 

19.0  

(17.8; 22.1) 

0.517 

21.9  

(18.7; 22.6) 

1.000 

17.8  

(15.4; 18.6) 

0.163 

0.0002 0.002 

CRP 

(μg/ml) 

23.9  

(20.6; 26.6) 

21.5  

(18.3; 22.7) 

0.105 

30.8  

(29.1; 32.6) 

n=8 

30.7  

(24.6; 33.0) 

0.704 

32.6  

(24.9; 34.0) 

0.916 

29.8  

(23.3; 30.9) 

0.316 

0.001 0.026 

IL-6 

(pg/ml) 

1.9  

(0.0; 1.9) 

1.9  

(1.9; 3.6) 

0.057 

3.6  

(1.9; 5.2) 

8.4  

(3.6; 20.4) 

0.122 

16.0  

(6.0; 24.8) 

0.041 

3.6  

(2.7; 5.6) 

0.931 

0.018 0.023 

MMP-3 

(ng/ml) 

64.9  

(54.6; 86.9) 

73.9  

(61.4; 91.9) 

0.417 

52.2  

(38.0; 56.6) 

52.9 

(43.1; 64.6) 

0.403 

57.6  

(46.9; 79.3) 

0.299 

47.6  

(41.2; 52.9) 

0.940 

0.044 0.018 

Serum samples were from adipsin-deficient (Df-/-) and wild type (Df+/+) 20-week- and 20-month-old mice. Df+/+(L) refers to 20-
month-old Df+/+ mice with a low Osteoarthritis Research Society International (OARSI) score (score, 2-4) while Df+/+(H) refers 
to those with a high OARSI score (score, 5-6). Data are expressed as the median (interquartile range). Differences between 
groups were assessed by the Mann-Whitney test. P values ≤0.050 were considered significant and are shown in bold. p‡ 
compares Df-/- and Df+/+mice; p†: 20-month-old Df-/- and Df+/+(L) mice; p††: 20-month-old Df-/- and Df+/+(H) mice; p*: 20-week- 
and 20-month-old Df-/- mice and p**: 20-week- and 20-month-old Df+/+mice. No statistical differences were found between 
Df+/+(L) and (H) mice. 
 

FGF-21 is an adipokine/endocrine hormone produced by 

the liver, adipose tissue and blood cells [58, 59], and is 

reported to be anti-inflammatory and to demonstrate anti-

aging properties [60, 61]. Importantly and related to 

arthritis, FGF-21 was found to attenuate the collagen-

induced arthritis by reducing, among other things, some 

pro-inflammatory cytokines [55]. The exact mechanisms 

behind more elevated levels of FGF-21 in adipsin-

deficient (Df-/-) than in the wild-type (Df-+/+) mice 

remains to be determined, but data from the siRNA 

experiment suggest a direct event. Hence, the silencing of 

the adipsin gene expression resulted in a significantly 

increased expression of FGF-21. As human cells were 

used for this experiment, data also indicates that the 

relationship between adipsin and FGF-21/adiponectin is 

not specific to mouse cells, but could also be applied to 

human cells. Although a relationship between the 

expression of adipsin and FGF-21 has been reported [62], 

the regulatory factors at play still remain to be 

determined. FGF-21 is known to be regulated by a 

number of metabolic factors, nutrients, and oxidative 

stress [58, 63, 64], and involved in the regulation of 

glucose and lipid metabolism [65–68]. This could 

suggest that the lack of adipsin impacted these metabolic 

factors. However, this is to no avail, since, as previously 

reported, the serum levels of triglycerydes, cholesterol 

and free fatty acids in adipsin-deficient mice were similar 

to those of the wild-type [69].  

 

Adiponectin could be found in the circulation in three 

forms, and depending on its form, could have pro- or 

anti-inflammatory properties [24, 70, 71]. As for FGF-21, 

this adipokine in the serum was found to be significantly 

elevated in the in the adipsin-deficient (Df--/-) compared 

to the wild-type (Df-+/+) mice. As FGF-21 was reported to 

be a regulator of adiponectin expression/production [66, 

72], such an up-regulation could reflect that FGF-21 

could be the trigger. Moreover, the beneficial effect of 



 

www.aging-us.com 2887 AGING 

FGF-21 in the protection of the articulation against OA 

development/progression in the adipsin-deficient mice 

could also be due to the fact that FGF-21 inhibits IL-6 

[55], an inflammatory factor that, although it did not 

quite reach statistical significance, showed a trend toward 

a lower serum level in the Df-/- than the Df+/+ mice in 

young mice and was statistically different when 

compared to Df+/+(L) mice. In turn, the lower IL-6 serum 

levels in the adipsin-deficient mice could also result from 

the lack of the activation of the alternative complement, 

as adipsin is an important element of this pathway  

[73, 74]. 

 

Surprisingly, although in the younger mice the serum 

leptin level was significantly lower in adipsin-

deficient animals, in the older mice, a higher leptin 

serum level was found. Although leptin was reported 

to be associated with cartilage degradation [23, 75–

78], this still remains controversial since other works 

did not find such an association [26, 79, 80]. Although 

speculative, it is possible that in the Df-/- mice, the 

putative catabolic effect due to the increased leptin 

levels could be rendered non-relevant compared to the 

beneficial effect of FGF-21, adiponectin, and the 

decreased level of IL-6. The factors responsible for 

the increased levels of leptin in the Df-/- older mice are 

yet to be identified, but it could be hypothesized that 

the lack of adipsin could have generated a disturbance 

in the energy metabolism, triggering leptin 

expression. 

 

Resistin is an adipokine reported to be involved in 

insulin resistance and inflammation [25, 81]. Increased 

synovial fluid resistin levels have been detected in OA 

patients [82], however, by using a mouse model, such a 

resistin increase was found to immediately follow 

traumatic knee injury and decline later on, supporting 

its role in the early stages of trauma-induced OA [83]. 

This agrees with the lower serum levels found in our 

study in the old mice in both adipsin-deficient and wild-

type mice. 

 

Our data showed no significant difference in the 

MMP-3 serum levels between the wild-type and 

adipsin-deficient mice, but did show a decrease with 

aging in both groups. This was surprising as MMP-3 

expression has been found to be increased in 

individuals with OA lesions [84, 85]. However, 

literature about MMP-3 serum levels in relation to age 

is scarce, and in the few existing reports, conclusions 

are contradictory depending on whether they are from 

a human or mouse. Hence in humans, MMP-3 serum 

levels increase with age [86, 87], whereas their 

expression and production in mice in the 

intervertebral disk showed age-related decreases [88], 

the latter concurring with our data. 

Although possible explanations are stated above as to 

how adipsin could impact the articular tissues and some 

serum factors, further research needs to be done to 

identify the exact mechanism of action on each articular 

tissue, as well as to define the intimate molecular 

relationship of its effect on some serum factors.   

 

Another important observation underlined in this study is 

the occurrence of very severe articular tissue degradation 

in about half of the wild-type (Df+/+) animals. Although 

such a severe event has been reported [89, 90], the exact 

reason for it remains to be determined. Notably, none of 

the adipsin-deficient mice displayed such extensive 

degradation, which strongly supports the lack of adipsin 

as protecting the articular tissues. Moreover, the analysis 

of the serum levels has yielded another valuable 

 insight. Indeed, although μCT and histological/ 

immunohistological analyses demonstrated differences 

between the Df+/+(L) with (H) subgroups, no significant 

differences were found in the serum levels of the factors 

studied between these two subgroups. Thus, the severity 

of the age-related knee joint lesions seen at the local level 

in the Df+/+(H) mice is not reflected at a systemic level. 

These very severe articular tissue alterations in the 

Df+/+(H) mice, in addition to the fact that the  

Df+/+(L) mice demonstrated significant histological/ 

immunohistological differences when compared to the 

Df-/- mice, strongly suggests that metabolic factors play a 

more significant role at the early (or less advanced) 

stages of the disease and that their serum levels would 

reach a plateau later on as OA progresses and mechanical 

alterations develop, superseding the metabolic factors 

[91]. In the μCt and subchondral bone, the fact that no 

differences were observed between the Df-/- and Df+/+(L) 

mice but were found with Df+/+(H) also suggests that the 

bone/subchondral bone tissue is affected later in the 

spontaneous OA process. 

 

In conclusion, although surgically-induced OA 

models develop articular alterations rapidly and 

reproducibly, such models are posttraumatic. In 

naturally occurring OA, various etiological factors 

join forces to bring about the structural and molecular 

changes. The mouse spontaneous development of OA 

is translational and better mimics the human primary 

OA. By using this mouse model, data demonstrated 

that the earliest OA tissue manifestation occurs in the 

ACL. Moreover, the spontaneous OA development in 

the mice used in this study confirms the role of the 

adipokine, adipsin, as a player in OA progression. 

This work also identified the beneficial effect of 

another adipokine, FGF-21, against OA 

development/progression. Therefore, in addition to 

reaffirming the value of the adipsin as a potential 

biomarker for OA and target in therapeutic strategies, 

this study reveals the potential beneficial effect of 
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FGF-21 against OA, and provides support for this 

factor as a new avenue for therapeutic approaches in 

primary OA.  

 

MATERIALS AND METHODS 
 

Adipsin-deficient mouse model 

 

Homozygous adipsin-deficient (Df-/-) and wild type (Df+/+) 

mice were generated by interbreeding Df+/+ and 

homozygous Df-/-mice offspring from founder mating 

Df+/- pairs kindly donated by the Dana Farber Cancer 

Institute (Boston, MA, USA) [69] as previously described  

[27]. The mice were maintained in accordance with the 

Canadian Council on Animal Care; the protocol was 

reviewed and approved by the Institutional Animal Care 

Committee of the University of Montreal Hospital 

Research Center. All mice were housed individually and 

were kept in a 12-hour light/dark cycle; food and water 

were available ad libitum. As described previously [27, 

69, 92], the mutant mice have no apparent abnormality in 

their development and body weight compared to the wild 

type mice. Genotyping was carried out by polymerase 

chain reaction (PCR) with genomic DNA extracted from 

ear punch biopsy samples as described previously [27]. 

The mice were received and bred for this study over a 3-

year period (about 4-7 generations) which rule out a 

potential genetic drift independent of adipsin deficiency. 

Mice of 20-week-old (Df-/- n=11, Df+/+ n=13) and 20-

month-old (Df-/- n=13, Df+/+ n=13) were sacrificed by 

pentobarbital sodium. The right knee joints were dissected 

free of tissue and serum were taken. 

 

Histology/Histomorphometry 

 

Articular samples were fixed in 4% paraformaldehyde, 

pH 7.4 for 16 hours at 4°C (Sigma-Aldrich, Oakville, ON, 

Canada), decalcified in 10% ethylenediaminetetraacetic 

acid (EDTA) pH 7.3 for 12 days (Wisent, St-Bruno, QC, 

Canada) and embedded in paraffin as described [27]. 

Sections (5 μm) were deparaffinised in xylene followed 

by a graded series of alcohol washes prior to staining and 

were stained with Safranin O-fast green (Sigma-Aldrich) 

as previously described [27]. 

 

The cartilage and synovial membrane alterations were 

determined according to the OARSI scoring method 

[37]. Of note, about half of the aging Df+/+ mice (n=6; 

46%) had severe knee lesions with a high OARSI 

cartilage score (score, 5-6) and were subsequently 

named Df+/+(H); the other Df+/+mice with a lower 

OARSI score (score, 2-4)  (n=7; 54%) were named 

Df+/+(L).  

 

The subchondral bone histomorphometry was done on 

the medial compartment as described [93] using a Leitz 

Diaplan microscope linked to a personal computer to 

examine three non-consecutive sections. Measurements 

were recorded for the subchondral bone percentage of 

bone volume to the total volume (% BV/TV), trabecular 

thickness (µm) and plate thickness (µm). To this end, a 

box with a fixed width (1,000 µm) and variable length 

was created with the upper limit at the calcified 

cartilage-subchondral bone junction and the lower limit 

at the subchondral bone-trabecular bone junction. The 

mean distance between the upper and lower limit and 

the trabecular thickness were calculated automatically 

by the BIOQUANT OSTEO software (Nashville, TN, 

USA).  

 

The tartrate resistant acid phosphatase (TRAP) assay 

was performed to monitor osteoclast activation in the 

subchondral bone. TRAP detection was done on 

histological sections embedded in paraffin. Sections 

were first deparaffinized, then stained for enzyme 

activity, and processed as described previously [94]; 

counterstaining was done with 0.05% Fast Green 

(Sigma-Aldrich). TRAP-positive staining in the 

subchondral bone were quantitated with the 

BIOQUANT OSTEO software and data expressed as % 

of TRAP positive area over the total area. 

 

The histopathological grading of the anterior and 

posterior horns of the menisci was done using the Kwok 

et al. scoring method [90], which takes into 

consideration the evaluation of the surface integrity, 

cellularity, Safranin-O staining distribution and 

intensity, with a maximum grading score of 18 (anterior 

horn) and 15 (posterior horn). 

 

Assessment of anterior cruciate ligament (ACL) 

integrity was performed on 5 μm sagittal sections that 

contained the whole ligament length, excluding the 

attachment sides at both ends. The presence of 

proteoglycans was detected by staining the sections 

with Safranin-O [95]. Images were taken at 100X and 

the red staining (representing the proteoglycans) in the 

core portion of the ligament was quantified with the 

BIOQUANT OSTEO software and data expressed as % 

proteoglycans (red stained) area over total area.  

 

The collagen organization in the ACL was evaluated on 

5 µm paraffin sections following sirius red staining as 

described [96]. In brief, each slice was stained with a 

0.1% sirius red solution and images at 100X were taken 

under polarized light. The dark background of the 

image was removed for further image processing with 

Adobe Photoshop software. The red (fibers structural 

component) and the green (altered fibers) areas were 

quantified separately with the BIOQUANT OSTEO 

software and data expressed as % of altered fibrils 

(green staining) area over the total area. 
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Immunohistochemistry 

 

Immunochemical analysis of the ACL was performed on 

5 µm paraffin sections as described [27]. The tissues were 

successively incubated for 1 hour at 37°C with 1 mg/ml 

collagenase type I (USB, Cleveland, OH, USA) pH 7.4 in 

presence of 0.1% CaCl2, 1% hyaluronidase pH 6.0 in 

phosphate-buffered saline (PBS) and 1 mg/ml pepsin (all 

from Sigma-Aldrich) in 0.5M acetic acid. The tissues 

were then treated with 2% H2O2 (Fisher, Fair Lawn, NJ, 

USA) in PBS and with 1.5% goat serum (Vector 

Laboratories, Burlingame, CA, USA) in PBS for 15 and 

45 minutes at room temperature, respectively. The 

primary antibody was an anti-human rabbit polyclonal 

antibody raised against type II collagen (dilution 1:200, 

Abcam, Cambridge, UK). Slides were incubated with 

Vectastain ABC kit (Vector Laboratories) according to 

the manufacturer’s specifications. The color was 

developed with 3, 3′-diaminobenzidine containing 

hydrogen peroxide and nickel, and the slides were 

counterstained with eosin. Control procedures were 

performed according to the same experimental protocol as 

follows: (i) omission of the primary antibody, and (ii) 

substitution of the primary antibody with a non-specific 

immunoglobulin G (IgG) from the same host (rabbit) as 

the primary antibody (Santa Cruz Biotechnology, Dallas, 

TX, USA). Controls showed only background staining. 

Images were captured at 100X with a Leitz Diaplan 

microscope connected to the BIOQUANT OSTEO 

software. Surface area of the positive type II collagen 

ACL matrix staining was measured and data expressed 

as% of positive stained area over total area.  

 

Micro-computed tomography (μCT) 

The μCT analysis was performed as described [97] on 

knee joints from 20-month-old Df-/-, Df+/+ (L) and Df+/+ 

(H) mice. Briefly, the knee joints were scanned using a 

Skyscan 1176 micro-CT scanner at 50KV and 500 μA, 

with a pixel size of 9 μm and a 0.5-mm aluminium 

filter. Data were recorded at every 3-degree rotation 

step through 180°. Image slices were reconstructed 

using NRecon software (version 1.6.3.2, Skyscan, 

Micro Photonics Inc., Allentown, PA, USA). 

 

Serum levels of adipokines/inflammatory 

factors/proteinases 

Blood samples were obtained from 20-week-old and 20-

month-old mice. The samples were allowed to coagulate 

and then centrifuged (4,000 rpm/1,400g, 10 minutes). 

The samples were stored at -80°C until analyzed. The 

levels of factors (adipokines, inflammatory factors, 

growth factors, MMPs) known to have a role in both 

aging and OA, whether beneficial or detrimental, were 

determined with specific assays (Luminex assay, R&D 

systems, Minneapolis, MN, USA) according to the 

manufacturer’s specifications, and quantitated using the 

Bio-Plex 200 apparatus (Bio-Rad, Mississauga, ON, 

Canada). An 8-point standard curve was used for each 

marker. Data were analyzed with the Bio-Plex Manager 

software (Bio-Rad).  

 

The factors tested as well as the minimum detectable 

doses and dilutions used were: adiponectin, 7.55 pg/ml 

(dilution 1:2000); CRP, 13.3 pg/ml (1:2000); FGF-21, 

0.9 pg/ml (1:2); GM-CSF, 1.64 pg/ml (1:2); HGF, 3.33 

pg/ml (1:2); IL-6, 2.3 pg/ml (1:2); IL-7, 35.4 pg/ml (1:2); 

IL-10, 8.2 pg/ml (1:2); IL-17, 7.08 pg/ml (1/2); leptin, 

12.6 pg/ml (1:2); MCP-1, 134 pg/ml (1/2); MMP-3, 

0.332 pg/ml (1/200); MMP-8, 2109 pg/ml (1:2); RAGE, 

18.0 pg/ml (1:2);  resistin 0.74 pg/ml (1:2000); S100A8, 

61.3 pg/ml (1:2); S100A9, 3.55 pg/ml (1:2); TNF-α, 1.47 

pg/ml (1:2); and VEGF, 3.96 pg/ml (1:2). 

 

Cell cultures 

The human hepatocarcinoma cell line HepG2 was 

purchased from American Type Culture Collection, 

Manassas, VA, USA). The cells were routinely grown 

in low-glucose Dulbecco’s modified Eagle medium 

(DMEM) (Gibco, Thermo Fisher Technology, 

Waltham, MA, USA) supplemented with 10% heat-

inactivated fetal calf serum (PAA Laboratories Inc, 

Etobicoke, ON, Canada) and an antibiotic mixture 

(100 units/ml penicillin base and 100 μg/ml 

streptomycin base; Wisent Inc, St-Bruno QC, Canada) 

at 37°C in a humidified atmosphere.  

 

Gene silencing 

Gene silencing was basically done as described 

previously [98]. Briefly, a siRNA pool specific for the 

human adipsin gene was purchased from Thermo Fisher 

Technology. The siRNAs (final concentration 100 nM) 

were transfected for 24 hours with the Lipofectamine 

RNAiMax reagent (final concentration 0.2%, Thermo 

Fisher Technology) into HepG2 (200,000 cells/well, in 

12-wells plates). Cells transfected with random non-

targeting siRNAs (Ambion, Thermo Fisher Technology, 

Austin, TX, USA) served as controls. 

 

RNA extraction and real-time PCR 

Total RNA from the transfected cells was extracted, 

quantified and reverse-transcribed as previously described 

[27]. Real-time PCR was done using the SYBR Green 

Master Mix (Qiagen, Valencia, CA, USA) [99]. 

 

The primers used in the PCR assays were 5-GCCT 

TGAAGCCGGGAGTTATT (S) and 5-GTGGAGCGA 

TCCATACAGGG (AS) (FGF-21); 5-TATGATGGCTC 

CACTGGTA (S) and 5- GAGCATAGCCTTGTCCT 

TCT (AS) (adiponectin); 5- CCTGCATCTGGTTGGTC 

TTT (S) and 5- CCTGCGTTCAAGTCATCCTC (AS) 

(adipsin); 5′- TCCCCTCTTGACCCATCTC(S) and 5′-

GGGAACCTTGTTCTGGTCAT(AS) (leptin); 5- GG 
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CAGCATCTACAACCCTGA (S) and 5- CCAGGA 

CTCGTTTGTACCCG (AS) (RPLPO, housekeeping 

gene).   

 

The effect of siRNAs specific for adipsin on the 

expression of adipsin, FGF-21, adiponectin and leptin in 

the transfected HepG2 cells was calculated as fold 

change over the siRNA (random) controls which were 

assigned an arbitrary value of 1 and calculated as 2-Δ ΔCt. 

Statistical analysis was done using the one-sample t-

test, comparing the siRNA adipsin values (n=5 for each 

cell type) to the control random siRNAs values. 

 

Statistical analysis 

 

Values are expressed as median (interquartile range) 

unless indicated. Statistical analyses were performed with 

the Fisher’s exact test or the Mann-Whitney U test 

(GraphPad Prism software, GraphPad, San Diego, CA, 

USA) where appropriate; a p≤0.050 was considered 

significant.  
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