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INTRODUCTION 
 

Alzheimer’s disease (AD) was first described in 1906, 

which was recognized as a common cause of dementia 

and a major cause of death 70 years later [1]. 

Although AD has become a significant focus of 

research,   the  molecular  mechanisms  underlying  its  

 

pathogenesis remain largely unknown [2]. At present, 

there are no effective prognostic biomarkers yet. 

Therefore, it is significant to identify not only the 

potential biomarkers for prediction of survival in this 

disease, but also the novel targets for prognosis 

improvement and guidance on the optimal individual 

treatment. 
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ABSTRACT 
 

Alzheimer’s disease (AD), the most common cause of dementia, leads to neuronal damage and deterioration of 
cognitive functions in aging brains. There is evidence suggesting the participation of noncoding RNAs in AD-
associated pathophysiology. A potential linkage between AD and lncRNA-associated competing endogenous 
RNA (ceRNA) networks has been revealed. Nevertheless, there are still no genome-wide studies which have 
identified the lncRNA-associated ceRNA pairs involved in AD. For this reason, deep RNA-sequencing was 
performed to systematically investigate lncRNA-associated ceRNA mechanisms in AD model mice (APP/PS1) 
brains. Our results identified 487, 89, and 3,025 significantly dysregulated lncRNAs, miRNAs, and mRNAs, 
respectively, and the most comprehensive lncRNA-associated ceRNA networks to date are constructed in the 
APP/PS1 brain. GO analysis revealed the involvement of the identified networks in regulating AD development 
from distinct origins, such as synapses and dendrites. Following rigorous selection, the lncRNA-associated 
ceRNA networks in this AD mouse model were found to be mainly involved in synaptic plasticity as well as 
memory (Akap5) and regulation of amyloid-β (Aβ)-induced neuroinflammation (Klf4). This study presents the 
first systematic dissection of lncRNA-associated ceRNA profiles in the APP/PS1 mouse brain. The identified 
lncRNA-associated ceRNA networks could provide insights that facilitate AD diagnosis and future treatment 
strategies. 
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It was reported that 80% of the human genome is 

transcribed as noncoding RNAs (ncRNAs) [3], which 

can manipulate most of the potential biological 

functions [4]. Over the past two decades, it was 

demonstrated that ncRNAs, with their specific 

spatiotemporal expression patterns across various 

species, are extensively involved in numerous bio-

logical processes, including epigenetic regulation, 

chromatin remodeling, transcription control, and 

posttranscriptional processing [5]. More and more 

ncRNAs have been identified for their important roles 

in the pathogenesis of neurodegenerative disorders. 

 

NcRNAs include microRNAs (miRNAs, ~20 

nucleotides in length) and long noncoding RNAs 

(lncRNAs, larger than 200 nucleotides in length), which 

play significant roles in the regulation of various 

biological functions [6]. There is evidence that miRNAs 

and lncRNAs participate in AD pathophysiology, which 

includes the formation and development of β-amyloid 

(Aβ) plaques, neurofibrillary tangles, synaptic loss and 

neuronal death [7–9]. The ncRNAs have been detected 

by RNA-sequencing (RNA-seq) or microarrays in many 

organisms, which presents exciting implications for 

understanding the regulation of basic biological systems 

and pathophysiological conditions, as well as the 

development of new therapeutic treatment of many 

diseases [10].  

 

LncRNAs modulate the nervous system in various 

biological dimensions, including epigenetic regulation 

[11, 12] and posttranscriptional regulation [13]. For 

example, β-site amyloid precursor protein (APP)-

cleaving enzyme 1-antisense (BACE1-AS) stabilizes 

BACE1 RNA and promotes APP cleavage, which is 

actively involved in the pathogenesis of Alzheimer’s 

disease [6, 9]. Evf2 RNA controls adult hippocampal 

neurogenesis through regulating dynamic expression of 

downstream targets [14]. Both HOTAIR [6] and 

MALAT1 [15] RNAs are upregulated in brain tumors 

and promote tumor metastasis. Malat1 RNA regulates 

synaptogenesis in mouse hippocampal neurons through 

controlling gene expression [16]. 

 

Recent studies suggest that lncRNAs, circRNAs, 

pseudogenes and mRNAs may function as miRNA 

sponges [17–19]. They compete with each other through 

miRNA response elements (MREs) and modulate the 

progress of many diseases [20, 21] including AD [9, 6, 

13]. In addition to post-transcriptional regulation, epi-

genetic modifications may also play a crucial role in 

AD pathogenesis [7, 22]. These refined and complicated 

regulatory networks may help to explain why the 

isolation of a single component (e.g., β-secretase and 

apolipoprotein E4) failed to fully account for the whole 

pathogenesis process of AD [23]. It suggests that the 

underlying mechanisms for the involvement of 

competing endogenous RNA (ceRNA) in AD remain to 

be determined. 

 

The rational strategy to gain insight into 

neurodegenerative diseases such as AD would make the 

study of lncRNA-associated ceRNA networks 

comprehensively. The elucidation of lncRNA-

associated ceRNA networks in AD might help to 

develop new therapeutic targets for AD. In APP/PS1 

mice which express APP695swe and PS1-dE9 

mutations, Aβ can be detected in 6-month old mice, and 

then extracellular Aβ deposits in the cortex are apparent 

in 9-month old mice. Moreover, synaptic transmission 

and long-term potentiation are clearly impaired in 9-

month old mice [24]. Thus, deep RNA-seq was 

performed in this study to find lncRNA-associated 

ceRNA networks in the brain of APP/PS1 mice together 

with the wild-type (WT) control mice at the 6- and 9-

month-old stages. RNA-seq is widely used to determine 

the differential gene-expression profiles that underlie 

phenotypic differences [25, 26]. The data by RNA-seq 

identifies lncRNA-associated ceRNA networks in the 

APP/PS1 mouse model of AD (Figure 1), which can 

contribute to the development of new therapeutic targets 

and novel diagnostic methods for AD. 

 

RESULTS 
 

Overview of lncRNA and mRNA-seq data 

 

A total of 1,145,853,722 raw reads were generated. 

317,603,558 raw reads and 276,260,804 raw reads were 

generated for 6-month-old WT and APP/PS1 mice 

respectively, while 286,203,120 raw reads and 

265,786,240 raw reads were generated for 9-month-old 

WT and APP/PS1 mice respectively. After discarding 

the reads with adapters, poly-N > 10%, or any other 

potential contaminants, 1,119,187,680 clean reads were 

obtained. 311,741,312 clean reads and 266,033,410 

clean reads were obtained for 6-month-old WT and 

APP/PS1 mice respectively, while 278,938,832 clean 

reads and 262,474,126 clean reads were obtained for 9-

month-old WT and APP/PS1 mice respectively. Both 

reference genome and gene model annotation files were 

downloaded directly from the genome website. An index 

of the reference genome was constructed with bowtie2 

v2.2.8, and paired-end clean reads were aligned to the 

reference genome with HISAT2 v2.0.4 [27]. HISAT2 

was run with “--rna-strandness RF,” while other 

parameters were set as default. Especially the mapping 

rates was 91.53% and 91.74% for APP/PS1 and WT 

mice, respectively. The transcripts were filtered out with 

coding potential prediction with the function of CNCI 

(Coding-Non-Coding-Index) (v2) [28], CPC (Coding 

Potential Calculator) (0.9-r2) [29], PfamScan (v1.3) 



 

www.aging-us.com 2899 AGING 

[30], and PhyloCSF (phylogenetic codon substitution 

frequency) (v20121028) [31]. 9,299 lncRNAs (including 

2,463 annotated lncRNA and 6,836 novel lncRNA) and 

48,718 protein-coding transcripts (mRNA) were 

identified and used for subsequent analyses. 

 

Overview of miRNA-seq data 

 

A total of 99,137,837 raw reads were generated. 

28,672,205 raw reads and 20,760,197 were generated 

for 6-month-old WT and APP/PS1 mice respectively, 

while 23,016,993 raw reads and 26,688,442 raw reads 

were generated for 9-month-old WT and APP/PS1 mice 

respectively. After the removal of low quality and 

adapter sequences, 96,028,757 clean reads were 

obtained. 27,710,151 clean reads and 20,281,596 clean 

reads were obtained for 6-month-old WT and APP/PS1 

mice respectively, while 22,393,001 clean reads and 

25,644,009 clean reads were obtained for 9-month-old 

WT and APP/PS1 mice respectively. These clean reads 

were filtered by length (18–35 nucleotides), and a 

majority of the selected reads for both groups were 22 

nucleotides in length. The selected reads were then 

mapped to the mouse reference sequence with Bowtie 

[32], and the mapping rate was 94.61% and 94.78% for 

APP/PS1 and WT mice respectively. Then, the mapped 

tags were then annotated and classified by alignment 

with noncoding small RNAs (including rRNA, tRNA, 

small nuclear RNA, and small nucleolar RNA), repeat-

associated RNA, exon- and intron-associated RNAs in 

GenBank before sequenced in the miRBase v.20.0. In 

addition, both miREvo [33] and miRDeep2 [34] 

software was used to predict previously unidentified 

miRNAs. Ultimately, 1,411 mature miRNAs (1,312 

known and 99 previously unknown) were detected and 

used for subsequent analyses. 

 

Differential expression analysis: APP/PS1 versus WT 

 

283 significantly dysregulated lncRNA transcripts 

(including 170 upregulated transcripts and 113 down-

regulated transcripts) were identified in the 6-month-old 

APP/PS1 mice (Figure 2A, Supplementary Table 1), 

while 254 significantly dysregulated lncRNA transcripts 

(including 144 upregulated transcripts and 110 

downregulated transcripts) were identified in the 9-

month-old APP/PS1 mice (Figure 2B, Supplementary 

Table 2). A heatmap was constructed to visualize the 

cluster analysis results of the lncRNAs expression 

(Figure 2C). Then based on the transcripts per million 

 

 
 

Figure 1. The workflow of RNA-seq. Details of the methods used for mRNA-seq, miRNA-seq, and lncRNA-seq are described in 
Supplementary Materials. 



 

www.aging-us.com 2900 AGING 

(TPM) values, 32 significantly dysregulated miRNAs 

were identified between the 6-month-old groups, which 

included 9 upregulated miRNAs and 23 downregulated 

miRNAs in APP/PS1 mice (Figure 2D, Supplementary 

Table 3). 42 miRNAs were significantly dysregulated 

between the 9-month-old groups, which included 20 

upregulated miRNAs and 22 downregulated miRNAs in 

APP/PSI mice (Figure 2E, Supplementary Table 4). The 

cluster analysis of miRNAs expression was performed, 

and then a heatmap was generated (Figure 2F). Finally, 

the FPKM values (fragments per kilobase of exons per 

million fragments mapped) were used to estimate the 

expression levels of mRNA transcripts. 310 mRNA 

transcripts were significantly dysregulated, including 

132 upregulated transcripts and 178 downregulated 

transcripts in APP/PS1 mice at 6 months (Figure 2G, 

Supplementary Table 5), while 226 mRNAs were 

significantly dysregulated, with 108 and 118 

upregulated and downregulated in APP/PS1 mice at 9 

months (Figure 2H, Supplementary Table 6). Once, 

cluster analysis for the expression of mRNAs was 

performed and a heatmap was generated (Figure 2I). 

 

qPCR validation 

 

The differential expression identified by RNA-seq 

experiments were confirmed with qPCR. 24 

differentially expressed transcripts were randomly 

selected, including 6 lncRNAs, 9 miRNAs and 9 

mRNAs. All of the selected transcripts were detected in 

the brain of 2–9-month-old APP/PS1 and WT mice. 

Besides, there was statistical difference between the two 

groups (Figures 3–5). Overall, the qPCR results were 

highly consistent with the RNA-seq data. 

 

Construction of lncRNA-associated ceRNA networks 

 

According to the ceRNA hypothesis, the ceRNAs can 

compete for the same MREs in regulatory networks. In 

this study, RNA-seq data were used to map ceRNA 

networks in the APP/PS1 brain for the first time. The 

differentially expressed transcripts (lncRNAs, miRNAs, 

and mRNAs) were split into three groups depending on 

the expression patterns. The 6yes9no group included 

transcripts differential expressed at 6 months but not 

differential expressed at 9 months of age, play a role in 

AD pathogenesis; The 6no9yes group included 

transcripts not differential expressed at 6 months but 

differential expressed at 9 months, participate in the 

development of AD; The 6yes9yes group included 

transcripts differential expressed at both 6 and 9 

months, which contributed to in all stages of AD 

(Figure 6A). 

 

6yes9no group included a total of 148 lncRNAs and 376 

mRNAs that were differentially expressed and shared 

common MRE binding sites from 33 significantly 

dysregulated miRNAs (Supplementary Tables 7, 8). 

6no9yes significantly dysregulated group included a 

total of 135 lncRNAs, 526 mRNAs, and 50 miRNAs 

(Supplementary Tables 9, 10). Besides, 7 lncRNAs, 31 

mRNAs and 2 miRNA were included in 6yes9yes group 

(Supplementary Table 11). The ceRNA networks 

included both positive and negative regulation (Figures 

6, 7). Figure 6 shows the increased lncRNAs, decreased 

miRNAs and increased mRNAs in APP/PS1 mice, 

while Figure 7 shows the decreased lncRNAs, increased 

miRNAs, and decreased mRNAs in APP/PS1 mice. It 

indicated potential critical RNA interactions involved in 

AD pathogenesis. 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analyses 

 

A lncRNA-associated ceRNA network can alter the 

regulation of related mRNA-encoding genes. GO 

analyses were performed on the genes included in the 

networks identified here and several GO terms were 

found to be significantly enriched (Supplementary 

Tables 12–14). The GO terms included biological 

process (BP), cellular component (CC), and molecular 

function (MF), as shown in Figure 8. The top highly 

enriched terms were cytoskeleton (GO:0005856), 

postsynaptic density (GO:0014069), cell-cell adherens 

junction (GO:0005913) and dendrite (GO:0030425). A 

number of cognition-associated terms were also 

observed, such as axon (GO:0030424), synapse 

(GO:0045202), postsynaptic density (GO:0014069), 

intracellular signal transduction (GO:0035556), and 

neuron projection (GO:0043005). Noteworthy, the 

enriched GO terms for 6yes9no group were different 

from those for 6no9yes group, which suggested the 

expression changes in the functional genes during the 

progression of disease. For example, the Go pathways 

"transferase activity" was found in the "Molecular 

function" section of both B and C, but not in A of the 

Figure 8. It was explained that AD is characterized by 

the accumulation of intracellular and extracellular 

proteins, including the microtubule-associated protein 

Tau and the decomposition product of amyloid 

precursor protein β-amyloid Aβ. Tissue-type trans-

glutaminase (tTG) is a calcium-dependent enzyme that 

catalyzes the cross-linking of proteins to generate 

isomeric peptides of the γ-glutamyl-ε-lysine structure 

(representing transferase activity). This covalent 

attachment results in protein aggregation and deposition 

due to its strong resistance to proteolysis. In previous 

studies it was demonstrated that the protein levels of 

tTG and isopeptides were increased in the brain of 

patients with advanced AD, and the activity increases 

noticeably with age. These findings suggest that tTG 

may be an important cause of abnormal protein 
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accumulation in advanced AD pathology, which may 

not have been changed in the early stages [35, 36]. 

Consequently, 6yes9no group is not enriched in this 

pathway. In summary, the lncRNA-associated ceRNA 

networks might participate in the pathological prog-

ression of AD at distinct stages through different 

mechanisms. The establishment of these networks helps 

to investigate the functions of the key genes in AD and 

to guide determination of the regulatory mechanisms 

between the components of the ceRNA network. 

 

 
 

Figure 2. Expression profiles of distinct RNAs. (A–C) Expression profiles of lncRNAs. (A, B) In the volcano plots, green, red, and black 

points represent lncRNAs that were downregulated, upregulated, and not significantly different in APP/PS1 mice relative to wild-type (WT) 
control mice at 6 and 9 months, respectively. x-axis: log2 ratio of lncRNA expression levels between AD and WT. y-axis: false-discovery rate 
values (-log10 transformed) of lncRNAs, P<0.05 (C) Cluster analysis of expression of lncRNAs. Red and blue: increased and decreased 
expression at 6 and 9 months, respectively. Expression profiles are similarly shown for (D–F) miRNAs, p<0.04 and (G–I) mRNAs, q<0.05. 
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Figures 3. Validation of expression of lncRNAs by using qPCR. The identified differentially expressed transcripts (lncRNAs, miRNAs, 

and mRNAs) were divided into three groups. (A) 6yes9no group represents transcripts differential expressed at 6 months but not at 9 
months; (B) 6no9yes group represents transcripts not differential expressed at 6 months but differential expressed at 9 months; (C) 6yes9yes 
group represents transcripts differential expressed at both 6 and 9 months. The expression of lncRNAs was quantified relative to Gapdh 
expression level by using the comparative cycle threshold (ΔCT) method. Data are presented as means ± SD (n = 3, *p < 0.05, **p < 0.01). 

 

 
 

Figures 4. Validation of miRNA expression by using qPCR. (A) 6yes9no group, (B) 6no9yes group, and (C) 6yes9yes group. The 

expression levels of miRNAs were quantified relative to U6 expression level by using the comparative cycle threshold (ΔCT) method. Data are 
presented as means ± SD (n = 3, *p < 0.05, **p < 0.01). 
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KEGG pathway analysis was conducted to determine 

the signaling cascades related to the identified genes. 

By using p < 0.05 as the threshold value, a number of 

significantly enriched pathways were identified (Figure 

9, Supplementary Tables 12–14), including neuroactive 

ligand-receptor interaction, AMP-activated protein 

kinase (AMPK) signaling, long-term potentiation, 

Hippo signaling, glutamatergic synapse, PI3K-Akt 

signaling, insulin secretion, focal adhesion and axon 

guidance. 

 

Association study 

 

We selectively analyzed the data for lncRNAs and 

miRNAs of which the target genes significant differential 

expressed between APP/PS1 and WT mice (corrected p < 

0.05). Additionally, we also selected lncRNAs and 

miRNAs of which the target genes showed enrichment in 

the mouse brain and were associated with AD. Analyses 

were performed to investigate the relationships between 

lncRNA-associated ceRNA networks and AD. For 

example, LNC_000854, LNC_001450, LNC_001451, 

LNC_001887, LNC_002205, LNC_002746, LNC_ 

003197, LNC_003206, LNC_003458, LNC_004148, 

LNC_004514, LNC_004707 and LNC_006482 were 

identified as ceRNAs of mmu-miR-122-5p, which targets 

Klf4. The expression of Klf4 was higher in AD mice than 

in WT mice. Klf4 regulates amyloid-β (Aβ)-induced 

neuroinflammation and plays a potential role in not only 

oligomeric Aβ42-induced neurotoxicity but also the 

pathogenesis of Alzheimer's disease [37]. LNC_000033 

was found to be a ceRNA of mmu-miR-128-2-5p, 

 

 
 

Figures 5. Validation of mRNA expression by using qPCR. (A) 6yes9no group, (B) 6no9yes group, and (C) 6yes9yes group. The mRNA 

expression was quantified relative to Gapdh expression level by using the comparative cycle threshold (ΔCT) method. Data are presented as 
means ± SD (n = 3, *p < 0.05, **p < 0.01). 
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Figure 6. The lncRNA-associated ceRNA networks in APP/PS1 mice. CeRNA networks were constructed based on identified lncRNA–

miRNA and miRNA–mRNA interactions. The networks include increased lncRNAs, decreased miRNAs, and increased mRNAs in APP/PS1 mice. 
(A) Grouping (B) 6yes9no group, (C) 6no9yes group, and (D) 6yes9yes group. 
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mmu-miR-135b-5p, mmu-miR-3097-3p, mmu-miR-31-

5p, and mmu-miR-449a-5p, which target Synpo. Synpo 

was upregulated in the sequencing data. Synpo have 

been identified as crucial components in dendritic spine 

plasticity of the developing hippocampus. The disorder 

of Synpo expression affected the development of 

dendritic spines [38–42], which might also affect the 

early stages of AD. In addition, our analysis also 

revealed that miRNAs may act directly on their target 

genes. For example, Grsf1, targeted by mmu-miR-187-

3p, mmu-miR-363-3p and mmu-miR-7004-5p, could be 

essential for the development of embryonic brain [43]. 

The additional results are listed in Supplementary 

Tables 7–11. Overall, it suggested that the identified 

lncRNA-associated ceRNA networks may be involved 

in the regulation of AD. 

 

 
 

Figure 7. Identified lncRNA-associated ceRNA networks in APP/PS1 mice. The ceRNA networks were constructed based on 

identified lncRNA–miRNA and miRNA–mRNA interactions. The networks include decreased lncRNAs, increased miRNAs, and decreased 
mRNAs in APP/PS1 mice. (A) 6yes9no group, and (B) 6no9yes group. 
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Figure 8. Gene Ontology (GO) enrichment annotations of the pathological progression of AD: biological process, cellular 
component, molecular function. The top terms were synapse (GO:0045202), cytoskeleton (GO:0005856), postsynaptic density 

(GO:0014069), cell-cell adherens junction (GO:0005913), dendrite (GO:0030425), axon (GO:0030424), and neuron projection (GO:0043005). 
(A) 6yes9no group, (B) 6no9yes group, and (C) 6yes9yes group. Significantly enriched GO pathways were defined as p values of <0.01. GO 
analysis was conducted with DAVID (https://david.ncifcrf.gov/summary.jsp) database. 

https://david.ncifcrf.gov/summary.jsp
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DISCUSSION 
 

AD is the most common neurodegenerative disease, of 

which the exact pathologic mechanism remains 

unknown. Although the traditional research tools and 

expertise detect some early brain changes of AD, 

additional research technologies remains necessary to 

fine-tune the accuracy of these tools. Recently, several 

studies on AD have focused on the epigenetic 

regulation of AD pathogenesis and identified the 

potential targets for therapy. lncRNAs expressed in 

brains have been reported to be contributory to the 

pathophysiology of AD [44, 45]. However, the roles of 

the lncRNAs in AD have remained mostly unknown. 

 

MiRNAs are 22-nucleartide-long ncRNAs that can 

induce target gene silencing through complementary 

base-pairing with MREs on their 3ʹ UTRs and 

recruitment of RNA induced silencing complex 

(RISC) [46]. A total of 519 canonical miRNA genes 

have been identified in the human genome [47, 48]. 

There are roughly 70% of the identified miRNAs 

expressed in the provisional brain and in neurons [49], 

which suggests that miRNAs perform critical 

regulatory functions in the development of central 

nervous system (CNS), the formation of dendritic 

spine, neurite outgrowth, as well as neuronal 

differentiation and maintenance. The deregulation of 

miRNA is involved in neurodegenerative disorders 

such as AD and Parkinson’s disease (PD) [6], as well 

as in psychiatric disorders such as schizophrenia [50]. 

For example, let-7, miR-15a and miR-101 target  

APP, while miR-15a, miR-9 and miR-107 regulate 

BACE1 [8]. 

 

Over the past several years, the ceRNA hypothesis has 

been validated by numerous experiments. So far, 

ceRNA mechanisms and network construction have 

been mainly studied in the field of cancer research  

[51–54]. Only a small number of ceRNA interactions 

have been reported to be associated with neuro-

degenerative disorders. Recently, researchers have 

started to explore the ceRNA regulatory mechanism for 

specific neurodegenerative disorders in a systematic 

manner. Nevertheless, exciting advances have been 

made in our understanding of ceRNA interactions in 

neurodegenerative disorders. In our previous study, the 

lncRNA-ceRNA network was constructed in the brain 

 

 
 

Figure 9. Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways. The identified 

lncRNA-associated ceRNA-network genes participate in distinct aspects of AD pathology. (A) 6yes9no group, (B) 6no9yes group, and (C) 
6yes9yes group. Significantly enriched KEGG pathways with p values of <0.05. Each line represents a gene, and the number of lines indicates 
the genes enriched. KEGG analysis was conducted with DAVID (https://david.ncifcrf.gov/summary.jsp) database.  

https://david.ncifcrf.gov/summary.jsp
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of 12-month-old APP/PS1 mice [55]. As the sequencing 

depth and coverage limit the amount of generated 

sequences, the compositions of networks are slightly 

different. However, the key pathways in AD have been 

discovered. In order to not only explore changes of the 

ceRNA networks in the early stages of AD but also 

identify the early biomarkers, lncRNA-ceRNAs 

networks were constructed in the brain of 6- and 9-

month-old APP/PS1 mice. 

 

So far, it is the first comprehensive high-throughput 

sequencing analysis of the expression profiles of 

lncRNA, miRNA and mRNA in the APP/PS1 mouse 

model of AD. The dysregulated lncRNAs, miRNAs and 

mRNAs exhibited significant differential expression 

between AD and WT control groups, which suggested 

that these transcripts are associated with the 

pathogenesis of AD. For example, Fndc3b is essential 

for proliferation, adhesion, spreading and migration of 

nerve cells [56]. Trappc9, another differential expressed 

gene, plays a critical role in the development of human 

brain, possibly through its effect on NF-kappaB 

activation and protein trafficking in the postmitotic 

neurons of the cerebral cortex [57]. Acsl6 mRNA is 

highly enriched in the brain and acsl6-/- mice 

demonstrate motor impairments, altered glutamate 

metabolism, increased astrogliosis and microglia 

activation [58]. Mmu-miR-376a-5p is a pancreatic islet-

specific miRNA that regulates insulin secretion as an 

important pathway for the development of AD [59], 

while mmu-miR-134 regulates the development of 

cortical neurons [60]. The level of mmu-miR-29 is also 

substantially reduced in AD patients and it acts to 

regulate BACE1 expression [61, 62]. The qRT-PCR 

experiment confirmed the profiles from the high-

throughput sequencing data, which indicated the 

reliability of the sequencing data. 

 

In our study, RNA-seq was used to systematically analyze 

lncRNA, miRNA and mRNA profiles in the brain of 6- 

and 9-month-old APP/PS1 mice. The transcripts of 

6yes9no group might participate in AD pathogenesis, of 

which the stability and specific expression could make 

them suitable as optimal biomarkers for AD. The 

transcripts in 6no9yes group might function in the 

development of AD. It is worth noting that the transcripts 

in 6yes9yes group may be involved in the disease at all 

stages, which suggests that focus on these transcripts could 

facilitate the development of lncRNA-based diagnostic 

tools and therapeutic strategies for AD. Overall, lncRNA 

and miRNA molecules have a potential to act as key 

regulators AD in different aspects. Both lncRNAs and 

protein-coding mRNAs function as ceRNAs and super-

sponges to regulate the expression of miRNA. Therefore, 

we predicted the miRNA–mRNA and miRNA–lncRNA 

interaction with miRanda and constructed DElncRNA–

DEmiRNA–DEmRNA triple networks for APP/PS1 and 

WT mouse brain. The selected lncRNA-associated ceRNA 

networks may facilitate new insights into AD and 

contribute novel treatments for the disease. 

 

We performed GO enrichment and KEGG analysis of 

the genes in the ceRNA networks and identified not 

only a number of enriched terms relevant to the 

pathological process of AD, including cytoskeleton 

(GO:0005856), cell adhesion (GO:0005913), dendrite 

(GO:0030425), postsynaptic density (GO:0014069), 

axon (GO:0030424), synapse (GO:0045202), and 

neuron projection (GO:0043005), but also various 

pathways, including MAPK signaling, insulin secretion, 

Type II diabetes mellitus, cAMP signaling, Hippo 

signaling, focal adhesion, dopaminergic synapse, and 

PI3K-Akt signaling pathways. Analysis of the data 

revealed several lncRNA-associated ceRNA networks 

that participate in AD. Akap5 contributes to synaptic 

plasticity mediated by NMDARs and AMPA-type 

glutamate receptors (AMPARs) and plays a critical role 

in the progression of AD [21, 63, 64]. One of these 

networks involves the gene Akap5 and the ceRNAs, 

including LNC_000217, LNC_000233, LNC_000622, 

LNC_001498, LNC_001502, LNC_001818, LNC_ 

002144, LNC_002373, LNC_002451, LNC_002620, 

LNC_003852, LNC_004317, LNC_005072, and 

LNC_005613. These ceRNAs have the potential to bind 

mmu-miR-679-5p, which targets Akap5. The APP/PS1 

mice used in this study cannot represent the whole 

disease, which is primarily related to β-amyloid toxicity. 

Therefore, further research is necessary to better 

understand the regulation of these networks in AD. 

 

Our research is just the beginning so that there remain 

many challenges and problems to be solved in the 

future. The cumulative evidence has helped to refine the 

dynamic ceRNA regulation [20], which reveals that 

various factors could contribute to the creation of 

miRNA and ceRNA hierarchies. These factors can be 

summarized as follows: miRNA target-site efficacy; 

shared MRE abundance; miRNA/ceRNA expression 

level and subcellular localization [21]; miRNA: target 

ratio; competition between rate-limiting molecules, such 

as Ago [63]; and advanced ceRNA hierarchy strategies. 

Moreover, attempt was made to decode the complexity 

of ceRNA regulatory networks. After the initial 

establishment of the ceRNA network, the biological 

mechanisms and functions mediated by the ceRNA 

mechanism should be predicted and verified by means 

of in vivo experiments in the future. 

 

For a long time, there has been widespread recognition 

that ncRNAs are incapable to encode proteins [64]. 

Nevertheless, with the advancement of deep ribosome 

profiling sequencing (Ribo-Seq) technology, mass 
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spectrometry and algorithms, a subset of ncRNA have 

been identified to encode peptides (<100 amino acids) or 

proteins, such as muscle-specific lncRNAs [65–67] and 

cancer-related lncRNA HOXB-AS3 [68]. At present, only 

few studies focused on Alzheimer's disease. Peptides/ 

proteins encoded by ncRNAs might represent the drug 

targets or biomarkers for the prognosis of AD patients. 

Therefore, it’s significant to summarize the characteristics 

of peptides/proteins encoded by ncRNAs and their 

outlook for small molecule peptide drugs, drug targets and 

biomarkers. 

 

In conclusion, the brain lncRNA-associated ceRNA 

profiles of APP/PS1 and WT mice were clarified. Our 

findings improve the current understanding of ceRNA 

biology and the regulatory roles of these RNAs in the 

pathogenesis of AD. These new networks reveal the 

potential biomarkers and may offer a promising target 

for the development of drugs to treat AD. 

 

MATERIALS AND METHODS 
 

Tissue preparation 

 

WT and APP/PS1 mice [originally from The Jackson 

Laboratory; strain B6.Cg-Tg(APPswe, PSEN1dE9) 

85Dbo/Mmjax [43]] were purchased from the Model 

Animal Research Center of Nanjing University. The 

mice were housed one per cage under standard 

conditions (25°C, 50% humidity, a 12-hour light/dark 

cycle, and specific-pathogen-free environment). The 

mice were provided with free access to the standard diet 

until they met the age requirements (6 and 9 months). 3 

AD and 3 wild-type male mice born in the same litter 

were used as experimental and control groups, of which 

cerebral cortex samples were collected for RNA-seq. 

All animal experiments were performed in accordance 

with animal use protocols approved by the Committee 

for the Ethics of Animal Experiments, Shenzhen Peking 

University, the Hong Kong University of Science and 

Technology Medical Center (SPHMC) (protocol 

number 2011-004). 

 

RNA extraction and qualification 

 

Total RNA from each sample was isolated with TRIzol 

reagent (Invitrogen) according to the manufacturer’s 

instructions and separated on 1% agarose gels to assess 

RNA degradation and contamination. RNA purity was 

measured with a NanoPhotometer spectrophotometer 

(IMPLEN, CA, USA). RNA concentration was 

measured with a Qubit RNA Assay Kit in a Qubit 2.0 

Fluorometer (Life Technologies, CA, USA). RNA 

integrity was evaluated with the RNA Nano 6000 Assay 

Kit of a Bioanalyzer 2100 System (Agilent Technologies, 

CA, USA). 

RNA-seq 

 

Details of the mRNA-seq, miRNA-seq, and lncRNA-

seq methods are described in Supplementary Materials. 

 

Expression analysis 

 

We calculated the FPKM values of transcripts by using 

Cuffdiff (v.2.1.1) to evaluate the expression levels of 

protein-coding genes and lncRNA in each sample [69]. 

The expression levels of miRNAs were estimated as 

TPM values as described [69]. Transcripts with p 

values less than 0.05 were regarded as being 

differentially expressed between APP/PS1 and WT 

mice. Normalized expression = (mapped reads)/(total 

reads) * 1,000,000. 

 

CeRNA network analysis 

 

The expression levels of lncRNAs, miRNAs, and 

mRNAs differed significantly between APP/PS1 and 

WT mice. We searched the sequences of the lncRNAs 

and mRNAs to identify potential MREs. We used 

miRanda (http://www.microrna.org/microrna/) to 

predict miRNA-binding seed-sequence sites, and the 

presence of the same miRNA-binding sites in both 

lncRNAs and mRNAs indicated potential lncRNA–

miRNA–mRNA interaction. 

 

GO annotations and KEGG pathway analyses 

 

The DAVID (https://david.ncifcrf.gov/summary.jsp) 

database was used to analyze lncRNA-miRNA-enriched 

genes. GO and KEGG terms with p values less than 

0.05 were considered significantly enriched. 

 

Construction of lncRNA-associated ceRNA networks 

 

The lncRNA-associated ceRNA networks were 

constructed and visually displayed by using Cytoscape 

software V3.5.0 (San Diego, CA, USA) based on the 

analysis of high-throughput sequencing data, as described 

above. In the figures, distinct shapes and colors are used 

to represent different RNA types, and regulatory 

relationships. 

 

Real-time qPCR validation 

 

Total RNA was extracted by using TRIzol reagent 

(Sigma) according to the manufacturer’s protocol. RNA 

quantity was measured by using a NanoDrop 2000 

(Thermo Fisher Scientific). Quantitative RT-PCR was 

performed by using the GoScriptTM Reverse 

Transcription System (Promega), in a C1000 Thermal 

Cycler (Bio-Rad). The glyceraldehyde-3-phosphate 

dehydrogenase gene (Gapdh) and U6 were used as an 

http://www.microrna.org/microrna/
https://david.ncifcrf.gov/summary.jsp
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internal control. Relative gene-expression levels were 

calculated using the 2−ΔCt method (n=3). 

 

Statistical analysis 

 

Two normally distributed groups were compared by 

using t tests. Parameters for the high-throughput 

sequencing-related data were calculated, and statistical 

computing was performed by using R software. All data 

are expressed as means ± SD; a value of p < 0.05 was 

considered statistically significant. 

 

Data access 

 

All raw and processed sequencing data generated in this 

study have been submitted to the NCBI Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm. 

nih.gov/geo/) under accession number GSE132177. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Methods 
 

MIRNA Methods 
 

RNA isolation, quantification and qualification 

 

RNA degradation and contamination was monitored on 

1% agarose gels. RNA purity was checked using the 

Nano Photometer® spectrophotometer (IMPLEN, CA, 

USA). RNA concentration was measured using Qubit® 

RNA Assay Kit in Qubit® 2.0 Flurometer (Life 

Technologies, CA, USA). RNA integrity was assessed 

using the RNA Nano 6000 Assay Kit of the Bioanalyzer 

2100 system (Agilent Technologies, CA, USA). 

 

Library preparation for small RNA sequencing 

 

A total amount of 3 μg total RNA per sample was used 

as input material for the small RNA library. Sequencing 

libraries were generated using NEBNext® Multiplex 

Small RNA Library Prep Set for Illumina® (NEB, 

USA.) following manufacturer’s recommendations and 

index codes were added to attribute sequences to each 

sample. Briefly, NEB 3' SR Adaptor was directly, and 

specifically ligated to 3' end of miRNA, siRNA and 

piRNA. After the 3' ligation reaction, the SR RT Primer 

hybridized to the excess of 3' SR Adaptor (that 

remained free after the 3' ligation reaction) and 

transformed the single-stranded DNA adaptor into a 

double-stranded DNA molecule. This step is important 

to prevent adaptor-dimer formation, besides, dsDNAs 

are not substrates for ligation mediated by T4 RNA 

Ligase 1 and therefore do not ligate to the 5´ SR 

Adaptor in the subsequent ligation step. 5´ends adapter 

was ligated to 5´ends of miRNAs, siRNA and piRNA. 

Then first strand cDNA was synthesized using M-

MuLV Reverse Transcriptase (RNase H–). PCR 

amplification was performed using LongAmp Taq 2X 

Master Mix, SR Primer for illumina and index (X) 

primer. PCR products were purified on a 8% 

polyacrylamide gel (100V, 80 min). DNA fragments 

corresponding to 140~160 bp (the length of small 

noncoding RNA plus the 3' and 5' adaptors) were 

recovered and dissolved in 8 μL elution buffer. At last, 

library quality was assessed on the Agilent Bioanalyzer 

2100 system using DNA High Sensitivity Chips. 

 

Clustering and sequencing 

 

The clustering of the index-coded samples was 

performed on a cBot Cluster Generation System using 

TruSeq SR Cluster Kit v3-cBot-HS (Illumia) according 

to the manufacturer’s instructions. After cluster 

generation, the library preparations were sequenced on 

an Illumina Hiseq 2500/2000 platform and 50bp. 

 

Data analysis  

 

Quality control 

Raw data (raw reads) of fastq format were firstly 

processed through custom perl and python scripts. In 

this step, clean datas(clean reads) were obtained by 

removing reads containing ploy-N, with 5′ adapter 

contaminants, without 3′ adapter or the insert tag, 

containing ploy A or T or G or C and low quality reads 

from raw data. At the same time, Q20, Q30, and GC-

content of the raw datas were calculated. Then, chose a 

certain range of length from clean reads to do all the 

downstream analyses. 

 

Reads mapping to the reference sequence 

 

The small RNA tags were mapped to reference 

sequence by Bowtie (Langmead et al. 2009) without 

mismatch to analyze their expression and distribution 

on the reference. 

 

Known miRNA alignment 

 

Mapped small RNA tags were used to looking for 

known miRNA. miRBase20.0 was used as reference, 

modified software mirdeep2 (Friedlander et al. 2011) 

and srna-tools-cli were used to obtain the potential 

miRNA and draw the secondary structures. Custom 

scripts were used to obtain the miRNA counts as well as 

base bias on the first position of identified miRNA with 

certain length and on each position of all identified 

miRNA respectively. 

 

Remove tags from these sources 

 

To remove tags originating from protein-coding genes, 

repeat sequences, rRNA, tRNA, snRNA, and snoRNA, 

small RNA tags were mapped to RepeatMasker, Rfam 

database or those types of datas from the specified 

species itself. 

 

Novel miRNA prediction 

 

The characteristics of hairpin structure of miRNA 

precursor can be used to predict novel miRNA. The 

available software miREvo (Wen et al. 2012) and 

mirdeep2 (Friedlander et al. 2011) were integrated to 

predict novel miRNA through exploring the secondary 

structure, the Dicer cleavage site and the minimum free 

energy of the small RNA tags unannotated in the former 

steps. At the same time, custom scripts were used to 

obtain the identified miRNA counts as well as base bias 
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on the first position with certain length and on each 

position of all identified miRNA respectively. 

 

Small RNA annotation summary 

 

Summarizing all alignments and annotations obtained 

before. In the alignment and annotation before, some 

small RNA tags may be mapped to more than one 

category. To make every unique small RNA mapped to 

only one annotation, we follow the following priority 

rule: known miRNA > rRNA > tRNA > snRNA > 

snoRNA > repeat > gene > NAT-siRNA > gene > novel 

miRNA > ta-siRNA. The total rRNA proportion was 

used a marker as sample quality indicator. Usually it 

should be less than 60% in plant samples and 40% in 

animal samples as high quality. 

 

miRNA editing analysis 

 

Position 2~8 of a mature miRNA were called seed 

region which were highly conserved. The target of a 

miRNA might be different with the changing of 

nucleotides in this region. In our analysis pipeline, 

miRNA which might have base edit could be detected 

by aligning all the sRNA tags to mature miRNA, 

allowing one mismatch. 

 

miRNA family analysis 

 

Exploring the occurrence of miRNA families identified 

from the samples in other species. In our analysis 

pipeline, known miRNA used miFam.dat 

(http://www.mirbase.org/ftp.shtml) to look for families; 

novel miRNA precursor was submitted to Rfam 

(http://rfam.sanger.ac.uk/search/) to look for Rfam 

families. 

 

Target gene prediction 

 

Predicting the target gene of miRNA was performed by 

miRanda (Enright et al, 2003) for animals. 

 

Quantification of miRNA 

 

miRNA expression levels were estimated by TPM 

(transcript per million) through the following criteria 

(Zhou et al. 2010): Normalization formula: Normalized 

expression = mapped readcount/Total reads*1000000 

 

Differential expression of miRNA 

 

For the samples with biological replicates: Differential 

expression analysis of two conditions/groups was 

performed using the DESeq R package (1.8.3). The P-

values was adjusted using the Benjamini and Hochberg 

method. Corrected P-value of 0.05 was set as the 

threshold for significantly differential expression by 

default. 

 

LNCRNA AND MRNA Methods 
 

RNA isolation, quantification and qualification 

 

RNA degradation and contamination was monitored on 

1% agarose gels. RNA purity was checked using the 

Nano Photometer® spectrophotometer (IMPLEN, CA, 

USA). RNA concentration was measured using Qubit® 

RNA Assay Kit in Qubit® 2.0 Flurometer (Life 

Technologies, CA, USA). RNA integrity was assessed 

using the RNA Nano 6000 Assay Kit of the Bioanalyzer 

2100 system (Agilent Technologies, CA, USA). 

 

Library preparation for lncRNA sequencing  

 

A total amount of 3 μg RNA per sample was used as 

input material for the RNA sample preparations. Firstly, 

ribosomal RNA was removed by Epicentre Ribo-zero™ 

rRNA Removal Kit (Epicentre, USA), and rRNA free 

residue was cleaned up by ethanol precipitation. 

Subsequently, sequencing libraries were generated 

using the rRNA-depleted RNA by NEBNext® Ultra™ 

Directional RNA Library Prep Kit for Illumina® (NEB, 

USA) following manufacturer’s recommendations. 

Briefly, fragmentation was carried out using divalent 

cations under elevated temperature in NEBNext First 

Strand Synthesis Reaction Buffer(5X). First strand 

cDNA was synthesized using random hexamer primer 

and M-MuLV Reverse Transcriptase(RNaseH-). Second 

strand cDNA synthesis was subsequently performed 

using DNA Polymerase I and RNase H. In the reaction 

buffer, dNTPs with dTTP were replaced by dUTP. 

Remaining overhangs were converted into blunt ends 

via exonuclease/polymerase activities. After 

adenylation of 3′ ends of DNA fragments, NEBNext 

Adaptor with hairpin loop structure were ligated to 

prepare for hybridization. In order to select cDNA 

fragments of preferentially 150~200 bp in length, the 

library fragments were purified with AMPure XP 

system (Beckman Coulter, Beverly, USA). Then 3 μl 

USER Enzyme (NEB, USA) was used with size-

selected, adaptor-ligated cDNA at 37° C for 15 min 

followed by 5 min at 95°C before PCR. Then PCR was 

performed with Phusion High-Fidelity DNA 

polymerase, Universal PCR primers and Index (X) 

Primer. At last, products were purified (AMPure XP 

system) and library quality was assessed on the Agilent 

Bioanalyzer 2100 system. 

 

Clustering and sequencing 

 

The clustering of the index-coded samples was 

performed on a cBot Cluster Generation System using 

http://www.mirbase.org/ftp.shtml
http://rfam.sanger.ac.uk/search/
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TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according 

to the manufacturer’s instructions. After cluster 

generation, the libraries were sequenced on an Illumina 

Hiseq 4000 platform and 150 bp paired-end reads were 

generated. 

 

Data analysis  

 

Quality control 

Raw data(raw reads) of fastq format were firstly 

processed through in-house perl scripts. In this step, 

clean data(clean reads) were obtained by removing 

reads containing adapter, reads on containing ploy-N 

and low quality reads from raw data. At the same time, 

Q20, Q30 and GC content of the clean data were 

calculated. All the down stream analyses were based on 

the clean data with high quality. 

 

Mapping to the reference genome 

 

Reference genome and gene model annotation files 

were downloaded from genome website directly. Index 

of the reference genome was built using bowtie2 v2.2.8 

and paired-end clean reads were aligned to the reference 

genome using HISAT2 (Langmead et al.) v2.0.4. 

HISAT2 was run with ‘--rna-strandness RF’, other 

parameters were set as default. 

 

Transcriptome assembly 

 

The mapped reads of each sample were assembled by 

StringTie (v1.3.1) (Mihaela Pertea et al. 2016) in a 

reference-based approach. StringTie uses a novel 

network flow algorithm as well as an optional de novo 

assembly step to assemble and quantitate full-length 

transcripts representing multiple splice variants for each 

gene locus. 

 

Coding potential analysis 

 

CNCI 

CNCI (Coding-Non-Coding-Index) (v2) profiles 

adjoining nucleotide triplets to effectively distinguish 

protein-coding and non-coding sequences independent 

of known annotations (Sun et al. 2013). We use CNCI 

with default parameters. 

 

CPC 

CPC (Coding Potential Calculator) (0.9-r2) mainly 

through assess the extent and quality of the ORF in a 

transcript and search the sequences with known protein 

sequence database to clarify the coding and non-coding 

transcripts (Kong et al. 2007). We used the NCBI 

eukaryotes' protein database and set the e-value ‘1e-10’ 

in our analysis. 

Pfam-sca 

We translated each transcript in all three possible 

frames and used Pfam Scan (v1.3) to identify 

occurrence of any of the known protein family domains 

documented in the Pfam database (release 27; used both 

Pfam A and Pfam B)（ Punta et al. 2012） . Any 

transcript with a Pfam hit would be excluded in 

following steps. Pfam searches use default parameters 

of -E 0.001 --domE 0.001 (Bateman et al. 2002). 

 

PhyloCSF 

PhyloCSF (phylogenetic codon substitution frequency) 

(v20121028) examines evolutionary signatures charac-

teristic to alignments of conserved coding regions, such 

as the high frequencies of synonymous codon 

substitutions and conservative amino acid substitutions, 

and the low frequencies of other missense and non-

sense substitutions to distinguish protein-coding and 

non-coding transcripts (Lin et al. 2011). We build multi-

species genome sequence alignments and run phyloCSF 

with default parameters. Transcripts predicted with 

coding potential by either/all of the four tools above 

were filtered out, and those without coding potential 

were our candidate set of lncRNAs. 
 

Conservative analysis 
 

Phast (v1.3) is a software package contains much of 

statistical programs, most used in phylogenetic analysis 

(Siepel, et al. 2005), and phastCons is a conservation 

scoring and identificating program of conserved 

elements. We used phyloFit to compute phylogenetic 

models for conserved and non-conserved regions among 

species and then gave the model and HMM transition 

parameters to phyloP to compute a set of conservation 

scores of lncRNA and coding genes. 
 

Quantification of gene expression level 
 

Cuffdiff (v2.1.1) was used to calculate FPKMs of both 

lncRNAs and coding genes in each sample (Trapnell C. 

et al. 2010). Gene FPKMs were computed by summing 

the FPKMs of transcripts in each gene group. FPKM 

means fragments per kilo-base of exon per million 

fragments mapped, calculated based on the length of the 

fragments and reads count mapped to this fragment. 
 

Differential expression analysis 
 

The Ballgown suite includes functions for interactive 

exploration of the transcriptome assembly, visualization 

of transcript structures and feature-specific abundances 

for each locus, and post-hoc annotation of assembled 

features to annotated features (Alyssa C. Frazee et al. 

2014). Transcripts with an P-adjust <0.05 were assigned 

as differentially expressed. Cuffdiff provides statistical 
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routines for determining differential expression in 

digital transcript or gene expression data using a model 

based on the negative binomial distribution (Trapnell C 

et al. 2010). Transcripts with an P-adjust <0.05 were 

assigned as differentially expressed. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2 

 

Supplementary Table 1. Differentially expressed lncRNAs between the APP/PS1 and WT at 6 months. 

Supplementary Table 2. Differentially expressed lncRNAs between the APP/PS1 and WT at 9 months. 

Supplementary Table 3. Differentially expressed miRNAs between the APP/PS1 and WT at 6 months. 

sRNA AD_6m_readcount WT_6m_readcount log2FoldChange pval padj 

mmu-miR-365-3p 198.708 304.0374 -0.57773 0.000318 0.083311 

mmu-miR-193b-3p 112.1526 174.3495 -0.59548 0.000402 0.083311 

mmu-miR-190a-5p 79.42082 128.3713 -0.63956 0.00069 0.095195 

mmu-miR-467a-3p 4.755073 18.71602 -1.1506 0.00143 NA 

mmu-miR-467d-3p 4.755073 18.71602 -1.1506 0.00143 NA 

mmu-miR-7688-5p 2.024379 11.96322 -1.1013 0.002897 NA 

mmu-miR-206-3p 31.80409 64.54004 -0.83853 0.002933 0.30361 

mmu-miR-3068-3p 1194.228 1355.86 -0.18228 0.004847 0.34848 

mmu-miR-135b-5p 798.43 967.9046 -0.27532 0.00505 0.34848 

mmu-miR-466i-5p 1.893169 9.957711 -1.0196 0.005855 NA 

mmu-miR-9b-5p 4140.593 3242.95 0.34171 0.006333 0.37457 

mmu-miR-192-5p 2025.665 2292.821 -0.17723 0.008521 0.44096 

mmu-miR-219b-5p 1662.885 1413.753 0.2303 0.009742 0.44812 

mmu-miR-669f-3p 2.542842 9.358751 -0.93601 0.011302 NA 

mmu-miR-219a-2-3p 9168.137 8113.984 0.17496 0.012751 0.5279 

mmu-miR-449a-5p 14.8024 27.75103 -0.72572 0.012781 NA 

mmu-miR-744-5p 2526.509 2127.922 0.24359 0.014179 0.53363 

mmu-miR-6933-5p 0 3.107846 -0.78476 0.014817 NA 

mmu-miR-128-2-5p 41.80851 65.26091 -0.57317 0.016213 0.55405 

mmu-miR-128-3p 243732 324443.4 -0.39123 0.017398 0.55405 

mmu-miR-138-5p 3620.765 4177.49 -0.20349 0.021657 0.64044 

mmu-miR-540-3p 338.4309 392.9069 -0.21 0.023941 0.66078 

mmu-miR-3058-5p 3.289875 0.230233 0.72575 0.024607 NA 

mmu-miR-122-5p 23.5908 42.24209 -0.67852 0.025612 NA 

mmu-miR-122b-3p 23.5908 42.24209 -0.67852 0.025612 NA 

mmu-miR-339-3p 110.4606 85.54921 0.3446 0.026789 0.69317 

mmu-miR-881-3p 33.25634 17.49266 0.68477 0.029711 NA 

mmu-miR-22-5p 669.6717 587.3613 0.18432 0.032178 0.76762 

mmu-miR-31-5p 160.4705 194.9269 -0.27158 0.033375 0.76762 

mmu-miR-350-5p 27.90635 17.21211 0.5873 0.036007 NA 

novel_423 0 2.210589 -0.62351 0.03829 NA 

mmu-miR-3097-3p 2.292271 6.86052 -0.76217 0.039745 NA 

mmu-miR-1983 423.094 335.3748 0.3224 0.04149 0.83571 

mmu-miR-30b-5p 3417.078 3819.289 -0.15864 0.043612 0.83571 

mmu-miR-450b-5p 17.6654 9.588984 0.65493 0.044437 NA 

mmu-miR-369-5p 3361.434 2998.785 0.16292 0.046922 0.83571 
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Please browse Full Text version to see the data of Supplementary Tables 4–14 

 

Supplementary Table 4. Differentially expressed miRNAs between the APP/PS1 and WT at 9 months. 

Supplementary Table 5. Differentially expressed mRNAs between the APP/PS1 and WT at 6 months. 

Supplementary Table 6. Differentially expressed mRNAs between the APP/PS1 and WT at 9 months. 

Supplementary Table 7. Nodes interactions in the 6yes9no group (UP-DOWN-UP).  

Supplementary Table 8. Nodes interactions in the 6yes9no group (DOWN-UP-DOWN).  

Supplementary Table 9. Nodes interactions in the 6no9yes group (UP-DOWN-UP).  

Supplementary Table 10. Nodes interactions in the 6no9yes group (DOWN-UP-DOWN).  

Supplementary Table 11. Nodes interactions in the 6yes9yes group.  

Supplementary Table 12. GO and KEGG pathways in the 6yes9no group.  

Supplementary Table 13. GO and KEGG pathways in the 6no9yes group.  

Supplementary Table 14. GO and KEGG pathways in the 6yes9yes group. 


