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ABSTRACT

Programmed cell death-1 (PD-1) and its ligands, particularly PD-L1 and PD-L2, are the most important proteins
responsible for signaling T-cell inhibition and arbitrating immune homeostasis and tolerance mechanisms.
However, the adaptive evolution of these genes is poorly understood. In this study, we aligned protein-coding
genes from vertebrate species to evaluate positive selection constraints and evolution in the PD1, PD-L1 and
PD-L2 genes conserved across up to 166 vertebrate species, with an average of 55 species per gene. We
determined that although the positive selection was obvious, an average of 5.3% of codons underwent positive
selection in the three genes across vertebrate lineages, and increased positive selection pressure was detected
in both the Ig-like domains and transmembrane domains of the proteins. Moreover, the PD1, PD-L1 and PD-L2
genes were highly expressed in almost all tissues of the selected species indicating a distinct expression pattern
in different tissues among most species. Our study reveals that adaptive selection plays a key role in the
evolution of PD1 and its ligands in the majority of vertebrate species, which is in agreement with the
contribution of these residues to the mechanisms of pathogen identification and coevolution in the complexity
and novelties of vertebrate immune systems.

INTRODUCTION PD-L2 expression is restricted to monocytes and

dendritic cells (DCs) [4]. PD-L1 and PD-L2 ligation act

The activation of mature peripheral B and T cells induces
programmed cell death-1 (PD-1), a member of the
CD28/CTLA-4 family [1, 2]. PD-1 and its ligands (PD-
L1 and PD-L2) maintain peripheral tolerance by
negatively regulating antigen receptor signaling [3]. PD-
L1 is extensively distributed on non-lymphoid tissues,
non-hematopoietic cells, leucocytes and pancreatic islets.

as a secondary signal to T cells in combination with T-
cell antigen receptor (TCR) signaling and results in the
co-stimulation of a negative or inhibitory signal [5] that
prevents the activation of TCR-mediated T cells and the
production and proliferation of cytokines [6]. Recent
studies have revealed that the PD-1/PD-L signaling
pathway plays a significant role in autoimmunity and that
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the abnormal signaling of PD-1/PD-L results in the loss
of peripheral tolerance and autoimmune disorders [7].
The expression of PD-L1 is observed on DCs, mast cells,
T cells, B cells, macrophages, and nonhematopoietic
cells, including astrocytes, vascular endothelial cells,
keratinocytes, pancreatic islet cells, and corneal
endothelial and epithelial cells. Both PD-L1 and PD-L2
are also expressed on tumor stroma and tumor cells. The
appearance of PD-L2 at tumor positions may contribute
to T-cell restriction mediated by PD-1 [8].

Both PD-1 and PD-L1 belong to the immunoglobulin (1g)
superfamily and are type | transmembrane proteins. PD-1
contains cytoplasmic domains that possess two tyrosine
signal motifs, a transmembrane domain, and an Ig-V-like
extracellular domain [2]. PD-L1 comprises a cytoplasmic
domain that does not consist of recognized signaling
motifs, a transmembrane domain, and 1g-V-like and Ig-
C-like extracellular domains [9, 10]. Communication
between the extracellular domains of PD-1 and PD-L1
promotes a conformational modification in PD-1, which
results in the phosphorylation of the tyrosine-based
immunoreceptor  switch motif (ITSM) and the
cytoplasmic immunoreceptor inhibitory motif (ITIM) by
Src kinases [11]. Furthermore, the interaction of PD-1
and PD-L1 can also affect CD80, which may transport
inhibitory signals to activated T cells [12]. The activation
of PD-1 by PD-L1 changes T-cell activities in various
ways, such as cytokine production, survival, the
inhibition of T-cell propagation, and the functions of
other effectors [13].

The interaction of PD-1 with PD-L1 is an important
factor in immune tolerance. Mice lacking PD-1 are
susceptible  to  developing lethal  autoimmune
cardiomyopathy or lupus-like autoimmune problems due
to altered thymic T-cell responses [14, 15], and PD-L1
blockage has been shown to weaken feto-maternal
tolerance [16]. These studies reveal an important role of
PD-1 and its ligands in immune tolerance at the cellular
and molecular levels [17]. It has been revealed that the
expression of PD-1 in newly triggered T cells is involved
in monitoring the strength of the early T-cell response
upon the detection of an antigen [18]. In agreement with
the role of PD-1 in modulating T-cell activities, the
interruption of the PD1-PD-L1 interaction enhances the
immune response toward various pathogens [19, 20].

Additionally, in some invertebrate clades, the genes
directly interacting with pathogens and receptor genes
are the most frequent targets of positive selection [21,
22]. Early comparative genomic studies recognized
immune system processes as mutual goals of natural
selection in Drosophila, mammals, primates, ants, bees,
and other organisms [23-25] that harbored candidate
signatures of selection. This suggests that pathogens,

which evoke an immune reaction, maybe potent and
steady selection pressures across species [26]. Previous
studies on mammals revealed that proteins that interact
with pathogens undergo twice as many amino acid
variations as proteins that do not [27], and proteins that
interact with Plasmodium undergo relatively higher
adaptation rates [28]. In the context of conservation
genetics, variation analyses at functional genomic
regions provide an enhanced understanding of the
mechanisms by which inbreeding and population
bottlenecks can influence the adaptive potential of
endangered species [29]. Early genome-wide studies
have focused on single taxonomic ancestries (e.g.,
mammals) or restricted subgroups of candidate genes
across lineages, but the accessibility of several new
genomes now permits thorough evaluations across
extremely diverse clades to estimate the extent to which
specific genes show conserved regions of positive
selection over extended evolutionary periods [25].
However, the role of selective pressure in natural
populations in driving the diversification of additional
aspects (non-MHC) of the immune system, such as
innate immunity, remains poorly understood [30, 31].
Evidence has revealed that pathogens are the main
selective pressure that drive evolution, and several new
genomes now permit comparisons among various
lineages to identify the extent to which particular genes
undergo positive selection. The purpose of this study is
to analyze the genomic sequences of programmed cell
death-1 and its ligands in vertebrate species to calculate
the selection pressure on these genes, which can
contribute to adaptive evolution. Here, we explore the
evolutionary routes by thoroughly analyzing these genes
from a set of diverse vertebrates, and confer the role of
selection and diversification of this gene family. Our
results revealed that positive selection acting on PD1,
PD-L1 and PD-L2 genes drives adaptive changes for
biological functions directly related to immunological
tolerance in vertebrates. The analysis in this study is
likely to deliver understandings into the functional
inference of the gene in the development of vertebrate
evolution.

RESULTS

This study was designed to analyze the genomic
sequences of programmed cell death-1 and its ligands in
vertebrate species to calculate the selection pressure on
these genes, which can contribute to adaptive evolution.
Our maximum-likelihood phylogenetic analyses of
amino acid sequences from 166 vertebrate species
revealed that PD1 genes evolved in a shared ancestor of
vertebrates. In our study, we selected three genes (PD1,
PD-L1, and PD-L2) that are involved in immune
tolerance in vertebrates, and we also explored the
evolutionary processes, phylogenetic relationships, and
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resulting structural and functional characteristics of PD1,
PD-L1 and PD-L2 homologs in vertebrates. We
analyzed the CDS of the PD1, PD-L1, and PD-L2 genes.
We identified the orthologs of human PD1, PD-L1, and
PD-L2 through a comprehensive BLASTP search
approach. We filtered 202, 179 and 181 orthologs for
PD1, PD-L1 and PD-L2 genes to retrieve the sequences
in vertebrate species. The sequences were omitted if
absent in most of the species or absent in two of the
three of the main taxonomic groups and had sequences
in less than 10 taxa. Secondly, poorly aligned sequences
were screened using a sliding-window comparison
method. These CDS were compiled into a complete
multiple sequence alignment, which was used as the
input for both the construction of Bayesian phylogenetic
trees and other subsequent analyses.

Protein domain analysis
To recognize the domains of these proteins, we used the

SMART online tool to predict the protein domains. We

Intron

3

identified two domains (Ig-V and TM) in PD1 (Figure
1A), three domains (lg, Ig-like and TM) in PD-L1
(Figure 2A) and three domains (Ig, C2_set-2 and TM) in
PD-L2 (Figure 3A). According to the literature, Ig-like
domains are present in various protein families, which
are related both in structure and sequence. lg-like
domains contribute to various functions, such as the
immune system, cell surface receptors, cell recognition,
and muscle structure formation [32]. The V-set domains
are Ig-like and resemble the antibody variable region.
The V-set domains are present in various protein
families, including Ig heavy and light chains; T-cell
receptors, such as the cluster of differentiation (CD2,
CD4, CD80, and CD86); tyrosine-protein kinase
receptors; myelin membrane adhesion molecules; and
junction adhesion molecules (JAM) in PD1 [33]. C2-set
domains are Ig-like domains that resemble the antibody
constant domain and are mainly found in the mammalian
T-cell surface antigens CD2, CD4 and CD80 and in
intercellular and wvascular cell adhesion molecules
(ICAMs and VCAMS) [34].

PD1 Domains Intron A

Figure 1. (A) Molecular structure of PD1 and Conserved domain analysis of PD1 protein. (B) Showing the MSA of the 20 most homologous
proteins to PD1 (obtained with a BLAST+ search against the PDBAA database). Known secondary structure elements are displayed for all
aligned sequences. Alternate residues are highlighted by gray. Identical and similar residues are boxed in red and yellow, respectively. (C)
Location of positively selected amino acid sites identified PD1 conserved Ig domain. The crystal structure of human PD1 was used as a
reference sequence and positively selected sites were drawn onto the crystal structure using Phyre tool (http://www.sbg.bio.ic.ac.uk/
phyre2/html). Two residues identified under selection fall in the immunoglobulin-like domain containing the ligand-binding site. The sites
which fall in the region identified as the ligand-binding site and another cluster in a region immediately following the signal sequence.

WWW.aging-us.com 3518

AGING


http://www.sbg.bio.ic.ac.uk/phyre2/html
http://www.sbg.bio.ic.ac.uk/phyre2/html

Positive selection analysis

We used different site models to recognize the genes
under positive selection across the vertebrate species.
We compared different models for the selected genes in
the data set using the phylogenetic tree as input data. We
performed a likelihood analysis that compared different
models based on o ratios to identify the codons under
positive selection in the corresponding genes. These
likelihood models included an additional o parameter
for some fraction of sites and models that do not include
the additional » parameter. The codeml program was
used to compute the parameters related to gene selection
among 55 species, and a positive selection test was

analyzed by the two models for M1a and M2a and for
M7 and M8. The results indicated that the test of the
PD1 gene in Mla-M2a was not significant with the
likelihood test value 2AInL=0 (p>0.05), while in M7-
M8, the likelihood ratio test (2AInL) was 5.103. The test
results of positive selection model M8 were significant
(p<0.05); the PD1 gene was under positive selection
indicating that the M8 was accepted, while M7 was
rejected. In the PD-L1 gene, the codon sites were
positively selected with P>95% and P>99%, based on
the Naive Bayesian (naive empirical method based on
Bayes, NEB) and Bias (Bayes empirical Bayes
experience method, BEB) analysis. However, for the
PD-L2 gene, both sets of models M1a: M2a and M7: M8
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Figure 2. (A) Molecular structure and Conserved domain analysis of PD-L1 protein. (B) Showing the MSA of the 20 most homologous
proteins to PD-L1 (obtained with a BLAST+ search against the PDBAA database). Known secondary structure elements are displayed for all
aligned sequences. Alternate residues are highlighted by gray. Identical and similar residues are boxed in red and yellow, respectively. (C)
Location of positively selected amino acid sites identified PD-L1 conserved Ig domain. The crystal structure of human PD-L1 was used as a
reference sequence and positively selected sites were drawn onto the crystal structure using Phyre tool (http://www.sbg.bio.ic.ac.uk/
phyre2/html). Four residues identified under selection fall in the immunoglobulin-like domain containing the ligand-binding site. The sites
which fall in the region identified as the ligand-binding site and another cluster in a region immediately following the signal sequence.
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was highly significant, with 2AInL values of 137.60 and most sites exhibiting high posterior probabilities at 99%

827.14, respectively (Table 1). We evaluated the global or 95%. To evaluate the false positive outcomes of
o values to further conclude the evolutionary signatures PAML, we further confirmed the positive selection using
of positive selection by using MEME, FEL, and SLAC the Selecton server that recognizes adaptive selection at
analyses. Our results revealed robust evidence of individual amino acid sites in the protein. The MEC
positive evolutionary selection for the PD1, PD-L1 and model identifies the variations among amino acid
PD-L2 genes in the vertebrates. We applied the Bayesian exchange rates. As a result, we identified an adaptive
method to identify the sites under selective pressure by selection at wvarious amino acid sites in PD1
calculating the posterior probabilities for each codon. (Supplementary Figure 1), PD-L1 (Supplementary
The sites with higher probabilities are more likely to be Figure 2), and PD-L2 (Supplementary Figure 3). In our
under positive selection with ©>1 than sites with lower analysis, we found that there were few sites in the Ig-V-
probabilities. We identified several sites under positive like domain region in these proteins, and this 1g-V-like
selection in the PD1 protein by using BEB analysis, with domain had evolved. However, the proteins that
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Figure 3. (A) Molecular structure of PD1 and Conserved domain analysis of PD-L2 protein. (B) Showing the MSA of the 20 most homologous
proteins to PD-L2 (obtained with a BLAST+ search against the PDBAA database). Known secondary structure elements are displayed for all
aligned sequences. Alternate residues are highlighted by gray. Identical and similar residues are boxed in red and yellow, respectively. (C)
Location of positively selected amino acid sites identified PD-L2 conserved Ig domain. The crystal structure of human PD-L2 was used as a
reference sequence and positively selected sites were drawn onto the crystal structure using Phyre tool (http://www.sbg.bio.ic.ac.uk/
phyre2/html). Five residues identified under selection fall in the immunoglobulin-like domain containing the ligand-binding site. The sites
which fall in the region identified as the ligand-binding site and another cluster in a region immediately following the signal sequence.
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Table 1. Log-Likelihood Values and Test Statistics for PAML Site Models of positive selection.

Gene Models Parameter estimates InL LRTs Positively selected SLAC FEL MEME
sites PAML
PD1  Mila pl: 0.51480 p2: 0.48520 -23577.93
ol:0.21574 ©2:
1.00000
M2a p0: 0.51480 p1: 0.39898 -23577.93
p2: 0.08622

®0: 0.21574 wl:
1.00000 »2: 1.00000

M7 P:0.98018 q: 1.49822 -23414.34 5.103112*
M8 p0: 0.96818 p: 1.00330 -23411.79
q: 1.60757

pl: 0.03182) w: 8.05118
pl: 0.44199 p2: 0.55801 -21407.94 137.60***
ol:0.18081 w2:
1.00000
M2a pl:0.39702 p2: 0.47651 -21339.13
p3:0.12647
®0: 0.18153 wl:
1.00000 ®2: 3.26240
M7 P:0.66997 q: 0.64572  -21305.29 131.62***
M8 p0: 0.86159 p: 0.77177 -21239.48
g: 0.94085
(p1: 0.13841) w:
2.57746
pl:0.48081 p2: 0.51919 -22727.73  137.60***
®1:0.20239 w2:
1.00000
M2a p0: 0.35589 p1: 0.38002 -22297.1
p2: 0.26409
®0: 0.20533 wl:
1.00000 »2: 9.06683
M7 P:0.56058 q: 0.42402  -22649.48 827.14***
M8 p0: 0.73476 p: 0.70098 -22235.91
g: 0.70029
(p1: 0.26524) w:
7.39740

PD-L1 Mla

PD-L2 Mla

The proportion of sites under positive selection (p1), or under selective constraint (p0), and parameters p and q for the beta
distribution. Parameters indicating positive selection are in bold. p: significant at 5% level; p: significant at 1% level. Sites
potentially under positive selection identified under model M8 are listed according to the human sequence numbering.
Positively selected sites with posterior probability .0.9 are underlined, 0.8—0.9 in bold, and 0.5— 0.7 in plain text. The test
statistic 24/ is compared to a x2 distribution with 2 degrees of freedom, critical values 5.99, 9.21, and 13.82 at 5%, 1%, and
0.1% significance, respectively. **: significant at 1% level; *: significant at 5% level.

experience positive selection might be conserved and
exposed to purifying selection during adaptive
evolution. This conservation derived from the evolution
of each amino acid/nucleic acid position was identified
by wusing the ConSurf server. The color-based
representation of the ConSurf server allows the
identification of regions with strong and weak
conservation in the structure of the PD1, PD-L1 and

PD-L2 proteins (Figures 1B, 2B and 3B, respectively).
We found that several conserved residues had masked
the signals of selection, and the residues that were
buried or exposed according to the neural network
algorithm were determined to be under positive
selection on variable positions in the PD1, PD-L1
and PD-L2 proteins (Supplementary Figures 4-6,
respectively).
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To gain insight into the probable intermolecular
interactions of these positively selected regions of the
PD1 proteins with conserved functional domains, we
generated 3D models of the proteins with a reported
complex between the Ig region and the protein-coding
region, which is the target of Ig-like proteins, as a
models for homology modeling, assuming that this
conserved Ig region could interact correspondingly with
its targets. The 3D protein structure showed that T59
and G90 were the main PD1 protein-protein interaction
residues under positive selection (Figure 1C), and L46,
G47, A51 and S93 were the main interacting residues
that were detected under strong selective pressure in the
PD-L1 protein (Figure 2C). The residues A54, D65,
Q91, G107 and W110 were the main interacting
residues found under selection in the PD-L2 protein
(Figure 3C). Motif analysis by MEME identified
various species in our data set that shared high
conservation in motifs 1 to 5 but differed in motif 1,
which we determined was lacking in the PD1 protein of
birds (Figure 4 and Supplementary Figure 7). Within
the same subfamily, individuals had similar motif
distributions, such as PD-L1 and PD-L2 lacking motif 5
in both avian and amphibian species, demonstrating that
individuals of the same subfamily may have similar
functions. All motifs were found in all protein
sequences from diverse vertebrate species, excluding
some of the mammalian species, including Chlorocebus
sabaeus, which lacks motif 1 and motif 5 in PD1,
Monodelphis domestica, which lacks motif 5 in PD1,
and Gorilla gorilla and Castor canadensis, which lack
motif 5 in PD-L1 (Figure 4 and Supplementary Figure
8). Different motif patterns were observed in PD-L2,
where motif 5 or motifs 2-5 were missing in Mus
musculus, Canis familiaris and Oryctolagus cuniculus
(Figure 4 and Supplementary Figure 9). The lack of
motifs in various species signifies the divergence of
gene structural features concerning exon-intron
relationships. These analyses revealed that the
differences in motif distribution in PD proteins of
vertebrate species might have diverged from the
functions of these genes during adaptive evolution.

Lineage-specific selection analysis

The codon-based selection model can only classically
confer positive selection signals when particular codons
are under selection pressure in several lineages. We
used an adaptive branch-site random effects likelihood
(aBS-REL) model to relax this hypothesis to calculate
the selection probability and identify selection restricted
to specific lineages independently at each subgroup of
the phylogeny. To further validate our site-model
results, we used aBS-REL for each gene to identify the
lineages that underwent positive selection during
adaptive evolution. We noticed that the genes

recognized as being under positive selection by
BUSTED across mammalian lineages were also under
significant positive selection in additional lineages
according to the aBS-REL model (Figure 9;
Supplementary Tables 1-3). Clades within avian,
mammalian, and reptilian  lineages  showing
considerable signals for positive selection (p<.05) were
identified using the branch-site-REL (BSR) program
executed in the Data Monkey Web Server. PD1
exhibited strong signatures of positive selection at
various nodes of its mammalian and avian clades,
including C. sabaeus, Rhinopithecus roxellana,
Acinonyx jubatus, Ovis aries and Meleagris gallopavo,
respectively (Figure 9). PD-L1 showed significant
selection within a broad range of phylogeny. Positive
selection signals for PD-L1 were identified at several
nodes in two major clades: O. aries, Pantholops
hodgsonii, Sus scrofa, C. sabaeus, Macaca fascicularis,
C. canadensis, and M. domestica in the mammalian
clade and Apteryx australis mantelli, Falco peregrinus,
Coturnix japonica, Taeniopygia guttata, and G. gallus
in the avian clade (Figure 9). However, for PD-L2, we
obtained surprising results: all clades in the dataset
showed strong signals of positive selection in vertebrate
lineages (Figure 9).

Gene enrichment analysis

We used EnrichNet, which is a network-based gene
enrichment analysis program, and gene IDs from the
Ensembl database (PD1; ENSG00000188389, PD-L1;
ENSG00000120217, and PD-L2; ENSG00000197646)
as queries for the functional network analysis. We used
the immune system regulation activity class of the Gene
Ontology (GO) functional catalog to map the synteny
genes and obtained networks including PD1, PD-L1,
and PD-L2 as functionally associated genes (Figure 5).
We selected the regulation of the immune response
group because it includes the PD1, PD-L1 and PD-L2
genes in most of the functional databases. We expanded
our enrichment analysis to various databases and all
functional classes by generating functionally linked
gene networks in the ConsensusPathDB obtained from
the EnrichNet analysis. Using this technique, we
identified an interaction network with 107 interactions
and 62 unique nodes in the PD1 protein (Figure 5). The
interaction between PDCD1 and PTPN6 was
maintained through a transcription factor encoded by
PTPN, which is the py223 gene that interacts with the
PTPN11 and dmbx1 genes (Figure 5). We found 125
interactions and 55 unique nodes physically interacting
with the PD-L1 protein (Figure 5). PD-L2 was
identified in the conserved synteny map with 56
interactions and 22 distinct nodes, but its function was
associated with KTN1, GALNT15 and TMEM147 after
the enrichment analysis (Figure 5).
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Figure 4. Motif distribution of PD1, PD-L1 and PD-L2 genes in representative vertebrate species. Motifs of these genes from
representative species from each group are predicted using MEME suite (http://meme-suite.org/) based on amino acid sequences. All
sequences are separated by 5 conservative motifs with colors, including motif 1 (red), motif 2 (cyan), motif 3 (green), motif 4 (purple) and
motif 5 (brown).
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Bioinformatics analysis

Homologous sequence analysis of PD1, PD-L1 and PD-
L2 across several clades was used to predict related
structural topographies of these proteins. The structure
of the human PD1, PD-L1 and PD-L2 genes were used
as a model for further analyses. In the case of PD1, there
was higher variation among the homologous sequences
than among the sequences corresponding to various
domain regions. The prediction of solvent accessibility,
coils and turns in the corresponding domain region
(Figure 6A), regardless of hydrophobic clustering
development, suggested that protein-protein interfaces

A

3
3

were developed by the contribution of specific parts of
this region, which are important for the interaction of
PD1 with its targets. The possible development of these
clusters was revealed by HCA in regions consistent
with the Ig-like conserved domain (Figure 6B). The
secondary structure prediction results display numerous
helices and a reduced number of strands in the PD-L1
and PD-L2 protein sequences. Some of these secondary
structures were confined within the conserved regions of
PD-L1 and PD-L2, which supports the hypothesis that -
strands and helices are the most rigid types of secondary
structures and that mutations might disrupt the
secondary structure of proteins.
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Figure 5. (A) Chromosomal locations and positively selected sites of PD1, PDL1, and PDL2 genes. The chromosome number is indicated
above each bar. The chromosome size is indicated by its relative length using the information from NCBI. The scale of the chromosome is
millions of base pairs (Mb). Functional interaction network of PD1, PDL1 and PDL2 genes generated by the visualization environment of

Consensus Path DB meta-database, after conserved synteny and function

al enrichment analysis. The network of the PD1 gene contains 107

interactions and 62 physical entity nodes. The network of PDL1 contains 125 interaction and 55 physical entity nodes. The network of PDL2

contains 56 interaction and 22 physical entity nodes. Each node repre
represents an interaction.

sents a physical entity (gene, protein or compound). Each edge
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Coevolution analysis

The structural and functional features of the positively
selected residues were further examined through co-
evolution analysis by identifying the coordinated
contacts among these residues. This was performed by
the identification of other residues that have co-varied
with positively selected residues during evolution. This
coevolving relationship among various amino acid sites
within a protein could be the result of their structural or

functional interactions. Hence, we conducted a
coevolution analysis using homologs of PD1, PD-L1 and
PD-L2 as inputs and identified various coevolving
residue pairs that were identified as being under positive
selection in the former analyses. A diagram showing the
networks was built to recognize a link of significantly
associated residues (Figure 7A-7C). We have identified
that amino acids with a greater number of co-
evolutionary contacts likely evolve more steadily than
those with fewer co-evolutionary contacts. We also
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Figure 6. (A) Proteins analysis showing the results of the binding site, solvent accessibility and protein disorder predictions in the human
PD1, PD-L1 and PD-L2 sequences. (B) Hydrophobic cluster analysis (HCA) plots of the human PD proteins. HCA plots were constructed with
the HCA 1.0.2 program. HCA uses the standard one-letter amino acid abbreviations except for four amino acids, as shown in the key.
Hydrophobic residues are outlined. Clusters of hydrophobic residues are usually associated with regular secondary structures (a helices or
sheets). Zigzagging vertical lines of hydrophobic residues indicate alternating hydrophobic and non-hydrophobic residues, typical of exposed
B sheets (for example, B2, B3, B5, and B6). Continuous hydrophobic clusters are more common in internal  sheets.
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Relationship
threshold [0.1-1]

Figure 7. Coevolution analysis of positively selected conserved domain residues. The circular relation diagram centered on the
residues with their top co-varying residues at cutoffs (A) PD1, (B) PD-L1 and (C) PD-L2. Labels on the diagram represent amino acid residues
and their positions in the protein sequence. Colors of the arcs represent covariance scores between two given positions. Colors of the arcs
represent covariance scores between two given positions.
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determined that the residues with strong connectivity in
the network, such as Y248 and L288 in PD1, D108 and
T290 in PD-L1, and F3, L6, and L10 in PD-L2, were the
residues with higher conservation, respectively (Figure
7A-T7C). The positively selected residues were present in
the nodes of a subnetwork that was constrained to amino
acid residues present in the conserved Ig-like and 1g-V-
like domains in the protein. Multidimensional scaling
(MDS) scatterplots of co-varying residues in human
PD1, PD-L1 and PD-L2 exhibited coevolving
probabilities according to Pearson correlation (r). From
this covariance analysis, we determined the distances
and contacts of positively selected residues in the protein
domains and clusters of functionally related residues
(Supplementary Figure 10). The 3D viewing pane
provides interactive zoom and rotation capabilities and
labels selected residues. These outcomes support the
proposal that the PD protein regions conforming to these
conserved domains are structural-functional units.

Protein structure quality analysis

These positively selected residues were present in the
loop, which can dock into the Ig-binding pocket. The
extent of conservation of these amino acids was diverse,
with only W110 and E136 being comparatively
conserved in PD-L2 (Supplementary Figure 6). The low
degree of conservation among the other residues can be
conferred to neutral variations along with these sites
according to the positive selection/purifying analysis
(Supplementary Figures 1-3). Moreover, the complete
quality of the predicted structures was evaluated by
ERRAT, ProSA and VERIFY3D values. The
Ramachandran plots were used to check the backbone
conformation angles for the respective residue in the
modelled protein crystal structures, which showed the
empirical scattering and calculated energies of the
residue coordinate system to display either plot of the
conformation detected in the databank of identified 3D
models or outlines or steric measures as a function. We
observed that most of the residues were found in the
allowed region of the graph that represented the
conformational accuracy of all predicted models. For
PD1, PD-L1 and PD-L2, the number of residues in the
favored area was 95.9, 96.5, and 95.9%; the number of
residues in the allowed region was 3.6%, 3.2%, and
3.6%; and the number of residues in the outlier region
was 0.5% for all predicted structures, respectively
(Supplementary Figure 11). The z-values show the
complete model excellence of the predicted structures
with values of -7.2, -7.8, and -6.7, respectively
(Supplementary  Figure 11).  Additionally, the
compatibility of all predicted structures and their
correctness was validated using the VERIFY3D
software package. The dynamics of the PD1, PD-L1 and
PD-L2 protein model structures were computed using

the Gaussian network model (GNM), which revealed
that the residues that showed greater mobility were part
of the binding pocket and could function as the protein-
protein interaction region. The cross-correlation plots
represented the variation in residues and their physical
behavior. The predicted plot outcomes were analyzed
based on the colors blue, dark red, yellow and cyan. We
identified that the entirely correlated pairs were shown
in dark red, whereas the anti-correlated pairs are were
shown in blue. Additionally, the uncorrelated and
moderately correlated regions were colored cyan and
yellow, respectively (Supplementary Figure 11).

MRNA expression of the PD1, PD-L1 and PD-L2
genes

We investigated the mRNA expression patterns of the
PD1, PD-L1 and PD-L2 genes in five vertebrate
species, including M. javanica, A. albiventris, G. gallus,
A. schrenckii and S. crocodilurus. We examined the
mRNA expression profiles in heart, liver, spleen, lung,
kidney, pancreas, brain, testis, and ovary and muscle
tissues from male and female adults. We noticed that
PD-L1 had increased expression in almost all species
and that PD1 exhibited expression only in chicken
tissues. PD-L2 showed increased expression in pangolin
and fish in almost all tissues with some exceptions
(Figure 8). The expression of PD-L1 was high in almost
all tissues, indicating tissue-specific expression. The
PD1, PD-L1 and PD-L2 genes were highly expressed in
the heart, liver and spleen, indicating their predicted
functions in immune development and the prevention of
autoimmune disorders in organisms. These PD genes
that were highly expressed in vertebrate tissues or
organs may have important functions in signaling
pathways that play a significant role in autoimmunity,
and abnormal signaling in these pathways may result in
the loss of peripheral tolerance. Hence, the tissue
specificity of the PD genes identified here may be
useful sources for further probing their biological
functions in immune tolerance at the cellular and
molecular levels.

DISCUSSION

Key evolutionary changes occur in the genomes of
animals via divergence, the assimilation of genetic data
from independent lineages, gene duplication, and
epigenesis. Horizontal gene transfer and genome
duplications lay the foundations for all main molecular
mechanisms of adaptive immunity [35]. Previous studies
on the evolution of immune genes in birds mainly
focused on the coevolution of host-pathogen hotspots,
including the MHC and TLRs [36, 37]. The positive
selection signatures we identified were consistent with
the adaptive selection here. PD-L1, PD1 and PD-L2
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across vertebrate genes are first involved in regulating
lymphocyte activation, immune system function, the
promotion of T regulatory cell function and
development, the progression of autoimmunity and
immune tolerance as targets of positive selection. We
identified numerous positions in three genes under
positive selection in mammals, reptiles and birds (Table
1). We found that the genes with significantly increased
overall distinctive expression in these lineages resulted
in standards paralleled to those not under selection
pressure or positively selected only in mammals. Across
vertebrate clades, our results indicate that pathogens
might be a stable selective pressure. Previous
phylogenetic studies revealed uncertainties related to the
first vertebrate phylogeny change in IRF, i.e., where we
find an adaptive immune system. It was proposed that in
the beginning, the IRF family divided into two branches
that are found in all cnidarians and bilaterians [38].
Although facts and evidence continued to amass, the
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four antecedents probably advanced into the four classes
of vertebrates, IRF1-G (IRF2IRF1), IRF4-G (IRF4,
IRF9, IRF8, IRF10), IRFs, IRF3-G (IRF7, IRF3), and
IRF5-G (IRF6, IRF5), following 2-fold whole-genome
duplications [38, 39]. In the evolution of the PD proteins
to know the comparative characters of positive selection,
we used two approaches to compare the difference at the
codon level: an evolutionary model (M8) that allowed
positive selection, and another using the MCMC
evolutionary model implemented in  MrBayes
implemented in the Selecton server [40, 41]. w values
for the individual site were calculated in both
circumstances. Our consequences demonstrate the
conservation of the Ig domain of PD-L1, PD1, and PD-
L2 coding sequences attained after protein alignments
MAFFT (Figures 2B, 1B, and 3B). The fallouts allowing
for only the PD mature proteins have revealed that the
normal @ values were 0.18153, 0.21574 and 0.20533
using M2 and M1 evolutionary models, correspondingly.
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Figure 8. qRT-PCR analysis of PD1, PD-L1 and PD-L2 genes in different animal tissues. Expression patterns of genes in different
tissues were examined. Heart, liver, spleen, lungs, kidney, pancreas, brain, were used for quantitative reverse transcription (qRT-PCR)
polymerase chain reaction. Transcript levels are expressed relative to that of beta-actin. NTC: negative control.
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These results revealed that the protein changing
gradually in the regions under purifying selection
undergo non-identical switches, which are detrimental
to health and thus have low chances of fixation during
evolution [42]. The subsequent process favored positive
selection and identified the amino acid residues with a
®>1 (Table 1). Rendering cross-correlations analysis
between filtrate variations, this movement is connected
in the section of the protein chain, which protects amino
acids L288 and Y248 in PD1, D108 and T290 in PD-
L1, and, L6, F3 and L10, are the filtrates with higher
management, correspondingly (Figure 7A-7C). When
the study deliberated the area consistent to the N-
terminal, three positively selected sites L6, F3 and L10,
were found in PD-L2 using the M8 evolutionary model
(Figure 3C) with an ordinary dN/dS value of 7.39740.
Our outcomes reveal that several sites in other
proteins, which are under substantial positive selection
have been developing more swiftly than the mature
protein [43-45]. As a result, the dynamic selection
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forces its change which concerns to improve the protein
secretion efficacy, which is true in case of PD-L2
protein (Figure 3C), which is unlike than the matured
protein [46, 47].

We performed a branch-site test to determine the specific
branches under selection in vertebrate clades, and we
found few branches of mammalian clades under selection
in the PD1 gene (Figure 9). In the case of PD-L1,
positive selection was identified in mammalian and avian
clades (Figure 9). However, surprising results were
identified during the analysis of the PD-L2 gene, in
which we found that there is positive selection in most of
the branches of vertebrate clades in the data set. (Figure
9). Because branch-site analysis can lead to false
implications of positive selection due to multi-nucleotide
mutations, we further validated our results through the
aBS-REL model, and similar patterns of selection were
observed between the aBS-REL and site models. The
results suggest that the overall selection patterns we
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Figure 9. Adaptive branch-site REL test for episodic diversifying selection in PD1, PD-L1 and PD-L2 genes. The phylogenetic tree
scaled on the expected number of substitutions/nucleotides. The hue of each color indicates the strength of selection, with primary red
corresponding to w > 5, primary blue to w = 0 and grey to w=1. The width of each color component represents the proportion of sites in the
corresponding class. Thicker branches have been classified as undergoing episodic diversifying selection by the sequential likelihood ratio test

at corrected <0.05.
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observed were accurate with the alternate analysis.
Generally, the PD1 protein in vertebrate lineages revealed
no evidence of positive selection that suggested a constant
selection pressure hampering genetic variation, mainly in
the avian clade. Nearly a complete lack of positive
selection, as observed by the M8 evolutionary model, has
been entirely supported by LRT [48]. This may be
associated with the concept that the evolutionary history
of the PD1 gene has occurred without gene duplication
events. Gene duplication is one of the evolutionary
approaches that permit versatile advancement in genomes.
It has been revealed for other proteins that positive
selection happens after a duplication event that proposes
an unwinding of the selective pressure supporting genetic
variation [49, 50]. This relaxation was missing not only in
avian but also in other vertebrates’ lineages during PD1
evolution, conferring to the Bayesian phylogenetic
approaches (Supplementary Figure 10). Overall, these
findings suggest that PD1 molecular evolution has
classically been determined by purifying selection. The
synteny of PD1, PD-L1, and PD-L2 is conserved among
vertebrate clades, and the variations found in some motifs
could be described by the wvarying evolutionary
backgrounds of these genes for homologous arrangements
in mammals and other vertebrates. A comparing quality
set enrichment analysis shown a functional relationship
between a subset of the conserved synteny genes, PTPNG,
KTN1, GALNT15 and TMEM147 might be supported
through the transcription factor, encoded by the PTPN;
py223 gene (Figure 5). The purifying/positive selection
investigation did not distinguish positive selection in
amino acid residues of PD1, showing that purifying
choice, especially within the regions comparing to Ig like
domain has driven PD1 molecular evolution. A co-
evolution examination showed that residues within the
regions comparing to each motif especially co-vary with
each other during PD1 evolution.

The structure and function of proteins are reliant on
synchronized connections among their amino acid
residues. Therefore, the identification of structural
characteristics of positively selected amino acid residues
could resemble the detected residues that co-vary with
each other during evolution. This co-evolutionary
relationship among amino acid residues within proteins
could be the consequence of their structural or functional
interactions. Previous studies on protein coevolution
have discovered roles in protein constancy and
intermolecular interactions [51-54]. Therefore, the
variation in PD1 and its ligands may occur during
evolution. Here, we found that Ser93 of human PD-L1
and Gly107 in PD-L2 may have important roles in some
of the previously revealed functions by estimating the
dN/dS of mammalian PD1 sequences. PD1, PD-L1, and
PD-L2 have domains that are highly conserved among
vertebrates, indicating that their roles are not redundant

and that this selective pressure may derive from PD
specificity for their immune system regulation.
However, proteins that directly interact with other
molecules tend to have an increased chance of
adaptation to fit each other’s evolutionary changes. PD
genes may have undergone such co-evolutionary traits in
the context of their original function. Therefore, a
coevolution analysis was performed via multiple
sequence alignments generated for PD1, PD-L1 and PD-
L2 homologs, and we found positively selected
coevolving residues showing substantial variability
(Figure 7). These results suggest that these regions
corresponding to domains are structure-function
modules within the PD proteins. The homology
modelling of the PD protein regions corresponding to Ig-
like domains and subsequent dynamics region was
performed using a GNM (Supplementary Figure 11).

CONCLUSIONS

PD1, PD-L1, and PD-L2 have Ig-like domains that are
highly conserved among vertebrates, which may
enhance the understanding of their role in biological
systems such as immunological tolerance. Our results
revealed that positive selection acting on PD1, PD-L1
and PD-L2 genes drives adaptive changes for
biological functions directly related to immunological
tolerance in vertebrates. Our maximum-likelihood
phylogenetic analyses of amino acid sequences from
166 vertebrate species revealed that PD1 genes
evolved in a shared ancestor of vertebrates. According
to the results, the major evolutionary processes
causing the sequence variation observed in PD1 in
vertebrates were adaptation and selection. Future
studies integrating molecular data and pathogenicity
evidence will help to determine the selective forces
behind the long-term adaptation of programmed cell
death genes, as well as to determine the genetic
conflicts between immune system development
pathways and immune tolerance.

MATERIALS AND METHODS
Ethics statement

This study was approved by the Ethics Board for Animal
Trials at the Guangdong Institute of Applied Biological
Resources (reference number: GIABR20170720) by
following the basic ethical guidelines outlined by this
committee.

Sample collection, RNA extraction and qRT-PCR
We selected five vertebrate species, Manis javanica,

Atelerix albiventris, Gallus, and Acipenser schrenckii
and Shinisaurus crocodilurus for tissue sampling;
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among them, M. javanica and S. crocodilurus
individuals died of their wounds. We collected the heart,
liver, spleen, lung, kidney, pancreas, brain, testis, and
ovary and muscle tissues from male and female adults. A
total of 30 samples with an average of five individuals
per species were used for RNA extraction using the
RNAIso Pure RNA Isolation Kit (Takara, Japan). Total
RNA was extracted from 0.25 g of tissue using the
manual (TRIzol) method. We designed the primers by
using references MRNA sequences retrieved from NCBI
Genbank. The Prime Script™RT reagent kit with gDNA
eraser was used to remove genomic DNA and to
synthesize cDNA. cDNA samples from different tissue
samples were assayed by quantitative real-time PCR
(gRT-PCR) using specific set of primers (Supplementary
Table 7) in the Thermal Cycler Dice® Real Time
System (Bio-Rad, Hercules, CA, USA) using TB Green
Premix Ex Taq™ Il (Perfect Real Time, Cat. #
PRO81A/B, Takara Co., Ltd.) with 96-well plates were
used and each well contains a reaction mixture of 20ul
containing 10ul of TB Green premix, 1.6ul primer mix
(0.8ul of each primer) 2ul cDNA and 6.4ul of ddH-0.
The transcript level was normalized with beta-actin as a
housekeeping gene of each representative species.

Identification, alignment, and filtering of vertebrate
immune tolerance genes and orthologs

The orthologs of the PD1, PD-L1, and PD-L2 genes were
identified, recovered, aligned, and filtered from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[55]. These genes were used to identify and retrieve the
sequences of human genes from Ensembl BioMart [56].
The gene accession numbers were used to probe coding
sequences (CDS) of vertebrate species in the NCBI and
Ensembl databases (Supplementary Tables 4-6).
Moreover, one-to-one orthologs in the vertebrate species
were identified by performing tBLASTn and BLASTn
searches [57]. In addition, the homology patterns among
the protein-coding genes across the sequenced vertebrate
genomes were determined by the OMA v.1.0.0 program
[58]. The sequence alignments were made using MAFFT
v.7.221 [59]. This aligned set of homologous proteins was
used for further analyses.

Tests of selection

The proportion of sites in positively selected genes across
vertebrate lineages was identified by comparison with the
nearly neutral model of evolution to identify the
signatures of positive selection. Positive selection sites
were identified as those with higher nonsynonymous-
synonymous substitution ratios (w = dN/dS) than
expected under neutral evolution, w =1 [45, 60, 61]. The
genes under positive selection with high » values at
particular sites across vertebrate phylogenies were

identified by using two different tools. Initially, the site
models were used [62, 63] and executed in the PAML
v4.8 package [61] to compute likelihood values and
different constraint estimations for seven evolutionary
models. Some genes contained copies; therefore, we
performed all selection analyses on the gene trees from
all species in the data set and individually for the genes
with no duplicates in the species tree. The species tree
constructed by OMA was used as the phylogenetic
hypothesis [64]. First, we used MO, which evaluates a
single « for all positions in the alignment. The branch
lengths predicted with MO were used as fixed branch
lengths for subsequent models to reduce computational
time. We performed likelihood ratio tests between
selection and neutral models (w> 1) to determine the
genes under positive selection. The likelihood values
from the Mla vs. M2a, M7 vs. M8, and M8 vs. M8a
models were compared [62, 63], and the p-values were
calculated, conferring a y2 distribution with 2 degrees, 1
degree, and 1 degree of freedom, respectively [65].

Moreover, the genes with signatures of positive selection
at a portion of sites were identified by using BUSTED
[66], a modelling program executed in the HyPhy
package [67]. BUSTED relies on a model that permits
branch-to-branch variations across the whole tree [66].
Furthermore, the signals of positive selection for
immune-tolerant genes were redetected by estimating the
rates of nonsynonymous to synonymous substitutions at
individual sites in the aligned sequences using various
likelihood models, including the fixed effect likelihood
(FEL), internal fixed effect likelihood (IFEL), single
likelihood ancestor counting (SLAC), and maximum-
likelihood estimation (MEME) methods [67-69]. To
further confirm codon sites under selection pressure,
aligned sequences of selected genes were tested in
Selecton version 2.2 [41] (http://selecton.tau.ac.il/).
Selecton allows the w ratio to shift among different
codons within the multiple sequence alignment, and this
was estimated by the maximum-likelihood value via the
Bayesian inference method [60, 70]. Moreover, the
results from Selecton were visualized with color scales
that indicated different types of selection.

Gene enrichment and conserved synteny analyses

The conserved synteny patterns of the PD1, PD-L1, and
PD-L2 genes were determined using the Genomicus
v.91.01 [71] and Ensembl [72] databases. We evaluated
the conserved synteny for the genomic regions
neighboring the PD1, PD-L1 and PD-L2 genes in
vertebrate species. The evolutionary novelty of these
genes was analyzed by using the Protein Historian
program to recognize the taxon of sources of these genes
[73]. Conserved syntenies might be linked with gene
function and the corresponding gene expression [74, 75];
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therefore, we used enrichment analysis to evaluated the
biological significance of syntenic genes by searching
these genes in various programs: EnrichNet, a network-
based enrichment analysis [76], and ConsensusPathDB,
a meta-database [77]. EnrichNet detects the genes in
specific molecular systems and, using an arbitrary
selection, estimates the intervals between the genes and
pathways in a reference catalog [76]. ConsensusPathDB
is a meta-database that contains an extensive assembly
of human molecular interaction data linked to various
public sources and has been used for reporting
interaction network units and enrichment analyses [78].
The functional motifs and domains of the PD1, PD-L1
and PD-L2 proteins were predicted using the MEME
tool (http://meme-suite.org/).

Three-dimensional (3D) protein modeling and
structural analysis

The crystal structures of human PD1, PD-L1 and
PD-L2 were generated using the Swiss model
(https://swissmodel.expasy.org) online tool [79] and
Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2/html). The
homology modeling method was used to predict protein
structure. The 3D structures of PD1, PD-L1, PD-L2
were predicted by the I-TESSAR and Swiss modeling
approaches [80]. The assembled target proteins were
minimized by using the Amber force field and the
conjugate gradient algorithm in UCSF Chimera 1.10.1
[81]. Furthermore, the ProSA web server [82] was used
to evaluate the stereochemical characteristics of the
predicted structures.

Conservation analysis

The ConSurf server (consurf.tau.ac.il/) was used to
evaluate the evolutionary conservation of amino acid
residues of the human PD1, PD-L1 and PD-L2
proteins [83]. The amino acids are more conserved and
are essential for protein interactions or are present
within more enzymatic pockets than other amino acids
of the protein. Therefore, the changes in the conserved
amino acids are more lethal than polymorphisms
located in flexible regions in a protein because they
disrupt the protein function and structure [84, 85]. The
conserved amino acids were predicted based on
conservation values ranging from 1 to 9; a
conservation value between 1-4 is considered variable,
a value of 5-6 exhibits average conservation and a
value ranging from 7 to 9 indicates very high
conservation [86].

Bioinformatics analysis of protein sequences

The structures of the PD1, PD-L1 and PD-L2 proteins,
including protein-binding positions, solvent

accessibility, and disordered structures, were predicted
using the Predict Protein server [87]. The secondary
structures of the PD1, PD-L1, and PD-L2 proteins were
predicted by the CFSSP program [54, 88]. Hydrophobic
cluster analysis (HCA) was performed using the HCA
1.0.2 program [89] via the Mobyle@RPBS web portal
and framework [90].

Coevolution analysis of protein residues

We used a web-based tool (CoeViz) [91] that allows the
focused and rapid analysis of protein topographies, such
as functional sites and structural domains, and that
delivers a variable analysis and visualization of pairwise
coevolution of amino acid residues. Full protein
sequences of PD1, PD-L1 and PD-L2 were obtained
from CoeViz analysis via y2 covariance metrics [92]
and were adjusted for phylogenetic bias in the MSA to
predict the maps of covarying residues and the large
overlaps with functional regions and the known
domains of the protein. The visualization of the residue
interactions was improved with circular drawings, and
the residues were highlighted in the protein sequences
and 3D structures.
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SUPPLEMENTARY MATERIALS

Supplementary Figures

1 11 Z1 31 41
MQIPQAPWPV VWAVLQLGWR PGWELDSPDR BWNPPEFSEA LEVVTEEDNE
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BEETEBFENTs EsFVENEERM BESNQTDRLE AFPEDRSQPG QDCRERVTQL
101 111 121 131 141
ENGRDFHMSV VRARRNBEET BLEEBEsLArP KAQEXKEELRE EBRETERRAE
151 161 171 181 191
VPEAHESPSP RPAGQFETLYV VEVVGGLLGS LVLLVWVLAV ICSRAARGTI
201 211 221 231 241
GARRTGQPLK EDPSAVPVFS QBYGEEBERw rRExTPEPPVP CVPERHEERE
251 261 271 281

EVEPsGMGTS SPARRGSADG PRSAQPLRPE DGHECSWHL

Legend:

The selection scale:
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Supplementary Figure 1. Detection of positive/purifying selection in PD1 homologous sequences from vertebrates. Color-
coded results of Selecton analyses of human PD1, compared to sequences from 52 aligned nucleotide coding sequences. Selection pressure
was measured on sequences using mechanistic-empirical combination (MEC) model of Selecton version 2.2. Yellow and brown highlights
represent positive selection, grey and white highlights represent a neutral selection and purple highlight represent purifying selection on
codons.
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Positive selection Purifying selection

Supplementary Figure 2. Detection of positive/purifying selection in PD-L1 homologous sequences from vertebrates. Color-
coded results of Selecton analyses of human PD-L1, compared to sequences from 58 aligned nucleotide coding sequences. Selection pressure
was measured on sequences using mechanistic-empirical combination (MEC) model of Selecton version 2.2. Yellow and brown highlights
represent positive selection, grey and white highlights represent a neutral selection and purple highlight represent purifying selection on
codons.
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Legend:
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Supplementary Figure 3. Detection of positive/purifying selection in PD-L2 homologous sequences from vertebrates. Color-
coded results of Selecton analyses of human PD-L2, compared to sequences from 56 aligned nucleotide coding sequences. Selection pressure
was measured on sequences using mechanistic-empirical combination (MEC) model of Selecton version 2.2. Yellow and brown highlights
represent positive selection, grey and white highlights represent a neutral selection and purple highlight represent purifying selection on
codons.
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The conservation scale:
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Variable Average Conserved

— An exposed residue according to the neural-network algorithm.
A buried residue according to the neural-network algorithm.
— A predicted functional residue (highly conserved and exposed) .

[ T o
|

— A predicted structural residue (highly conserved and buried).

Supplementary Figure 4. ConSurf output of PD1, using the UniRef90 protein database. Colors of the ConSurf output indicate the
level of sequence conservation. Purple indicates conservation and blue indicates variability. Residues are predicted to be exposed (e), buried
(b), highly conserved and exposed (f), or highly conserved and buried, (s).
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The conservation scale:
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Variable Average Conserved

— An exposed residue according to the neural-network algorithm.
A buried residue according to the neural-network algorithm.
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— A predicted structural residue (highly conserved and buried).

Supplementary Figure 5. ConSurf output of PD-L1, using the UniRef90 protein database. Colors of the ConSurf output indicate the
level of sequence conservation. Purple indicates conservation and blue indicates variability. Residues are predicted to be exposed (e), buried
(b), highly conserved and exposed (f), or highly conserved and buried, (s).
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— An exposed residue according to the neural-network algorithm.
A buried residue according to the neural-network algorithm.
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— A predicted structural residue (highly conserved and buried).

Supplementary Figure 6. ConSurf output of PD-L2, using the UniRef90 protein database. Colors of the ConSurf output indicate the
level of sequence conservation. Purple indicates conservation and blue indicates variability. Residues are predicted to be exposed (e), buried
(b), highly conserved and exposed (f), or highly conserved and buried, (s).
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Name p-value Motif Locations

Homo_sapiens 2.63¢-133 [T [T |
Pan_troglodytes 2.63e-133 LT T - |
Gorilla_gorilla_gorilla 2.63e-133 LI I - .
Pongo_abelii 7.29-130 [T T -
Nomascus_leucogenys 6.48e-130 [T I . |
Macaca_mulatta 4.87¢-132 LTI I . |
Macaca_fascicularis 8.01e-132 [T T -
Chlorocebus_sabaeus 527e-81 [T -
Rhinopithecus_roxellana 8.01e-132 LI ) |
Callithrix_jacchus 1.80e-125 [T T . |
Mus_musculus 1.76e-100 [T [T |
Rattus_norvegicus 4.49e-106 [T I . |
Cricetulus_griseus 4.08e-108 | [ [ - L
Nannospalax_galili 6.54e-103 [T I -
Castor_canadensis 1.03e-105 [T T . |
Oryctolagus_cuniculus 2.03e-107 LI - |
Tupaia_chinensis 1.80e-115 I T .
Canis_familiaris 3.69¢-125 [T [T . |
Ailuropoda_melanoleuca 2.33e-125 [T ] -
Ursus_maritimus 8.59¢-12g [T [T . u
Odobenus_rosmarus_divergens 2.46e-125 [ () - |
Felis_catus 1.07e-11g [T ] -
Acinonyx_jubatus 8.44e-11g [T T |
Bos_taurus 6.83e-124 LI T |
Bos_mutus 6.57e-124 [T T -
Bos_indicus 7.04-104 [T [ -
Pantholops_hodgsonii 7.36e-127 LI T ||
Capra_hircus 9.60e-125 [T T L
Ovis_aries 299e-112 O T/
Sus_scrofa 2.60e-120 1T ) -
Camelus_ferus 3.02e-131 [T [T . -
Camelus_dromedarius 3.02e-131 [T .

Lipotes_vexillifer 9.51e-1

Orcinus_orca 3.09e-131 | (IF) ] - |
Equus_caballus 2.27e-122 [T ) I |
Equus_asinus 1.21e-122 [T T - |
Myotis_brandiii 120110 FOETIEET /S W
Pteropus_alecto 5.03e-112 I T . |
Monodelphis_domestica 7.03e-44 [ - |
Ornithorhynchus_anatinus 1.95e-35 = - -
Gallus_gallus 7.230-49 B —— . -
Meleagris_gallopavo 2.88e-47 [ W |
Coturnix_japonica 1.81e-46  —— - .|
Anser_cygnoides_domesticus 1.83e-48 0 —— - |
Taeniopygia_guttata 1.37e-47 [ —— - |
Corvus_cornix 6.43e-47 e | |
Falco_peregrinus 6.70e-36 ! - |

Motif Symbol Motif Consensus
1. BN PNGRDFHMSILARORNDSGTYLCGAISLP
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LTFSPAQLTVPEGANATETCSF
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RINSN

Supplementary Figure 7. Motif distribution of PD1 gene in the vertebrate species. Motifs of PD1 gene from 52 species are
predicted using MEME suite (http://meme.nbcr.net/meme/) based on amino acids sequences. All sequences are separated by 5 conservative
motifs with colors, including motif 1 (red), motif 2 (cyan), motif 3 (green), motif 4 (purple) and motif 5 (brown).
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Name p-value  Motif Locations

Homo_sapiens 1.11e-217 | I T — .
Pan_troglodytes 1.11e-217 I I T — —
Pan_paniscus 1.11e-217 s I e _—
Gorilla_gorilla_gorilla 371e-189 T I —
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Sus_scrofa 8.99e-201 I I T —— .
Camelus_ferus 1.01e-213 [T I T —— _—
Camelus_dromedarius 1.01e-213 I I T — .
Lipotes_vexillifer 1.77e-209 I [T [
Orcinus_orca 5.92e-210 | I T — —
Equus_caballus 5836209 L] I T —— .
Equus_asinus 1.70e-209 L N — I
Myotis_brandtil 3.28¢c-1g9 [ S | —— —
Pteropus_alecto 5.97e-206 T I (T [
Loxodonta_africana 2.44e-166 | L [ |
Trichechus_manatus_latirostris 6.99e-166 I I T .
Monodelphis_domestica 3.37e-121 I I

Sarcophilus_harrisii tite-117 T T

Ornithorhynchus_anatinus 1.30e-118 [ I T —

Gallus_gallus 9.39e-126 [ I T ——
Meleagris_gallopavo 1.51e-31 I

Coturnix_japonica 5.07e-123 I I ——
Anser_cygnoides_domesticus 1.11e-125 [ I T
Taeniopygia_guttata 1.03e-130 — I T ——
Pseudopodoces_humilis 1.17e-129 [ I ——

Corvus_cornix 2.09e-130 — I |

Motif Symbol Motif Consensus

1. EENNNN DQLFLGKAALQITDVELQDAGVYCCLISYGGADYERITLKVHAPYRKING
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Supplementary Figure 8. Motif distribution of PD-L1 gene in the vertebrate species. Motifs of PD-L1 gene from 58 species are
predicted using MEME suite (http://meme.nbcr.net/meme/) based on amino acids sequences. All sequences are separated by 5 conservative
motifs with colors, including motif 1 (red), motif 2 (cyan), motif 3 (green), motif 4 (purple) and motif 5 (brown).
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Name p-value  Motif Locations

Homo_sapiens 1.73e-227 ] I T [
Pan_troglodytes 317e229 [T RN
Pan_paniscus 3.66e-231 NN [
Gorilla_gorilla_gorilla 8.98e-231 [T I
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Camelus_dromedarius 2.40e-225 [T I [
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Equus_asinus 4.78e-218 [ I [
Myotis_brandtii 3.46e-173 — | T [
Pteropus_alecto 4.51e-192 L D .
Loxodonta_africana 4.29e-87 N .
Trichechus_manatus_latirostris 8.10e-203 [ T
Monodelphis_domestica 4.43e-147 e B
Sarcophilus_harrisii 207e-138 0 N T T
Ornithorhynchus_anatinus 259e-133 [T
Gallus_gallus 218e-149 ] NN T 1
Meleagris_gallopavo 247e-156 1 N [
Coturnix_japonica 1.33e-122 | I .
Anser_cygnoides_domesticus 5.28e-157 [T N .
Taeniopygia_guttata 521e-158 | N T
Pseudopadoces_humilis 9.31e-156 1 NN
Corvus_cornix 4.62e-160 T NN TN

Motif Symbol Motif Consensus

1. BN AWDYKYLTLKVKASYKKINTHILKVEGTDEVELTCQAEGYELAEVSWENT
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LLHIFIPSCITALIFIATMIALRKRLCQK
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Supplementary Figure 9. Motif distribution of PD-L2 gene in the vertebrate species. Motifs of PD-L2 gene from 56 species are
predicted using MEME suite (http://meme.nbcr.net/meme/) based on amino acids sequences. All sequences are separated by 5 conservative
motifs with colors, including motif 1 (red), motif 2 (cyan), motif 3 (green), motif 4 (purple) and motif 5 (brown).
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Supplementary Figure 10. 3D multidimensional scaling (MDS) scatterplots of co-varying residues in human PD1, PD-L1, and

PD-L2. (A) Highlighted red are the residues corresponding to the positively selected residue. Both black and red dots can be optionally
labeled with the residue identifiers.
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Supplementary Figure 11. (A) Ramachandran plot analysis of PD1, PDL1 and PDL2 proteins. The backbone conformation angles for
respective residue in the modeled protein crystal structures. Red color indicates the core region, yellow indicates allowed region, green is
allowed region, and grey is disallowed region. (B) Z-score displays the quality analysis of predicted structures. (C) The cross-correlation
analysis of all predicted structures. Positive correlations are plotted in the upper left triangle and negative correlations in the lower right
triangle. Open squares: functional hydrophobic and negative residues.
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Supplementary Tables

Supplementary Table 1. An adaptive branch-site (aBSREL) test for episodic diversification of the PD1 gene.

Uncorrected o distribution over

Name B LRT Test p-value .
p-value sites
CHLOROCEBUS_SABAEUS 0.221 151.8573 0 0 ol =0.0287 (72%)
®2 =197 (28%)
ACINONYX_JUBATUS 0.1127 134.3588 0 0 ol =0.0326 (84%)
®2 =229 (16%)
OVIS_ARIES 0.1765 148.3166 0 0 ®l =0.732 (79%)
®2 = o0 (21%)
TAENIOPYGIA_GUTTATA 0.0778 57.4098 0 0 o1 =0.361 (93%)
®2 =745 (6.9%)
CHRYSEMYS_PICTA 0.1014 84.2906 0 0 ®l =0.205 (84%)
®2 = (16%)
Node47 0.0143 37.3204 0 0 ®1 =0.00 (92%)
®2 =131 (7.8%)
Node38 0.1042 25.0463 0.0001 0 ol =0.441 (89%)
®2 =5000 (11%)
ALLIGATOR_SINENSIS 0.2851 22.3465 0.0004 0 ol =0.288 (72%)
®2 =20.3 (28%)
Node37 0.1629 18.77 0.0025 0 ol =0.114 (72%)
®2 =56.3 (28%)
CORVUS_CORNIX 0.0603 17.9611 0.0037 0 ®1 =0.109 (95%)
®2 =35.9 (4.6%)
Node36 0.0821 15.1483 0.0151 0.0002 ®1 =0.00 (74%)
®2 =93.5 (26%)
APTERYX_AUSTRALIS_MANTELLI  0.1045 14.5227 0.0205 0.0002 ol =0.244 (95%)

®2 = (5.5%)

B; Optimized branch length

LRT: Likelihood ratio test statistic for w+ = 1 (null) versus w+ unrestricted (alternative)
Test p-value: The p-value corrected for multiple testing.

Uncorrected P-value: The uncorrected p-value for the LRT test.
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Supplementary Table 2. An adaptive branch-site (aBSREL) test for episodic diversification of PD-L1 gene.

Name B LRT  Test p-value Uncorrected [0 distrib_ution over
p-value sites
COTURNIX_JAPONICA 0.0481 28.7232 0 0 ol =0.298 (96%)
®2 =5710 (3.7%)
TAENIOPYGIA GUTTATA 0.0734 33.334 0 0 @l =0.190 (94%)
®2 =283 (5.8%)
PSEUDOPODOCES_HUMILIS 0.0672 41.2926 0 0 ol =0.474 (93%)
®2 =90.4 (6.8%)
FALCO_PEREGRINUS 0.1009 63.2226 0 0 ol =0.691 (89%)
®2 =212 (11%)
APTERYX_AUSTRALIS MANTELLI 0.0976 28.7185 0 0 ®l =0.376 (92%)
®2 =187 (8.5%)
ANSER_CYGNOIDES DOMESTICUS 0.1042 22.369 0.0005 0 @l =0.340 (95%)
®2 =5710 (5.3%)
Node41 0.0217 19.3186 0.0022 0 @1 =0.00 (92%)
®2 =5710 (8.4%)
CHLOROCEBUS_SABAEUS 0.0247 16.2851 0.0102 0.0001 @l =0.385 (98%)
®2 = 1660 (1.6%)
Node33 0.1354 15.022 0.0191 0.0002 @l =0.295 (88%)
®2 =57.4 (12%)
SARCOPHILUS_HARRISII 0.1369 13.2103 0.0471 0.0005 @l =0.216 (94%)

®2 = 30.1 (5.7%)

B; Optimized branch length

LRT: Likelihood ratio test statistic for w+ = 1 (null) versus w+ unrestricted (alternative)
Test p-value: The p-value corrected for multiple testing.

Uncorrected P-value: The uncorrected p-value for the LRT test.

Supplementary Table 3. An adaptive branch-site (aBSREL) test for episodic diversification of PD-L2 gene.

Name B LRT Test p-value Uncorrected 0 distripution over
p-value sites
CRICETULUS_GRISEUS 0.1001  40.3338 0 0 @1 =0.359 (88%)
®2 =211 (12%)
PANTHOLOPS_HODGSONII 0.0216 56.1676 0 0 @1 =0.00 (92%)
®2 = 1650 (7.7%)
LOXODONTA_AFRICANA 0.2699  71.5397 0 0 ol =0.831 (71%)
®2 = o (29%)
TAENIOPYGIA GUTTATA 0.0998 147.3444 0 0 ol =0.437 (81%)
®2 = 5000 (19%)
CORVUS_CORNIX 0.0583 47.1431 0 0 ol =0.565 (94%)
®2 =204 (6.3%)
Node68 0.0732  37.2754 0 0 ®1 =0.308 (96%)
®2 = 5000 (3.9%)
Node84 0.0156  43.9788 0 0 ol =0.421 (89%)
®2 = 1940 (11%)
PANTHERA TIGRIS_ALTAICA 0.016 24.5613 0.0001 0 ol =0.762 (97%)
®2 = 11400 (2.7%)
Node23 0.03 24.5946 0.0001 0 ol =0.133 (89%)
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®2 = 5000 (11%)

Node41 0.0311  24.1356 0.0002 0 ®1 =1.00 (89%)
®2 = (11%)
CHRYSEMYS_PICTA 0.1462  21.302 0.0007 0 ol = 0.457 (91%)
®2 =40.8 (9.4%)
NANNOSPALAX_GALILI 0.1469  20.5087 0.0011 0 o1 =0.359 (91%)
®2 = (9.3%)
LIPOTES_VEXILLIFER 0.0136  20.2389 0.0013 0 o1 =0.450 (98%)
®2 = 1530 (1.6%)
Node55 0.0103  20.1447 0.0013 0 ol =1.00 (97%)
®2 = 90200 (2.6%)
COTURNIX_JAPONICA 0.1582  19.8778 0.0015 0 o1 =0.602 (91%)
®2 =118 (8.7%)
ACINONYX_JUBATUS 0.0158  19.1886 0.0021 0 o1 =0.891 (99%)
®2 = 5820 (0.69%)
Node75 0.1565  16.6122 0.0074 0 ol =0.278 (87%)
®2 = 2180 (13%)
Node5 0.0019  15.603 0.0122 0 ®1 =0.0169 (95%)
®2 = (5.1%)
Node82 0.09 15.1548 0.0151 0 ®1 =0.706 (83%)
®2 =289 (17%)
Nodel4 0.0014 15.0154 0.016 0 ®1 =0.0638 (96%)
02 = o (3.8%)
Node38 0.008  14.2666 0.023 0 ®1 =0.00 (93%)
®2 = (7.0%)
CALLITHRIX_JACCHUS 0.0396  14.0674 0.0252 0 o1 =0.331 (97%)
®2 =158 (2.7%)
ORNITHORHYNCHUS_ANATINUS  0.3646  13.9868 0.0259 0 ol =0.114 (74%)

®2 = o (26%)

B; Optimized branch length

LRT: Likelihood ratio test statistic for w+ = 1 (null) versus w+ unrestricted (alternative)
Test p-value: The p-value corrected for multiple testing.

Uncorrected P-value: The uncorrected p-value for the LRT test
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Supplementary Table 4. The detail information of PD1 gene in vertebrate species.

NCBI-Protein

Species Scientific Name ID Ensembl Uniprot
Human Homo sapiens NP_005009 ENSG00000188389 AOAOM3MOG7
Chimpanzee Pan troglodytes XP_016806440 AO0A2I3SUZ1
Western lowland gorilla Gorilla gorilla gorilla XP_004033550 ENSGGOG00000014312 G3REH1
Sumatran orangutan Pongo abelii XP_024099392 ENSPPYG00000013360
glizggﬁm white-cheeked Nomascus leucogenys XP_003282018 G1R8C2
Rhesus monkey Macaca mulatta NP_001107830 ENSMMUG00000008592 BOLAJ2
Crab-eating macaque Macaca fascicularis NP_001271065 BOLAJ3
Green monkey Chlorocebus sabaeus XP_007965216 ENSCSAG00000005736
Golden snub-nosed Rhinopithecus roxellana ~ XP_010375274 AOA2K6QL35
monkey
White-tufted-ear Callithrix jacchus XP 002750041 ENSCJAG00000019795
marmoset
Mouse Mus musculus NP_032824 ENSMUSG00000026285 Q544F3
Rat Rattus norvegicus NP_001100397 ENSRNOG00000049797 D3ZIN8
Chinese hamster Cricetulus griseus XP_003499314
Mole Rat Nannospalax galili XP_008827391
American beaver Castor canadensis XP_020013289
Rabbit Oryctolagus cuniculus XP_017195300 ENSOCUG00000008079 G1SUF0
Chinese tree shrew Tupaia chinensis XP_006165239
Dog Canis familiaris NP_001301026 ENSCAFG00000013184  AOA090BAM7
Giant panda Ailuropoda melanoleuca XP_002923181 ENSAMEG00000016373 G1MD70
Polar bear Ursus maritimus XP_008688483 A0A384C0X7
Pacific walrus Odobenus rosmarus divergens XP_004412778 AOA2U3WTR3
Domestic cat Felis catus NP_001138982 AQYUAGB
Amur tiger Panthera tigris altaica XP_007094211
Cheetah Acinonyx jubatus XP_026912119
Cow Bos taurus NP_001076975 ENSBTAG00000011543 A4FV85
Wild yak Bos mutus XP_005901569
Chiru Pantholops hodgsonii XP_005959703
Goat Capra hircus XP_013818552
Sheep Ovis aries XP_012031617 ENSOARG00000017587
Pig Sus scrofa NP_001191308
Wild Bactrian camel Camelus ferus XP_014412330
Arabian camel Camelus dromedarius XP_010986792
Killer whale Orcinus orca XP_004262561
Horse Equus caballus XP_023498581
AsS Equus asinus XP_014718129
Brandt's bat Myotis brandtii XP_005857730
Black flying fox Pteropus alecto XP_006909981
Opossum Monodelphis domestica XP_016280819 ENSMODG00000029268
Platypus Ornithorhynchus anatinus XP_007667778
Chicken Gallus gallus XP_422723 ENSGALG00000046559
Turkey Meleagris gallopavo XP_010715066
Japanese quail Coturnix japonica XP_015727433
Swan goose Anser cygnoides domesticus ~ XP_013050415
Zebra finch Taeniopygia guttata XP_012431056
Hooded crow Corvus cornix XP_019140093

WWww.aging-us.com 3553 AGING


https://www.uniprot.org/uniprot/A0A0M3M0G7
https://www.uniprot.org/uniprot/A0A0M3M0G7

Peregrine falcon
Rock pigeon

Brown kiwi

Western clawed frog
Chinese alligator
Western painted turtle
Green sea turtle

Falco peregrinus
Columba livia
Apteryx australis mantelli
Xenopus tropicalis
Alligator sinensis
Chrysemys picta
Chelonia mydas

XP_013154882
XP_005513327
XP_013814564
XP_004914438
XP_025058540
XP_005311833
XP_007057904

AO0A2I0LUZ23

List of species and NCBI GenBank accession numbers for sequences used to construct the datasets for hypothesis testing.

Supplementary Table 5. The detail information of PD-L1 gene in vertebrate species.

Species Scientific Name Ensembl Uniprot NCBI-Protein ID
Human Homo sapiens ENSG00000120217 QI9NZQ7
Chimpanzee Pan troglodytes ENSPTRG00000020755 H2QWZ8
Bonobo Pan paniscus AO0A2R9B063 XP_003823426
;\c’)ffltg“ lowland Gorilla gorilla gorilla XP_018889139
Sumatran orangutan Pongo abelii ENSPPYG00000019237 H2PS75 XP_002819859
Northern white-
cheeked gibbon Nomascus leucogenys G1RCP1 XP_003273874
Rhesus monkey Macaca mulatta ENSMMU650000001223 A4GW29 NP_001077358
Crab-eating macaque Macaca fascicularis G7PSE7 XP_005581836
Green monkey Chlorocebus sabaeus ENSCSAG00000008879 XP_007967522
Golden snub-nosed Rhinopithecus roxellana AO0A2K6PJ04 XP_010363385
monkey
\A’;‘;f:;é?ed'ear Callithrix jacchus ENSCJAGO0000011388  A4GW22 NP_001254676
Mouse Mus musculus ENSMUSG00000016496 Q9EPT73 NP_068693
Rat Rattus norvegicus ENSRNOG00000016112 D4AE25 NP_001178883
Chinese hamster Cricetulus griseus XP_007626098
Mole Rat Nannospalax galili XP_008849411
American beaver Castor canadensis XP_020015185
Rabbit Oryctolagus cuniculus ENSOCUG00000008117 G1SUI3 XP_008253343
Chinese tree shrew Tupaia chinensis XP_006152480
Dog Canis familiaris ENSCAFG00000002120 E2RKZ5 NP_001278901
Giant panda Ailuropoda melanoleuca ~ ENSAMEG00000009800 XP_011228696
Polar bear Ursus maritimus A0A384C2Q2 XP_008689127
Pacific walrus Odobenus rosmarus AOA2U3ZNIS  XP_012420554
divergens
Domestic cat Felis catus ENSFCAG00000009047 M3WAP8 XP_006939101
Amur tiger Panthera tigris altaica XP_007094214
Pangolin Manis javanica XM_017657766.1
Cheetah Acinonyx jubatus XP_014919968
Cow Bos taurus ENSBTAG00000000095 C5NU11 NP_001156884
Wild yak Bos mutus L8IU19 XP_005891421
Zebu cattle Bos indicus XP_019821547
Chiru Pantholops hodgsonii XP_005983887
Goat Capra hircus XP_005683750
Sheep Ovis aries ENSOARG00000013509 XP_004004411
Pig Sus scrofa ENSSSCG00000005211 Q4QTK1 NP_001020392

Wild Bactrian camel

Camelus ferus

XP_014416016
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Arabian camel
Yangtze River dolphin
killer whale

Horse

Ass

Brandt's bat

Black flying fox
African savanna
elephant

Florida manatee

Opossum
Tasmanian devil
Platypus
Chicken

Turkey
Japanese quail

Swan goose

Zebra finch

Tibetan ground-tit
Hooded crow
Peregrine falcon
Brown kiwi
Western clawed frog
Common carp
Channel catfish
Spotted green
pufferfish

Camelus dromedarius
Lipotes vexillifer
Orcinus orca
Equus caballus
Equus asinus
Myotis brandtii
Pteropus alecto

Loxodonta africana

Trichechus manatus
latirostris
Monodelphis domestica
Sarcophilus harrisii
Ornithorhynchus anatinus

ENSECAG00000016312

ENSMODG00000015352
ENSSHAG00000002682
ENSOANG00000010091

Gallus gallus
Meleagris gallopavo
Coturnix japonica
Anser cygnoides
domesticus
Taeniopygia guttata

Pseudopodoces humilis

Corvus cornix
Falco peregrinus

Apteryx australis mantelli

Xenopus tropicalis
Cyprinus carpio
Ictalurus punctatus

Tetraodon nigroviridis

AO0A340X5J4

F7DZ76

L5K6N3

AOQA2YIDG34

A0A2D0SYDS
Q4T1R6

XP_010991731
XP_007454584
XP_004279158
XP_001492892
XP_014716218
XP_005861392
XP_006918439

XP_010586356

XP_004373536

XP_007499604
XP_ 012399523
XP_001506048
XP_424811
XP_019466012
XP_015704470

XP_013052847

XP_012433182
XP_014107713
XP_010391160
XP_013158040
XP_013812986
XP_017946448
XP_018933702
XP_017347687

CAF93166

List of species and NCBI GenBank accession numbers for sequences used to construct the datasets for hypothesis testing.

Supplementary Table 6. The detail information of PD-L2 gene in vertebrate species.

Species Scientific Name Ensembl Uniprot NCBI-Protein ID
Human Homo sapiens ENSG00000197646 Q9BQ51 NP_079515
Chimpanzee Pan troglodytes ENSPTRG00000020756 XP_001140776
Bonobo Pan paniscus AOA2R9AHTO  XP_003823428
Western lowland gorilla Gorilla gorilla gorilla XP_018889135
Sumatran orangutan Pongo abelii ENSPPYG00000019236 XP_024107734
Northern white-cheeked

gibbon Nomascus leucogenys G1RCRO XP_003273875
Rhesus monkey Macaca mulatta A4GW30 NP_001077068
Crab-eating macaque Macaca fascicularis XP_005581838
Green monkey Chlorocebus sabaeus ENSCSAG00000008883 XP_007967513
Golden snub-nosed

monkey Rhinopithecus roxellana XP_010363386
White-tufted-ear

marmoset Callithrix jacchus ENSCJAG00000011422  AOA2R8P957  XP_017828946
Mouse Mus musculus ENSMUSG00000016498 Q3U304 NP_067371
Rat Rattus norvegicus ENSRNOG00000016136 D4AAV6 NP_001101052

Chinese hamster

Cricetulus griseus

XP_003511103
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Mole Rat
American beaver
Rabbit

Pangolin

Dog

Giant panda
Polar bear

Pacific walrus
Domestic cat
Amur tiger

Cheetah

Cow

Wild yak

Chiru

Goat

Pig

Wild Bactrian camel
Arabian camel
Yangtze River dolphin
killer whale

Horse

Ass

Brandt's bat

Black flying fox
African savanna elephant

Florida manatee
Opossum
Tasmanian devil
Platypus

Chicken

Turkey

Japanese quail

Swan goose

Zebra finch

Tibetan ground-tit
Hooded crow
Peregrine falcon
Brown kiwi
Western clawed frog
Rock pigeon
Chinese alligator
Western painted turtle

Nannospalax galili
Castor canadensis
Oryctolagus cuniculus
Manis javanica
Canis familiaris
Ailuropoda melanoleuca
Ursus maritimus

Odobenus rosmarus
divergens

Felis catus
Panthera tigris altaica
Acinonyx jubatus
Bos taurus
Bos mutus
Pantholops hodgsonii
Capra hircus
Sus scrofa
Camelus ferus
Camelus dromedarius
Lipotes vexillifer
Orcinus orca
Equus caballus
Equus asinus
Myotis brandtii
Pteropus alecto
Loxodonta africana

Trichechus manatus
latirostris

Monodelphis domestica
Sarcophilus harrisii
Ornithorhynchus anatinus
Gallus gallus
Meleagris gallopavo
Coturnix japonica
Anser cygnoides domesticus
Taeniopygia guttata
Pseudopodoces humilis
Corvus cornix
Falco peregrinus
Apteryx australis mantelli
Xenopus tropicalis
Columba livia
Alligator sinensis
Chrysemys picta

ENSCAFG00000002121
ENSAMEG00000009830

ENSFCAG00000009048

ENSSSCG00000026305

ENSECAG00000020578

ENSMODG00000015349
ENSSHAGO00000004176

44336

AQA384C2M8

AO0A2U3ZNI5
L7SSK5

AOQA024FBV6

Q4QTKO

AQA340X676

A0A2Y9QY77
FEWY92
G3VNKO

AO0A2I0MG20
AOA1UBCUPG6

XP_017658223
XP_020015183
XP_017202816

XR_001852674.1
XP_013973349
XP_011228695
XP_008689126

XP_012420555
NP_001277173
XP_007094211
XP_014919966
NP_001278965
XP_014332357
XP_005983898
XP_013821401
NP_001020391
XP_014415932
XP_010991730
XP_007454585
XP_004279193
XP_005605049
XP_014716221
XP_014391175
XP_006918437
XP_023401133

XP_023584363
XP_007499609
XP_012399521
XP_007653790
XP_004949124
XP_010723930
XP_015704465
XP_013052854
XP_002193013
XP_014107710
XP_010391172
XP_013157997
XP_013812991
XP_017946447
XP_005499831
XP_014372758
XP_005296857

List of species and NCBI GenBank accession numbers for sequences used to construct the datasets for hypothesis testing.
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Supplementary Table 7. List of primers used for mRNA expression in qPCR of representative vertebrate species.

Species 5¢-3° ™
GgPD1-F CAGCCACGTTAACTCGTCCT 57.5
GgPD1-R GTTCCGGATGATCCCAGCAA 57.8
GgPDL1-F CTCATTGTGAGTGCCCTCGT 57.6

GgPDL1-R CATGCGCGCCCTTATCTTTC 57.3
GgPDL2-F CGCAATGGGAAAGCACTCAC 57.4
GgPDL2-R CGCATCTGTGATCTTGACGC 56.9
EcPD1-F CTGTTTCTGGTGCTCCCAGT 61.6
EcPD1-R TGGTGGCATATTCGGTCTGG 61.7
EcPDL1-F TGTATTGGTGTCCTGTTGGCA 56.6
EcPDL1-R GGTCATTCACTGGAAACCTGC 56.6
EcPDL2-F CGCTACCAGGGAAGAGCAAC 58.9
EcPDL2-R TGAGACAGCGGTAAGACCCT 58.1
AsPD1-F CAGAGATGGCCACTGCGTAA 61.7
AsPD1-R GTCTGTCTGGGAACGGGATG 61.7
AsPDL1-F TAATCCCCGTCGCCCTTTTC 57.8
AsPDL1-R TGGTGATGCGCTCTGTTAGG 57.7
AsPDL2-F TTGTACCCTTTCACTGCGCT 56.9
AsPDL2-R CCATTAAGGGCACCGTCTCA 57.5
MjPD1-F GAGGACGAGCCTCTGAAGGA 61.5
MjPD1-R CGTGGCATACTCGGTCTGTT 62.5
MjPDL1-F GTGAAAGTGGAGGAAGA 47.7
MjPDL1-R AGGATGGTCAGGAATTG 47.9
MjPDL2-F CCATCGGACGGTCTTTCACTA 60.2
MjPDL2-R GCCAGCTCCACACTCTAGCA 59.2
AaPD1-F GGCTCTCTTGCTTCTGCCTG 59.2
AaPD1-R CGACTGTGAGATGTTGGGGG 58.6
AaPDL1-F GTGGTGCCGACTACAAGC 56.8
AaPDL1-R TGGGGTAGCCCTCAGCCT 59.1
AaPDL1-F GGAGGGCCTGTTGACTTAGG 61.5
AaPDL1-R TCTGACTTCCAGGGTCAGGT 61.7
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