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INTRODUCTION 
 

Lung cancer is a very harmful disease that remains a top 

cause of cancer-related deaths worldwide. It is 

estimated at 220,000 newly diagnosed lung cancer cases 

and more than 140,000 deaths in the USA in 2019 [1]. 

Non-small cell lung cancer (NSCLC) is the most 

common type of lung cancer, including lung squamous 

cell carcinoma and lung adenocarcinoma (LUAD). 

LUAD is a major component of lung cancer, accounting 

for approximately 40% of all lung cancer patients [2]. 

Even though there has been great progress in the 

diagnostic and treatment methods over the past few 

decades, the average 5-year relative survival rate of lung 

cancer is only 18% [3]. At present, the diagnosis of lung 

cancer primarily depends on histopathological 

examination, cancer molecular biomarkers, imaging 

evaluations, and it is difficult to achieve early detection 

of lung tumor [4, 5]. This may be the most significant  

 

cause of high mortality in lung cancer patients. 

Therefore, further understanding the molecular 

mechanism of lung cancer to develop effective methods 

for early screening and diagnosis are critical to improve 

therapeutic effect and quality of life of patients. 

 

RNA binding proteins (RBPs) are a class of proteins 

that interact with a variety of types of RNAs involve in 

rRNAs, ncRNAs, snRNAs, miRNAs, mRNAs, tRNAs, 

and snoRNAs. To date, more than 1,500 RBP genes 

have been identified by genome-wide screening in 

human genome [6]. These RBPs play important roles in 

maintaining the physiological balance of cells, 

especially during the development process and stress 

responses [7]. RBPs can bind to their target RNAs in a 

structure or sequence- dependent mode to form 

ribonucleoprotein complexes that regulate mRNA 

stability, RNA processing, splicing, localization, export, 

and translation at the post-transcriptional level [7]. 
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ABSTRACT 
 

RNA binding proteins (RBPs) dysregulation have been reported in various malignant tumors and associated 
with the occurrence and development of cancer. However, the role of RBPs in lung adenocarcinoma (LUAD) is 
poorly understood. We downloaded the RNA sequencing data of LUAD from the Cancer Genome Atlas (TCGA) 
database and determined the differently expressed RBPs between normal and cancer tissues. The study then 
systemically investigated the expression and prognostic value of these RBPs by a series of bioinformatics 
analysis. A total of 223 differently expressed RBPs were identified, including 101 up-regulated and 122 down-
regulated RBPs. Eight RBPs (IGF2BP1, IFIT1B, PABPC1, TLR8, GAPDH, PIWIL4, RNPC3, and ZC3H12C) were 
identified as prognosis related hub gene and used to construct a prognostic model. Further analysis indicated 
that the patients in the high-risk subgroup had poor overall survival (OS) compared to those in low-risk 
subgroup based on the model. The area under the curve of the time-dependent receiver operator characteristic 
curve of the prognostic model are 0.775 in TCGA cohort and 0.814 in GSE31210 cohort, confirming a good 
prognostic model. We also established a nomogram based on eight RBPs mRNA and internal validation in the 
TCGA cohort, which displayed a favorable discriminating ability for lung adenocarcinoma.  
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Considering the importance of post-transcriptional 

regulation in life processes, it is thus not surprising that 

aberrantly deregulated RBPs are closely related to the 

occurrence and progression of numerous human 

diseases. Mutations in RNA-binding proteins localized 

in the central nervous system lead to aberrant protein 

aggregation, which promote the progression of various 

neurodegenerative diseases [8, 9]. Previous studies have 

indicated that RBPs such as SRSF1, Quaking, 

Muscleblind and HuR, as pivotal moderators to regulate 

the occurrence and progression of cardiovascular 

diseases by mediating a wide range of post-

transcriptional events [10]. Even though RBPs are 

known to be involved in the initiation and development 

of various diseases, the roles of RBPs in tumor 

development is still rare. 

 

In the past decades, many reports have revealed that 

RBPs were abnormally expressed in tumors, which  

affected the translation of mRNA into protein, and were 

involved in carcinogenesis [11–13]. Among them, only a 

few RBPs have been investigated in depth and found to 

play critical roles in human cancers. For example, HuR 

by regulating mRNA stability to promote proliferation 

and metastasis of gastric cancer [14]; AGO2 facilitates 

tumor progression via elevating oncogenic miR-19b 

biogenesis [15]; QKI-5 inhibit cancer-associated 

alternative splicing to regulate cell proliferation in lung 

cancer [16]; ESRP1 promotes the transformation of 

ovarian cancer cells from mesenchymal to epithelial 

phenotype [17]. A systematic functional study of RBPs 

will help us fully understand their roles in tumors. 

Therefore, we downloaded LUAD RNA-sequencing and 

clinicopathological data from the cancer genome atlas 

(TCGA) database. Subsequently, we identified aberrantly 

expressed RBPs between cancerous and normal samples 

by high-throughput bioinformatic analysis, and 

systematically explored their potential functions and 

molecular mechanisms. Our study determined a number 

of LUAD-related RBPs that promote our understanding 

of the molecular mechanisms underlying lung cancer 

progression. These RBPs might provide potential 

biomarkers for diagnosis and prognosis. 

 

RESULTS 
 

Identification of differently expressed RBPs in 

LUAD patients 

 

In this study, we conducted a systematic analysis of key 

roles and prognostic values of RBPs in LUAD by 

several advanced computational methods. The study 

design was illustrated in Figure 1. The databases of lung 

adenocarcinoma were downloaded from TCGA 

contained 524 tumor samples and 59 normal lung tissue 

samples. The R software packages were applied to 

handle the data and discover the differently expressed 

RBPs. A total of 1542 RBPs [6] were included in the 

analysis, and 223 RBPs met the screening standard of 

this study (P<0.05, |log2FC)| >1.0), which consist of 

101 upregulated and 122 downregulated RBPs. The 

expression distribution of these differently expressed 

RBPs was displayed in Figure 2. 

 

GO and KEGG pathway enrichment analysis of the 

differently expressed RBPs 

 

To investigate the function and mechanisms of the 

identified RBPs, we divided these differently expressed 

RBPs into two groups: up-regulated or down-regulated 

expression. Then we uploaded these differently 

expressed RBPs to the online tool WebGestalt for 

functional enrichment analysis. The results indicated 

that downregulated differently expressed RBPs were 

significantly enriched in the biological process related 

to negative regulation of translation, RNA 

phosphodiester bond hydrolysis, regulation of mRNA 

metabolic process, regulation of translation, and mRNA 

processing (Table 1). The upregulated differently 

expressed RBPs were significantly enriched in 

organonitrogen compound biosynthetic process, cellular 

amide metabolic process, RNA processing, peptide 

metabolic process, and amide biosynthetic process 

(Table 1). In terms of molecular function, the decreased 

differently expressed RBPs were notably enriched in 

RNA binding, mRNA binding, ribonuclease activity, 

double-stranded RNA binding and mRNA 3'-UTR 

binding (Table 1), while the upregulated differently 

expressed RBPs were significantly enriched in RNA 

binding, structural constituent of ribosome, mRNA 

binding, structural molecule activity, and catalytic 

activity, acting on RNA (Table 1). Through the cellular 

component (CC) analysis, we found that the decreased 

differently expressed RBPs were enriched in micro-

ribonucleoprotein complex, ELL-EAF complex, RISC 

complex, micro-ribonucleoprotein complex, and 

ribonucleoprotein complex, and upregulated differently 

expressed RBPs were mainly enriched in ribosome, 

ribosomal subunit, ribonucleoprotein complex, large 

ribosomal subunit, and cytosolic ribosome (Table 1). 

Moreover, we found that downregulated differently 

expressed RBPs were mainly enriched in mRNA 

surveillance pathway, RNA degradation, and Ribosome 

biogenesis in eukaryotes, while upregulated RBPs were 

significantly enriched for Ribosome, Spliceosome, and 

RNA degradation (Table 1). 

 

Protein-protein interaction (PPI) network 

construction and key modules selecting 

 

To further investigated the roles of differently expressed 

RNA binding proteins in LUAD, we created the PPI 
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Figure 1. Whole procedures for analyzing RBPs in lung adenocarcinoma. 

 

 
 

Figure 2. The differentially expressed RBPs in lung adenocarcinoma. (A) Heat map; (B) Volcano plot. 
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Table 1. KEGG pathway and GO enrichment analysis of aberrantly expressed RBPs. 

 GO term P value FDR 

Down-regulated RBPs    

Biological processes negative regulation of translation 4.27E-14 3.89E-11 

RNA phosphodiester bond hydrolysis 2.00E-14 2.25E-11 

regulation of mRNA metabolic process 3.33E-15 4.33E-12 

regulation of translation 1.11E-15 1.68E-12 

mRNA processing 0 0 

Cellular component micro-ribonucleoprotein complex 6.81E-10 1.60E-7 

ELL-EAF complex 0.000002 0.000195 

RISC complex 1.15E-7 0.000017 

micro-ribonucleoprotein complex 6.81E-10 1.60E-7 

ribonucleoprotein complex 0 0 

Molecular function RNA binding 0 0 

mRNA binding 0 0 

ribonuclease activity 1.16E-11 5.00E-9 

double-stranded RNA binding 2.24E-12 1.40E-9 

mRNA 3'-UTR binding 3.73E-8 8.76 E-6 

KEGG pathway mRNA surveillance pathway 1.25E-7 4.07 E-5 

RNA degradation 0.000025 0.004063 

Ribosome biogenesis in eukaryotes 0.000457 0.049713 

Up-regulated RBPs    

Biological processes organonitrogen compound biosynthetic process 0 0 

cellular amide metabolic process 0 0 

RNA processing 0 0 

peptide metabolic process 0 0 

amide biosynthetic process 0 0 

Cellular component ribonucleoprotein complex 0 0 

ribosome 0 0 

ribosomal subunit 0 0 

large ribosomal subunit 0 0 

cytosolic ribosome 7.23E-15 1.70E-12 

Molecular function RNA binding 0 0 

structural constituent of ribosome 0 0 

mRNA binding 6.39E-11 3.93E-8 

structural molecule activity 8.37E-11 3.93E-8 

catalytic activity, acting on RNA 1.42E-9 5.31E-7 

KEGG pathway Ribosome 0 0 

Spliceosome 1.03E-9 1.67E-7 

RNA degradation 0.000005 0.000503 
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network using Cytoscape software which incorporated 

197 nodes and 1484 edges based on the data from 

STRING database (Figure 3A). The co-expression 

network was processed via using the MODE tool to 

identify possible key modules and the first important 

modules acquired, which consist of 107 nodes and 1088 

edges (Figure 3B). The RBPs in the key module 1 were 

greatly abounded in mRNA surveillance pathway, RNA 

transport, RNA degradation, RNA processing, ribosome 

biogenesis in eukaryotes, ribonucleoprotein complex 

biogenesis, RNA binding, peptide metabolic process, 

amide biosynthetic process, and translation. 

 

Prognosis-related RBPs selecting 

 

A total of 197 key differently expressed RBPs were 

identified from the PPI network. To investigate the 

prognostic significance of these RBPs, we performed a 

univariate Cox regression analysis and obtained 22 

prognostic-associated candidate hub RBPs (Figure 4). 

Subsequently, these 22 prognostic-associated candidate 

hub RBPs were analyzed by multiple stepwise Cox 

regression to investigate their impact on patient survival 

time and clinical outcomes, eight hub RBPs were found 

to be independent predictors in LUAD patients (Figure 5, 

Table 2). 

 

Prognosis-related genetic risk score model 

construction and analysis 

 

The eight hub RBPs identified from the multiple 

stepwise Cox regression analysis were used to construct 

the predictive model. The risk score of each patient was 

calculated according to the following formula: 

 
(0.1362 ExpIGF2BP1) (1.6799 ExpIFIT1B)

(0.2843 ExpPABPC1) ( 0.2663 ExpTLR8)

(0.3882 ExpGAPDH1) 0.8073*ExpPIWIL4

( 0.3219 ExpRNPC3) ( 0.4965 ExpZC3H12C).

Risk score =  + 

+  + − 

+  +

+ −  + − 

 

We then conducted a survival analysis to assess the 

predictive ability. A total of 458 LUAD patients were 

divided into low-risk and high-risk subgroups according 

to the median risk score. The results indicated that the 

patients in the high-risk subgroup were with poor OS 

compared to those in the low-risk subgroup (Figure 

6A). To further evaluate the prognostic ability of the 

eight-RBPs biomarker, a time-dependent ROC analysis 

was executed. We found that the area under the ROC 

curve (AUC) of this RBPs risk score model was 0.775 

(Figure 6B), which indicated that it has moderate 

diagnostic performance. The expression heat map, 

survival status of patients, and risk score of the 

signature consisting of eight RBPs in the low- and high-

risk subgroups are displayed in Figure 6C. In addition, 

we evaluated whether the eight-RBPs predictive model 

with similar prognostic value in other LUAD patient 

cohorts, the same formula was used to the GSE31210 

datasets. We found that patients with high-risk score 

also have a poorer OS than those with low-risk score in 

the GSE31210 cohorts (Figure 7A–7C). These results 

suggested that the prognostic model has better 

sensitivity and specificity. 

 

 
 

Figure 3. Protein-protein interaction network and modules analysis. (A) Protein-protein interaction network of differentially 
expressed RBPs; (B) critical module from PPI network. Green circles: down-regulation with a fold change of more than 2; red circles: up-
regulation with fold change of more than 2. 
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Figure 4. Univariate Cox regression analysis for identification of hub RBPs in the training dataset. 

 

 
 

Figure 5. Multivariate Cox regression analysis to identify prognosis related hub RBPs. 
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Table 2. Eight prognosis-associated hub RBPs identified by multivariate Cox regression analysis. 

RBP name coef HR Lower 95% CI Upper 95% CI P-value 

IGF2BP1 0.1362 1.1459 0.9862 1.3314 0.0751 

IFIT1B 1.6799 5.3652 0.8690 33.1242 0.0704 

PABPC1 0.2843 1.3288 1.0495 1.6824 0.0181 

TLR8 -0.2663 0.7662 0.6163 0.9524 0.0164 

GAPDH 0.3882 1.4743 1.1911 1.8248 0.0003 

PIWIL4 0.8073 2.2419 1.4312 3.5117 0.0004 

RNPC3 -0.3219 0.7247 0.5265 0.9974 0.0481 

ZC3H12C 0.4965 1.6430 1.1976 2.2539 0.0021 

 

 
 

Figure 6. Risk score analysis of eight-genes prognostic model in the TCGA cohort. (A) Survival curve for low- and high-risk 

subgroups; (B) ROC curves for forecasting OS based on risk score; (C) Expression heat map, risk score distribution, and survival status. 
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Construction of a nomogram based on the eight hub 

RBPs 

 

In order to develop a quantitative method for LUAD 

prognosis, we integrated the eight RBPs signature to 

establish a nomogram (Figure 8). Based on the 

multivariate Cox analysis, points were assigned to 

individual variables by using the point scale in the 

nomogram. We draw a horizontal line to determine the 

point of each variable and calculate the total points for 

each patient by summing the points of all variables, and 

normalize it to a distribution of 0 to 100. We can 

calculate the estimated survival rates for LUAD patients  

at 1, 3, and 5 years by drafting a vertical line between the 

total point axis and each prognosis axis, which might 

help relevant practitioners to develop clinical decision-

making for LUAD patients. Besides, we assessed the 

prognostic significance of different clinical characteristics 

in LUAD patients from TCGA by performing COX 

regression analysis. The results showed that tumor stage, 

primary tumor site, regional lymph node involvement 

and risk score were correlated with OS of LUSC patients 

(P<0.01) (Table 3). However, we only found that age, 

tumor stage, and risk score were independent prognostic 

factors correlated with OS through multiple regression 

analysis (P<0.01) (Table 3).  

 

 

 

Figure 7. Risk score analysis of eight-genes prognostic model in the GSE31210 cohort. (A) Survival curve for low- and high-risk 

subgroups; (B) ROC curves for forecasting OS based on risk score; (C) Expression heat map, risk score distribution, and survival status. 
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Validation the prognostic value and expression of 

hub RBPs 

 

To further explore the prognostic value of eight hub 

RBPs in LUAD, the Kaplan Meier-plotter was used to 

determine the relationship between hub RBPs and OS. 

A total of six of the eight hub RBPs (GAPDH, 

IGF2BP1, PABPC1, PIWIL4, RNPC3, and TLR8) were 

identified by Kaplan Meier-plotter server. The results of 

log-rank test demonstrated that the six RBPs were 

associated with the OS in LUAD patients (Figure 9). To 

further determine the expression of these hub RBPs in 

LUAD, we used immunohistochemistry results from the 

Human Protein Atlas database to show that IGF2BP1, 

PABPC1, and GAPDH were significantly increased in 

lung cancer compared with normal lung tissue (Figure 

10). However, the antibody staining level of TLR8, 

PIWIL4, and ZC3H12C were relatively reduced in lung 

cancer tissue. Besides, the protein expression of IFIT1B 

was not significantly different between tumor and 

normal lung tissue (Figure 10). 

 

DISCUSSION 
 

RBPs dysregulation has been reported in various 

malignant tumors [11, 18]. However, only a small part 

of RBPs have been studied in depth and partially 

confirmed that they contributed to occurrence and 

development of cancers [19]. In present study, we 

identified 223 differently expressed RBPs between 

tumor and normal tissue based on LUAD data from 

TCGA. We systematically analyzed relevant biological 

pathways, constructed co-expression network and PPI 

network of these RBPs. Moreover, we also performed 

univariate Cox regression analysis, survival analyses, 

multiple stepwise Cox regression analysis, and ROC 

analyses of hub RBPs to further explore their biological 

functions and clinical significance. We constructed a 

risk model to predict LUAD prognosis based on eight 

prognostic-associated hub RBP genes. These findings 

may contribute to develop novel biomarkers for the 

diagnosis and prognosis of patients with LUAD. 

 

The function pathway enrichment analysis displayed 

that the differently expressed RBPs were greatly 

enriched in regulation of translation, RNA 

phosphodiester bond hydrolysis, regulation of mRNA 

metabolic process, RNA processing, organonitrogen 

compound biosynthetic process, cellular amide 

metabolic process, peptide metabolic process, amide 

biosynthetic process, RNA binding, ribonuclease 

activity, double-stranded RNA binding and mRNA 3'-

 

 
 

Figure 8. Nomogram for predicting 1-, 3-, and 5-year OS of LUAD patients in the TCGA cohort. 
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Table 3. The prognostic value of different clinical parameters. 

 Univariate analysis  Multivariate analysis 

 HR 95% CI P-value  HR 95%CI P-value 

Age 1.02 0.99-1.03 0.154  1.03 1.01-1.05 0.002 

Gender 1.02 0.70-1.49 0.909  0.88 0.59-1.31 0.536 

Smoking 0.98 0.82-1.17 0.814  1.04 0.87-1.24 0.661 

Stage 1.60 1.35-1.89 <0.001  1.50 1.20-1.88 <0.001 

T 1.48 1.17-1.88 <0.001  1.08 0.83-1.41 0.551 

N 1.44 1.23-1.69 <0.001  1.16 0.94-1.43 0.181 

M 1.05 0.85-1.30 0.623  1.11 0.88-1.38 0.375 

Risk score 1.21 1.15-1.27 <0.001  1.26 1.19-1.34 <0.001 

 

UTR binding. Previous studies have proved that 

regulation of translation, RNA processing, and RNA 

metabolism are related to the occurrence and 

development of a variety of human diseases [20–22]. 

Post-transcriptional regulation of RNA stability is an 

important procedure in gene expression processing. 

RBPs can interact with RNA to form ribonucleoprotein 

complexes, thereby increasing the stability of target 

mRNAs and promoting gene expression, which play 

key roles in the progression of various diseases. 

Oncogenic RBP SRSF1 promotes lung cancer cell 

proliferation and development by enhancing the mRNA 

stability of DNA ligase 1 [23]. RBP SART3 binds pre-

miR-34a with high specificity, and increased miR-34a 

levels to facilitate G1 cell cycle arrest in NSCLC cells 

[24]. Besides, ribonucleoprotein granule is a key region 

that executes protein biosynthesis. The alteration of 

ribonucleoprotein influences the translation processing 

and related to tumor progression [25]. The KEGG 

pathways analysis showed that the aberrantly expressed 

 

 
 

Figure 9. Validation the prognostic value of hub RBPs in LUAD by Kaplan Meier-plotter. 
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RBPs regulate the tumorigenesis and progression of 

lung carcinoma by affecting mRNA surveillance 

pathway, RNA degradation, ribosome biogenesis, and 

RNA degradation. 

 

Moreover, we created a protein-protein interaction 

network of these differently expressed RBPs and got a 

key module including 107 key RBPs. Among these key 

RBPs, many of them have been shown to play an 

important role in the development and progression of 

tumors. EIF6, a eukaryotic translation initiation factor, 

affects the maturation of 60S ribosomal subunits, is 

upregulated in LUAD and negatively associated with 

patient prognosis [26, 27]. NOB1 is an important 

accessory factor in ribosome assembly, and 

upregulation of NOB1 expression can promote NSCLC 

cell growth [28]. Another study showed that NSCLC 

patients with high expression of NOB1 had a poor 

overall survival and progression-free survival [29]. 

Although the connection between the most of 

differently expressed RBPs and lung carcinoma remains 

unclear, some RBPs have been reported to be associated 

with other tumors. BOP1 as Wnt/β-catenin target gene 

involved in induced migration, EMT, and metastasis of 

colorectal carcinoma [30]. GNL3 can promote colon 

carcinoma cell proliferation, invasion and migration by 

activating the Wnt/β-catenin signaling pathway [31]. 

BYSL is upregulated in hepatocellular carcinoma, and 

as a crucial oncogene contributes to tumor cell growth 

both in vitro and in vivo [32]. DICER 1 as a 

ribonuclease, involving in the formation of mature 

microRNAs in the cytoplasm of all cancer cells. Many 

studies have shown that DICER 1 is dysregulation in 

multiple tumors, which is part of the pathological 

 

 
 

Figure 10. Verification of hub RBPs expression in LUAD and normal lung tissue using the HPA database. (A) IGF2BP1, (B) IFIT1B, 
(C) PABPC1, (D) TLR8, (E) GAPDH, (F) PIWIL4, (G) ZC3H12C. 
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molecular mechanism that leads to the progression of 

this malignant tumor [33–35]. The module analysis of 

the PPI network showed that LUAD is related to 

mRNA surveillance pathway, RNA processing,  

RNA binding, ribosome biogenesis in eukaryotes, 

ribonucleoprotein complex biogenesis, peptide 

metabolic process, amide biosynthetic process, and 

translation. 

 

Besides, the hub RBPs were selected based on 

univariate Cox regression analysis, survival analyses, 

and multiple Cox regression analysis. A total of eight 

RBPs were identified as prognosis related hub RBPs, 

including IGF2BP1, IFIT1B, PABPC1, TLR8, GAPDH, 

PIWIL4, RNPC3, and ZC3H12C. Previous studies have 

reported that the expression IGF2BP1 [36], TLR8 [37], 

PIWIL4 [38], and GAPDH [39] were associated with 

tumorigenesis and progression of lung cancer patients, 

which consistent with our results. Next, we produced a 

risk model to predict LUAD prognosis by multiple 

stepwise Cox regression analysis on the basis of the 

eight hub RBPs coding gene, trained using the TCGA 

cohort. The ROC curve analysis revealed that these 

eight genes signature with the better diagnostic 

capability to select out the LUAD patients with poor 

prognosis. However, the molecular mechanism of these 

eight RBPs contributes to lung carcinogenesis still 

poorly understood, and further exploration of potential 

mechanisms may be valuable. Subsequently, a 

nomogram was built to help us predict 1, 3, and 5 years 

OS more intuitively. We also used the Kaplan Meier-

plotter to detect the prognostic value of the eight RBPs 

coding gene, the results were basically consistent with 

the prognostic analysis results of TCGA cohort. These 

results suggested that the prognostic model of eight-

genes signature has a certain value in adjusting 

treatment plans of lung cancer patients. 

 

Overall, our prognostic model is based on eight RBPs 

coding genes, which significantly reduces the cost of 

sequencing and is more conducive to clinical 

application. Besides, the eight genes predictive model 

has better performance for survival prediction in 

patients with LUAD. Moreover, the RBPs-associated 

gene signature displayed vital biological function, 

suggesting that they can potentially be used for clinical 

assistant treatment, which was not necessarily always 

the case in previous studies. Nonetheless, there are 

several limitations in this study. Firstly, our prognostic 

model was only based on the data from TCGA database, 

which is not validated in clinical patient cohort and 

other databases. Secondly, our study was designed on 

the basis of a retrospective analysis and prospective 
research should be performed to verify the outcomes. 

Thirdly, the datasets did not provide some clinical 

information, which may decrease the statistical validity 

and reliability of multivariate stepwise Cox regression 

analysis. 

 

In summary, we systemically explored the expression 

and prognostic value of differently expressed RBPs by a 

series of bioinformatics analyses in LUAD. These RBPs 

may involve in tumorigenesis, progression, invasion and 

metastasis of LUAD. The prognostic model of eight 

RBPs coding gene was constructed, and which might 

serve as an independent prognostic factor for LUAD. 

As far as we know, this is the first report of developing 

a RBPs-associated prognostic model for LUAD. Our 

results would greatly contribute to show the 

pathogenesis of LUAD and to develop new treatment 

targets and prognostic molecular markers. 

 

MATERIALS AND METHODS 
 

Data processing 

 

We downloaded the RNA-sequencing dataset of 59 

normal lung tissue samples and 524 LUAD samples with 

corresponding clinical data from The Cancer Genome 

Atlas database (TCGA, https://portal.gdc.cancer.gov/). To 

identify the differently expressed genes between normal 

lung and LUAD tissue, we used the negative binomial 

distribution method. The Limma package (http://www. 

bioconductor.org/packages/release/bioc/html/limma.html) 

was applied to perform the analysis. The Limma package 

was based on the negative binomial distribution, it fits a 

generalized linear model for each gene and uses empirical 

Bayes shrinkage for dispersion and fold-change 

estimation. All raw data was preprocessed by Limma 

package and excluded genes with an average count value 

less than 1. In addition, we also used Limma package to 

identify the differently expressed RBPs in view of |log2 

fold change (FC)|≥1 and false discovery rate (FDR)<0.05. 

 

KEGG pathway and GO enrichment analysis 

 

The biological functions of these differently expressed 

RBPs were comprehensively detected by GO 

enrichment and kyoto encyclopedia of genes and 

genomes (KEGG) pathway analysis. The GO analysis 

terms including cellular component (CC), molecular 

function (MF), and biological process (BP). All 

enrichment analyses were carried out by utilizing online 

WEB-based Gene Set Analysis Toolkit (WebGestalt, 

http://www.webgestalt.org/) [40]. Both P and FDR 

values were less than 0.05 as statistically significant. 

 

PPI network construction and module screening  

 

The differently expressed RBPs were submitted to the 

STRING database (http://www.string-db.org/) [41] to 

identify protein-protein interaction information. The 

https://portal.gdc.cancer.gov/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.webgestalt.org/
http://www.string-db.org/
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Cytoscape 3.7.0 software was used to further construct 

the PPI network and visualized. The important modules 

and genes were elected in PPI network by using 

Molecular Complex Detection (MCODE) plug-in with 

both MCODE score and node counts number more than 

5 [42]. All P≤ 0.05 were considered as significant 

difference.  

 

Prognostic model construction 

 

Univariate Cox regression analysis was performed on 

all key RBPs in the key modules of the training dataset 

using survival R package. A log-rank test was executed 

to screen the significant candidate genes further. 

Subsequently, based on the above preliminary screened 

significant candidate genes, we constructed a 

multivariate Cox proportional hazards regression model 

and calculated a risk score to assess patient prognosis 

outcomes. The risk score formula for each sample was 

as follows: 

 

1 1 2 2 ,Risk score Exp Exp i Expi=  +  +     

 

where β represents the coefficient value, and Exp 

represented the gene expression level. According to the 

median risk score survival analysis, LUAD patients were 

divided into low-risk and high-risk groups. A log-rank test 

compared the difference of OS between the two 

subgroups. Additionally, a receiver operating 

characteristic (ROC) curve analysis was implemented by 

using the SurvivalROC package to evaluate the prognostic 

capability of the above model [43]. Besides, 79 LUAD 

patient samples with reliable prognostic information from 

the GSE31210 dataset (https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE31210) were used as a 

validation cohort to confirm the predictive capability of 

this prognostic model. Finally, the nomogram with 

calibration plots was conducted using rms R package to 

forecast the likelihood of OS. P<0.05 was considered to 

be a significant difference. 

 

Verification of express level and prognostic 

significance 

 

The Human Protein Atlas (HPA) online database 

(http://www.proteinatlas.org/) was used to detect the 

expression of eight hub RBPs at a translational level 

[44]. The prognostic value of the eight RBPs in LUAD 

was verified by using the Kaplan Meier plotter 

(https://kmplot.com/analysis/) online tool [45].  
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