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INTRODUCTION 
 
Alzheimer’s disease (AD) is one of the major 

neurodegenerative disease, but its etiology remains 
unclear. AD is marked by two major postmortem 
hallmarks; amyloid-(Aβ) protein aggregation formed by 

plaque deposits and tau protein hyperphosphorylation 
which results in neurofibrillary tangles. In AD,  
the common symptoms are cognitive function 

dysregulation, memory loss and neurobehavioral 
manifestations [1]. Other cognitive and behavioral 

symptoms are poor facial recognition ability, social 
withdrawal, increase in motor agitation and wandering 
likelihood [2, 3]. Aging is the main risk factors of AD 

[4]. Affected neural circuits in aging and AD are the 

same, and involving glutamatergic pathway, oxidative 
stress and neuroinflammation [5, 6]. Glutamatergic 
neurons are vulnerable to damages in AD and in aging 

[7–9]. Oxidative stress and neuroinflammation are 
considered as mainly underlying causes of AD [10, 11]. 

Increase of oxidative stress can be an early indication  
of AD [12, 13]. In AD, the accumulation of Aβ  
protein leads to the decrease of the WNT/β-catenin 

pathway [14]. Diminution of β-catenin decreases 
phosphatidylinositol 3-kinase (PI3K)-protein kinase B 
(Akt) (PI3K/Akt) pathway activity [15, 16]. Inhibition 

of WNT/β-catenin/PI3K/Akt pathway enhances 
oxidative stress in mitochondria of AD cells [17]. Thus, 

activation of the WNT/β-catenin pathway may be an 
interesting therapeutic target for AD [18, 19].  
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ABSTRACT 
 

Alzheimer’s disease (AD) is a neurodegenerative disease, where the etiology remains unclear. AD is 
characterized by amyloid-(Aβ) protein aggregation and neurofibrillary plaques deposits. Oxidative stress and 
chronic inflammation have been suggested as causes of AD. Glutamatergic pathway dysregulation is also mainly 
associated with AD process. In AD, the canonical WNT/β-catenin pathway is downregulated. Downregulation of 
WNT/β-catenin, by activation of GSK-3β-induced Aβ, and inactivation of PI3K/Akt pathway involve oxidative 
stress in AD. The downregulation of the WNT/β-catenin pathway decreases the activity of EAAT2, the 
glutamate receptors, and leads to neuronal death. In AD, oxidative stress, neuroinflammation and 
glutamatergic pathway operate in a vicious circle driven by the dysregulation of the WNT/β-catenin pathway. 
Riluzole is a glutamate modulator and used as treatment in amyotrophic lateral sclerosis. Recent findings have 
highlighted its use in AD and its potential increase power on the WNT pathway. Nevertheless, the mechanism 
by which Riluzole can operate in AD remains unclear and should be better determine. The focus of our review is 
to highlight the potential action of Riluzole in AD by targeting the canonical WNT/β-catenin pathway to 
modulate glutamatergic pathway, oxidative stress and neuroinflammation 
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Riluzole is a glutamate modulator and used as treatment 
in amyotrophic lateral sclerosis [20]. Moreover, use of 

Riluzole is associated with prevention of age-related 
cognitive decline [21]. Riluzole administration can be 
correlated with induction of dendritic spines clustering 

[21] depending on glutamatergic neuronal activity [22, 
23]. In mutant mouse and rat model of AD, Riluzole  

can prevent age-related cognitive decline [21, 24]. 
Moreover, Riluzole is associated with the rescue age-
related gene expression changes in hippocampus of rats 

[6]. Hippocampus region is responsible for learning and 
memory and is one of the regions compromised by AD 
progression [25, 26].  

 
Nevertheless, the mechanism by which Riluzole  

can operate in AD remains unclear and should be 
better determine. The focus of our review is to 
highlight the potential action of Riluzole in AD by 

targeting the canonical WNT/β-catenin pathway to 
modulate glutamatergic pathway, oxidative stress and 
neuroinflammation.  

 

HALLMARKS OF AD: OXIDATIVE STRESS 

AND NEUROINFLAMMATION 
 

AD manifestations are characterized by senile 
plaques, due to the extracellular accumulation of the 
amyloid β (Aβ) protein [27], and neurofibrillary 

tangles (NFTs), caused by hyperphosphorylated tau 
aggregation [28].  
 

Aβ is produced by the sequential cleavage of the 
Amyloid Precursor Protein (APP), controlled by the 

β-secretase (BACE-1) and complex of gamma-
secretase [29]. NFTs is formed by the aggregation of 
hyperphosphorylated microtubule-associated protein 

(MAP) tau. Tau is a microtubule-stabilizing protein 
maintaining the structure of neuronal cells and the 
axonal transport. In AD, multiple kinases 

phosphorylate Tau in an aberrantly manner. These 
kinases are the Glycogen synthase kinase-3β (GSK-

3β), the cyclin-dependent protein kinase-5 (CDK5), 
the Dual specificity tyrosine-phosphorylation-
regulated kinase 1A (DYRK1A), the Calmodulin-

dependent protein kinase II (CAMKII), and the 
Mitogen-activated protein kinases (MAPKs) are the 
best known [30–32].  

 
Some pathways including genetic factors, 

neuroinflammation correlated with neurotoxicity, 
oxidative stress and cytokine release, are considered as 
possible underlying causes [10, 11]. Aβ and NFTs 

involve neuroinflammation and oxidative damages 
resulting in progressive neuronal degeneration. 
Oxidative stress enhancement can be an indication  

of AD [13]. 

In AD, mitochondrial damages enhance the production 
of ROS (reactive oxygen species) but diminish the 

production of ATP [33]. Mitochondrial damages affect 
cell function by enhancing the release of ROS leading 
to cell damage and death. Energy depletion is caused by 

the disruption of oxidative phosphorylation [34]. Thus, 
both the dysregulation of mitochondrial activity and 

oxidative stress enhancement are responsible to 
dementia and neuronal cell death [35–37].  
 

Numerous cellular pathways are altered by Aβ-induced 
oxidative stress [38]. Neurotoxic effects are induced by 
Aβ peptide through the enhancement of oxidative stress 

and damages on the membrane, mitochondrial function 
and lipids production [39]. NADPH dehydrogenase 

(complex I) generates superoxide from oxidative 
phosphorylation into the mitochondrial respiratory 
chain [40]. Complex I and complex IV (cytochrome c 

oxidase) deficiencies are initiated by Aβ. These 
deficiencies lead to ROS generation [41]. 
Mitochondrial-derived ROS correlated with Aβ, are 

inhibited in resistant relative to sensitive cells. Through 
the diminution of the mitochondrial respiration chain, 

Aβ-resistant cells are less likely to generate ROS and 
are mainly resistant to depolarization of the 
mitochondria [17].   

 
Amyloid oligomers complex into the lipid bilayer and 
lead to the peroxidation of lipids, proteins and 

biomolecule damages [42]. Membrane alteration 
generated by the accumulation of Aβ are induced by the 
influx of Ca

2+
. This leads to the alteration of the 

homeostasis of Ca
2+ 

leading to mitochondrial 
dysregulation and neuronal death. Diminution of the 

activity of Glutathione (GSH) is responsible for the 
increase of Ca

2+ 
release and ROS accumulation [43]. 

Then, ROS accumulation affects DNA transcription, 

DNA oxidation and the activity of the target proteins 
[44, 45]. Tau leads to the dysregulation of the 
mitochondrial activity, which dysregulates energy 

production, enhances ROS and nitrogen species (RNS) 
production [46]. ROS and RNS alters the integrity of 

cell membranes to induce failure of synapses [47]. ROS 
production activates pro-inflammatory gene 
transcription and cytokines release, including 

interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-
α), responsible for neuroinflammation [37]. Aβ-related 
inflammatory compound of the disease is one of the 

main targets to control AD development [48]. Aβ 
stimulates inflammation leading to damage and 
neuronal death [49]. 

 
Numerous studies have shown the link between 

neuroinflammation and oxidative stress [50]. NF-B 
induces the production of ROS and RNS leading to 

neuronal damages [51, 52]. NF-B activates COXX-2 
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and cytosolic phospholipase A2 which stimulate 
prostaglandins production leading to oxidative stress 

[53]. Production of peroxide, through the involvement 

of iNOS and NF-B pathway, is associated with 
dysregulation of the glucose metabolism [54]. IL-1 can 

stimulate GSH production in astrocytes through a NF-

B dependent pathway [55].  
 

GLUTAMATERGIC PATHWAY IN AD 
 
Glutamate is a key excitatory neurotransmitter in the 

CNS, responsible for fast excitatory neurotransmission. 
In neurons, glutamate is stored in synaptic vesicles, 
from where it is released. The release of glutamate leads 

to an increase in glutamate concentration in the synaptic 
cleft, which binds the ionotropic glutamate receptors. 

Glutamate is removed from the synaptic cleft and 
transported to astrocytes by glutamate transporters (such 
as GLT-1 or excitatory amino acid transporters 1 and 2: 

EAATs 1 and 2) to prevent overstimulation of the 
glutamate receptor [56]. Astrocytes clear >90% of 
excess glutamate by EAATs and play a major role in the 

glutamate/glutamine cycle. Following glutamate uptake, 
glutamine synthetase (GS) catalyzes the ATP-dependent 
reaction of glutamate and ammonia into glutamine. 

Glutamine is released and in turn is taken up by neurons 
for conversion back to glutamate by glutaminase.  

 
In a physiological state, in astrocytes, β-catenin 
activates the gene expression of EAAT2 and GS [57]. 

This allows the re-uptake of glutamate from the 
synaptic cleft by astrocytes through EAAT2. Glutamate 
is then metabolized by GS.  

 
In AD, EAAT2 expression is decreased [58]. The over-

accumulation of glutamate in the synaptic cleft leads to 
excitotoxicity that impairs glutamate receptors located 
on the post-synaptic side of the cleft. This phenomenon 

leads to calcium overload, mitochondrial dysfunction, 
apoptosis and ultimately death of the post-synaptic 
neuron. Cell death is restricted to post-synaptic neurons. 

The decrease if glutamate transmission is significantly 
associated with neuronal death and loss of synapse [56].  
Moreover, the downregulation of glutamate transport is 

correlated with the decrease of EAAT2 expression in 
AD [58].  

 
Some animal models of AD have shown the importance 
of NMDA receptors (glutamatergic N-methyl-D-

aspartate) in AD and the affection of glutamatergic 
synapses [59, 60].  
 

Synaptic dysregulation is one the main mechanism 
involved in AD [28] which is present at early step of AD 

development [61]. Moreover, Aβ expression is closely 
associated with glutamatergic pathway expression [62]. 

Excessive activation of extra-synaptic NMDA receptors 
[63]and excessive downregulation of synaptic NMDA 

receptors [64] lead to increase of Aβ release [65].  
 

OXIDATIVE STRESS, 

NEUROINFLAMMATION AND 

GLUTAMATERGIC PATHWAY IN AD 
 

Oxidative stress leads to the loss of cell homeostasis by 

mitochondrial oxidants overproduction [66]. The 

development of oxidative stress in AD compromises 

astrocyte function leading to impairment of glutamate 

transport and then increasing excitotoxicity to neurons 

[67]. Aβ interaction on the membrane of astrocytes 

induces calcium changes. Mitochondrial dysregulation 

in astrocytes is associated with a mitochondrial 

depolarization, increased conductance and membrane 

permeability [68]. The formation of calcium selective 

channels on membrane could be induced by Aβ into 

astrocytes generating a change in the conductance [69]. 

Aβ insertion in membrane changes the structure of 

membrane [70]. In AD, astrocytes appear as the primary 

target of Aβ, and oxidative stress enhancement is 

associated with the alteration of calcium intracellular 

signaling [69]. Astrocytes have a major role in neuronal 

integrity. Changes in cytokines and oxidative damages 

in astrocytes increase neurotoxicity and vulnerability of 

neurons [67]. In parallel a vicious and positive crosstalk 

is observed between oxidative stress and 

neuroinflammation. NF-B activation induces the 

generation of prostaglandins and oxidative stress [53] 

whereas oxidative stress can stimulate in a direct 

feedback NF-B pathway [50]. Thus, interesting drugs 

should consider the modulation of astrocyte activity to 

reduce both inflammation and oxidative stress.  
 

THE CANONICAL WNT/β-CATENIN 

PATHWAY (FIGURE 1) 
 
The Wingless/Int (WNT) pathway is a family of 
secreted lipid-modified glycoproteins [71]. Several 

signaling are mediated by this pathway, including 
fibrosis and angiogenesis [72–74]. 
 

During eye development, WNT/β-catenin pathway 
activity is highly mediated. Then, a dysfunction of the 

WNT/β-catenin pathway leads to several ocular 
malformations due to defects in cell fate differentiation 
and determination [75]. During the development of lens, 

the WNT/β-catenin pathway is stimulated in the 
periocular surface ectoderm and lens epithelium [76, 
77]. For the retinal development, the WNT/β-catenin 

pathway is stimulated in the dorsal optic vesicle and 
then, participates to the activation of RPE at the optic 

vesicle step. At this level, WNT/β-catenin pathway is 
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contained to the peripheral RPE [78]. The retinal 
vascular initiation is mainly modulated by the 

expression of the WNT/β-catenin pathway [75]. In the 
retinal vascular system, WNT/β-catenin pathway is 
controlled by the erythroblast transformation-specific 

(ETS) transcription factor Erg. Erg has a major and key 
role in angiogenesis [79]. Erg modulates the WNT/β-

catenin pathway by promoting β-catenin stability and by 
regulating the transcription of Frizzled 4 (FZD4) [79].  
 

Stimulation of FZD4/β-catenin signaling needs the 
presence of the complex LRP5 /LRP6 [80]. LRP5 has a 
main role while LRP6 presents a minor role in the 

retinal vascularization [81, 82]. Disheveled (Dsh) forms 
a complex with Axin, and this prevents the 

phosphorylation of β-catenin by glycogen synthase 

kinase-3β (GSK-3β). Then, β-catenin accumulation in 
the cytosol is observed and translocates to the nucleus 

to bind T-cell factor/lymphoid enhancer factor 
(TCF/LEF) co-transcription factors. This nuclear bind 
allows the transcription of WNT-responsive genes, such 

as cyclin D1, c-Myc, PDK1, MCT-1 [83, 84].  
 

WNT ligands absence is associated with cytosolic β-
catenin phosphorylation by GSK-3β.  
 

A destruction complex is composed by tumor suppressor 
adenomatous polyposis coli (APC), Axin, GSK-3β and β-
catenin. Then, phosphorylated β-catenin is destroyed  

in the proteasome. WNT inhibitors, including DKKs  
and SFRPs, control the WNT/β-catenin pathway  

by preventing its ligand-receptor interactions [85]. 
 

 
 

Figure 1. The canonical WNT/β-catenin pathway. Inactivated WNT: Under physiologic circumstances, the cytoplasmic β-catenin is 
linked to its destruction complex, consisting of APC, AXIN and GSK-3β. β-catenin is phosphorylated by GSK-3β. Thus, phosphorylated β-
catenin is destroyed into the proteasome. Then, cytoplasmic level of β-catenin is kept low in the non-presence of WNT ligands. If β-catenin is 
not accumulated in the nucleus, the TCF/LEF complex does not stimulate the target genes. DKK1 inhibits the WNT/β-catenin pathway 
through the bind to WNT ligands or LRP5/6. Activated WNT: When WNT ligands activate both FZD and LRP5/6, DSH is stimulated and 
phosphorylated by FZD. Phosphorylated DSH in turn activates AXIN, which comes off β-catenin destruction complex. Thus, β-catenin escapes 
from phosphorylation and then accumulates in the cytoplasm. The accumulated cytosolic β-catenin moves into the nucleus, where it 
interacts with TCF/LEF and stimulates the transcription of target genes. 
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GSK-3β, a neuron-specific intracellular serine-threonine 
kinase, is the major inhibitor of the WNT pathway [86]. 

GSK-3β regulates numerous pathophysiological 
pathways (cell membrane signaling, neuronal polarity 
and inflammation) [87–89]. GSK-3β downregulates β-

catenin cytosolic accumulation and then its nuclear 
translocation [87]. GSK-3β diminishes β-catenin, 

mTOR (PI3K/Akt pathway downstream), and HIF-1α 
expression [90].  
 

THE CANONICAL WNT/β-CATENIN 

PATHWAY IN AD 
 
Some evidence has presented a down-regulation of the 

Wnt/β-catenin pathway in the pathogenesis of AD [5, 47, 
91–94]. Aβ leads to a dysregulation of the WNT/β-catenin 
pathway in AD [95, 96]. Aβ increases Dickkopf-1 

(DKK1) expression, a WNT inhibitor. In AD, DKK-1 
links LRP 5/6, inhibits the complex WNT /Frd and 

downregulates the interaction with WNT ligands [97]. 
DKK-1 overexpression has been shown in AD brain of 

humans and transgenic mice [98]. GSK-3β activity is 
increased in the hippocampus of AD patients [99]. In AD, 
GSK-3β phosphorylates MAP tau to enhance NFTs 

expression [100–102]. GSK-3β over-activity is associated 
in AD with the diminution of β-catenin level and the 

increase of tau phosphorylation and NFTs formation 
[103]. GSK-3β activation enhances the APP cleavage 
[104]. The inhibition of GSK-3β activity is associated 

with the reversion of cell damages in AD [105]. 
 

WNT/β-CATENIN AND GLUTAMATERGIC 

PATHWAY (FIGURE 2) 
 
Some experimental studies have shown that β-catenin 
can regulate the expression of EAAT2, GLT-1 and GS 

[57, 106–108]. β-catenin knockout leads to the 
inhibition of glutamate neurotransmission [109].  

 

 
 

Figure 2. The WNT pathway and glutamate in AD. Under physiological conditions, glutamate released from the presynaptic neuron 
stimulates ionotropic glutamate receptors present on the postsynaptic neuron. The resulting influx of Na+ and Ca2+ into the cell leads to 
depolarization and generation of an action potential. However, chronic elevation of glutamate through impairment of EAAT2 and GS causes 
neuronal damage and leads to AD. In AD, the downregulation of β-catenin signaling inhibits the activity of EAAT2. Chronic accumulation of 
glutamate (through an impaired EAAT2 function, as glutamate reuptake function) induces excitotoxicity and then, neuronal death.  



www.aging-us.com 3100 AGING 

Moreover, β-catenin expression acts in concordance 
with its downstream targets, as TCF/LEF, to control 

EAAT2 and GS expression [57]. In parallel, some 

studies have shown the potential role of NF-Β in the 
control of EAAT2 expression [110]. Evidence 

highlights the decrease of WNT/β-catenin pathway in 
rats presenting increase in neuroinflammation [91]. 

WNT/β-catenin pathway is mainly associated with 
oxidative stress and neuroinflammation [47, 111–113]. 
These signals, act in vicious circle with downregulated 

β-catenin expression, which in turn, downregulate the 
expression of EAAT2/GS and then, glutamate 
excitotoxicity [57, 114]. 

 

AD: LOW ATP PRODUCTION AND 

DECREASED WNT/β-CATENIN PATHWAY 

(FIGURE 3) 
 

Cerebral hypo-metabolism is associated with the 
severity of symptoms observed in AD [115]. The 
decrease in glucose transport in AD brains is caused by 

the decrease in energy demand related to the 
dysfunction of AD synapses [17].  

 
Glut-1 (glucose transporter 1) expression, which have a 
main role in glucose transport in brain [116], is 

decreased in AD [117]. After glucose entered in cell, 
glucose is transformed into glucose-6-phospate by the 
enzyme Hexokinase (HK).  Amyloidogenic AD in 

mouse models and in post-mortem brains show 
decreased levels of HK [118]. Then, glycolysis ending 

stage is formed by phosphoenolpyruvate (PEP) 
conversion into pyruvate. Tis step is catalyzed by the 
pyruvate kinase (PK) with an ADP. PK is composed by 

four isoforms (PKR, PKL, PKM1 and PKM2). Low 
affinity with PEP characterizes PKM2 [119]. 
 

High concentration of glucose leads to acetylation of 
PKM2 to reduce its activity and then, targets toward the 

lysosome-dependent degradation of PKM2 [120]. 
Peptidyl-prolyl isomerase (Pin1) allows, under high 
concentration of glucose, the nuclear translocation of 

PKM2 [120] to bind β-catenin and then, to induce c-Myc, 
Glut, LDH-A (lactate dehydrogenase), PDK1 (pyruvate 
dehydrogenase kinase 1) expression [121]. Pyruvate 

dehydrogenase complex (PDH) is phosphorylated by 
activated PDK1. Phosphorylated PDH is inactivated to 
prevent the conversion of pyruvate into acetyl-CoA in the 

mitochondria [122]. 
 

WNT/β-catenin pathway activates the PI3K/Akt 
pathway to increase glucose metabolism [123]. 
Activated PI3K/Akt pathway leads to the stimulation of 

hypoxia-inducible factor-1-α (HIF-1α) [124]. Thus, the 
overexpression of HIF-1α allows the activation of Glut, 
PDK1, PDH-1 and PKM2 [125–127]. 

In AD brain, the accumulation of Aβ is associated with 
the decrease of PI3K/Akt pathway [128], the decrease of 

WNT pathway and the degradation of β-catenin [5, 93]. In 
AD, β-catenin degradation leads to the reduction of 
PI3K/Akt pathway and then, the inactivation of HIF-1α 

[15, 16]. Inhibition of the activity of HIF-1alpa diminishes 
the nuclear translocation of PKM2 and does not allow the 

PEP cascade to produce pyruvate. Nuclear PKM2 does 
not bind β-catenin and not allows the stimulation of 
glycolytic enzymes. Glucose hypo-metabolism and 

energy deficiency is observed in AD brains [116].  
 

AD: ROS PRODUCTION AND DECREASED 

WNT/β-CATENIN PATHWAY (FIGURE 3) 
 
PKM2 inhibition leads to increase ROS and NADPH 
production by inhibiting LDH-A [125]. Conversely, 

activation of LDH-A results in production of lactate 
from pyruvate [129]. This activation of LDH-A is 
associated with the generation of NAD

+
 to maintain 

NADH/ NAD
+
 redox balance [130]. A shift from 

mitochondrial respiration to lactate production operates 

and inhibits ROS production and oxidative stress [131]. 
Aβ toxicity is downregulated by this metabolic 
reprogramming with the activation of HIF-1α, PDK1 

and LDH-A [132, 133]. The activation of glycolytic 
enzymes leads to aerobic glycolytic and then, reduces 
oxidative stress [133, 134].  

 
However, Aβ toxicity is associated by the inhibition 

of the WNT/β-catenin pathway leading to ROS 
production in mitochondria [17]. FoxO (Forkhead box 
class O) transcription factors are main intracellular 

modulators of metabolic pathways including glucose 
transport and regulation of oxidative stress [135]. 
ROS decreases Wnt pathway through the diversion of 

β-catenin from TCF/LEF to FoxO [136]. This leads to 
β-catenin/FoxO complex and nuclear activation of 

FoxO [137, 138]. FoxO activates apoptotic genes 
expression [139–141] by stimulating cyclin-dependent 
kinase inhibitor p27, kip1 and decreasing cyclin D1 

expression [142, 143]. The activation of FoxO induces 
apoptosis [144], whereas FoxO decreasing is 
associated with low Aβ exposure [145]. WNT/β-

catenin pathway stimulation can phosphorylate FoxO 
into the cytosol and then, allows diminution of 
apoptosis, decrease of cytochrome c release, Bad 

phosphorylation and caspase signaling [146]. 
 

AD: NEUROINFLAMMATION AND 

DECREASED WNT/β-CATENIN PATHWAY 

(FIGURE 3) 
 
Release of cytokines, blood barrier breakdown and 

infiltration of leukocytes in brain characterized 
neuroinflammation [147]. Neurodegeneration is partly 
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caused by the neuroinflammation [148]. NF-B, 
cytokines and prostaglandins activation are responsible 

for CNS neuroinflammation [149, 150]. In physiologic 
condition, WNT/β-catenin pathway can control the 
immune response during neuroinflammation [151]. WNT 

and NF-B act in an opposed manner [152–156]. LRP5 
negatively regulates macrophage differentiation [157].  
 

Β-catenin inhibits NF-B -mediated transcription of 
pro-inflammatory genes by decreasing GSK-3β activity 

GSK-3β positively regulates NF-B pathway but 

negatively modulates β-catenin level [158, 159]. 
Decreased β-catenin level is correlated with the increase 

of NF-B pathway and thus, neuroinflammation [160]. 
 

RILUZOLE AND NEURODEGENERATIVE 

DISEASES 
 
Riluzole could be considered as a neuroprotective drug 
while its action mechanism remains unclear. Riluzole 

can block glutamatergic cell transmission in brain 
through the inhibition of the discharge of aminoakanoic 

 

 
 

Figure 3. Interactions between Aβ, WNT pathway and energy metabolism in AD. In AD, Aβ protein activates DKK-1, an inhibitor of 
WNT pathway. In absence of WNT ligands, cytosolic β-catenin is phosphorylated by GSK-3β. APC and Axin combine with GSK-3β and β-
catenin to enhance the destruction process in the proteasome. β-catenin does not translocate to the nucleus et does not bind TCF/LEF co-
transcription factor. WNT taget genes, such as cMyc, are not activated. Aβ protein accumulation decreases level of PI3K/Akt pathway and 
results in inactivation of HIF-1alpha. Downregulation of beta-catenin reduces the expression of PI3K/Akt signaling. HIF-1alpha inactivated 
does not stimulate Glut, HK, PKM2, LDH-A and PDK1. Inactivation of HIF-1alpha involves PKM2 non-translocation to the nucleus. PKM2 
inhibits PEP cascade and the formation of pyruvate. PKM2 does not bind beta-catenin and does not induce cMyc-mediated expression of 
glycolytic enzymes (Glut, LDH-A, PDK1). Inhibition of Glut and HK involves glucose hypo-metabolism with decreased in glucose transport and 
phosphorylation rates. PDK1 does not inhibit PDH, which stimulates pyruvate entrance into mitochondria. Aβ toxicity is associated with 
mitochondrial-derived ROS (reactive oxygen species). GSK-3β phosphorylation activates hyperphosphorylation of Tau, which induces 
neurofibrillary tangles and neuroinflammation. 
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acid from central nervous system. This drug can block 
the post synaptic effects of glutamic acid by blockage 

of NMDA receptors [161]. Parkinson’s disease (PD) 
is characterized by a mitochondrial dysfunction [94, 
162, 163]. The insufficiency of energy leads to the 

weakness of glutamatergic activation and then 
contributes to PD [164]. The glutamate antagonism 

role of Riluzole may be useful for PD patients. 
Increase of synaptic efficacy of striatal ionotropic 
glutamatergic receptors leads to dyskinesia and may 

be relieved by Riluzole which acts on excitatory 
glutamatergic transmission [165]. Moreover, PD is 
associated with the decrease of the WNT/β-catenin 

pathway [166, 167]. Riluzole could be an interesting 
drug by targeting this pathway. Anxiety disorders 

could be reduced by anti-glutamatergic action of the 
Riluzole and the reduction of the amino acid 
neurotransmission [168]. Riluzole reduces symptoms 

in bipolar disorders which present a decrease in 
WNT/β-catenin pathway [169]. 

Riluzole is a well-known treatment of amyotrophic 
lateral sclerosis (ALS). This drug is used in ALS due 

to its anti-glutamatergic toxicity role while ALS 
presents an upregulation of the WNT/β-catenin 
pathway [AV].  

 

RILUZOLE: A POTENTIAL ACTOR ON 

THE DECREASED WNT/β-CATENIN 

PATHWAY IN AD (FIGURE 4) 
 

Riluzole administration can counteract glutamate 
alterations, cognitive deficits, and tau pathology 

associated with P301L tau expression [24, 170]. Riluzole 
increases the performance in the rTg (TauP301L) 4510 
mouse model of AD. The TauP301L-mediated 

diminution in PSD-95 expression, a compound of 
excitatory synapses in the hippocampus, is rescued by 
Riluzole. Moreover, Riluzole is an enhancer of Wnt/β-

catenin pathway in both HT22 neuronal cells and adult 
hippocampal progenitor cells [171]. This can explain the 

 

 
 

Figure 4. Riluzole potential action in AD. By directly targeting the WNT pathway, Riluzol could act on neuroinflammation, oxidative 
stress and the glutamatergic pathway involved in AD process.  
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beneficial action observed by Riluzole in AD. Riluzole 
has been approved for the ALS, a disease presenting an 

upregulation of Wnt/β-catenin pathway. the indication of 
Riluzole used un ALS is due to its action on the 
glutamatergic pathway [172]. Nevertheless, Riluzole 

show weak effects in median survival at 3 months [173–
175]. These poor effects of Riluzole in ALS could be 

explained by the increasing of the WNT/β-catenin 
pathway by Riluzole [167]. Positive effects of Riluzole 
used have been observed in bipolar disorders, a disease 

presenting a downregulation of the WNT/β-catenin 
pathway [169, 176, 177]. However, only one 
experimental study has directly shown the positive role of 

Riluzole on the WNT/β-catenin pathway [171]. 
 

CONCLUSION 
 
Primary etiology of AD remains unclear; nevertheless, 
neuroinflammation, oxidative stress and glutamatergic 

pathway could be underlying causes of AD. The 
canonical WNT/β-catenin pathway is downregulated in 
AD. The downregulation of this pathway is responsible 

for the enhancement of oxidative stress, 
neuroinflammation and the dysregulation of the 

glutamatergic pathway in AD. Riluzole could be an 
interesting therapeutic strategy in AD by targeting the 
WNT/β-catenin pathway and increasing it. Few studies 

have focused on this potential therapeutic way in AD, 
and futures clinical trials could highlight this interaction 
and the beneficial effects of Riluzole in AD. 
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