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INTRODUCTION 
 

Renal cell carcinoma (RCC) is one of the most common 

malignant tumors, ranking seventh among male 

malignant tumors and tenth among female malignant 

tumors [1]. RCC accounts for 80% of all kidney cancer, 

and clear cell renal cell carcinoma is the most common 

subtype of renal cell carcinoma [2]. Smoking, obesity, 

and high blood pressure increase the risk of kidney 

cancer [3]. In recent years, immune checkpoint 

inhibitors have become the standard for first-line 

treatment of renal cell carcinoma [4–6]. However, no  

 

specific molecular markers have been for immuno-

therapy of renal cell carcinoma [2]. Therefore, the 

exploration of immune-related molecular markers is an 

important focus of renal cell carcinoma research.  

 

RCC are prone to immune infiltration, and the 

characteristics of tumor microenvironment strongly 

alter the response to immunotherapy [7]. CD8+ T cells 

contribute to tumor adaptive immunity. Among the 

immune cells of ccRCC, CD8+ T cells account for the 

largest proportion [8]. In most solid tumors, highly 

infiltrating CD8+ T cells are beneficial to tumor 
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ABSTRACT 
 

Clear cell renal cell carcinoma (ccRCC) is an extremely common kind of kidney cancer in adults. Immunotherapy 
and targeted therapy are particularly effective at treating ccRCC. In this study, weighted gene co-expression 
network analysis and a deconvolution algorithm that quantifies the cellular composition of immune cells were 
used to analyze ccRCC expression data from the Gene Expression Omnibus database, and identify modules 
related to CD8+ T cells. Ten hub genes (LCK, CD2, CD3D, CD3G, IRF1, IFNG, CCR5, CD8A, CCL5, and CXCL9) were 
identified by co-expression network and protein-protein interactions network analysis. Datasets obtained from 
The Cancer Genome Atlas were analyzed and the data revealed that the hub genes were meaningfully up-
regulated in tumor tissues and correlated with promotion of tumor progression. After Kaplan-Meier analysis 
and Oncomine meta-analysis, CCL5 was selected as a prognostic biomarker. Finally, the experimental results 
show that reduced expression of CCL5 decreased cell proliferation and invasion in the ccRCC cell line. Various 
analyses were performed and verified, CCL5 is a potential biomarker and therapeutic target which related to 
CD8+ T cell infiltration in ccRCC. 
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treatment [9–11], but high infiltration of CD8+ T cells in 

RCC is related to bad prognosis [12]. Many studies 

have explored the immune-related biomarkers of renal 

cell carcinoma, but the findings cannot be directly 

applied to actual clinical work. Previous studies have 

reported that low expression of CD40 is associated with 

poor prognosis in patients with RCC [13]. Co-

expression of PD-1 and Tim-3 was reported to correlate 

with poor overall survival [14]. However, their studies 

included less than 50 samples, so the result should be 

validated in a larger cohort. CD19 was identified as a 

surface marker of B cells and can predict the prognosis 

of metastatic renal cell carcinoma [15]. However, CD8+ 

T cells are more important in tumor adaptive immunity, 

so it is unclear if CD19 can guide the immunotherapy of 

renal cell carcinoma. Therefore, the identification of 

biomarkers related to CD8+ T cell infiltration will 

facilitate the monitoring of RCC immunotherapy 

response and the exploration of immune infiltration 

mechanism. 

 

With the rapid development of bioinformatics 

technology, many tools have been developed to find 

biomarkers [16]. Weighted gene co-expression 

network analysis (WGCNA) is an effective tool that 

can be used to mine related patterns between genes to 

identify relevant modules and hub genes for cancer 

[17]. This algorithm has been widely used to find 

biomarkers at the transcriptional level [18, 19]. Cell-

type Identification by Estimating Relative Subsets ff 

RNA Transcripts (CIBERSORT) is another bio-

informatics tool for analysis of gene expression data. 

This tool quantifies the cellular composition of 

immune cells using a deconvolution algorithm [20]. 

This algorithm has been successfully used to 

approximate the level of immune cell infiltration in 

various cancers, such as prostate cancer [21] and 

kidney cancer [8]. 

 

To explore the effect of the tumor microenvironment 

and identify potential biomarkers of ccRCC, WGCNA 

was performed using ccRCC gene expression data. The 

T-cell compositions of samples were calculated using 

the CIBERSORT algorithm. We then identified 

important modules and hub genes related to CD8+ T cell 

infiltration levels, and the immune and clinical features 

of these genes were verified by database analysis. 

Prognostic biomarkers were then identified and verified. 

This is the first utilization of WGCNA to identify CD8+ 

T cell-related biomarkers of ccRCC. 

 

RESULTS 
 

RNA expression data  
 

The research strategy is presented in Figure 1. 

We obtained RNA expression data for 265 ccRCC 

samples Gene Expression Omnibus (GEO) database. 

All data for tumor samples in the dataset were obtained, 

and 4411 genes with Coefficient of variation values 

greater than 0.1 were selected for additional analysis 

(Supplementary Table 1). 

 

Evaluation of tumor-infiltrating immune cells 

(TIICs) 

 

CIBERSORT is an analytical algorithm that analyzes 

RNA expression data to assess the abundance of 

different cell subtypes for each sample. The fractions of 

22 TIICs were calculated by using the R package 

“CIBERSORT”. Then, the fractions of seven subtypes 

of T cells in every sample were selected as trait data of 

WGCNA (Supplementary Table 2). 

 

Gene co-expression network of ccRCC  
 

The expression values of the 4411 genes were used to 

construct a co-expression network using the R package 

“WGCNA” We calculated average linkage and 

Pearson’s correlation values to cluster the samples of 

GSE73731 (Supplementary Figure 1). To build a scale-

free network, we picked β = 3 (scale free R2 = 

0.8723676) as the soft-thresholding power (Figure 2A, 

2B). A hierarchical clustering tree was constructed 

using dynamic hybrid cutting. Each leaf on the tree 

represents a single gene, and genes with similar 

expression data are close together and form a branch of 

the tree, representing a gene module. Nine modules 

were generated (Figure 2C). 

 

Identification of hub modules and enrichment 

analysis 
 

Among the nine module, the green module was highly 

correlated to T cells CD8 (CD8+ T cells) (R2=0.5, 

P=2e-18), T cells CD4 memory activated (R2=0.45, 

P=1e-14), and T cells gamma delta (R2=0.62, P =3e-

29), and the yellow module showed higher correlation 

with activated T cells CD4 memory activated (R2=0.5, 

P=4e-18; Figure 3A). The correlation between other 

modules and T cells was less than 0.5. We were 

interested specifically in the CD8+ T cells, so focused 

on the green module that showed correlation with 

CD8+ T cells was identified as a hub module. Genes 

included in this module were next analyzed using the 

web tool “Matascape” for pathway and process 

enrichment analysis. The 20 highest enrichment terms 

were all immune-related terms (Figure 3B), and the 

three most highly enriched terms were Lymphocyte 

Activation, Adaptive Immune Response, and 

Cytokine-mediated Signaling Pathway (Supplemen-

tary Table 3).  
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Figure 1. The workflow of the study.  
 

 

 

Figure 2. Selection of the appropriate beta value to construct a hierarchical cluster number. (A) Analyze the scale-free fit index of 
the 1-20 soft threshold power (β). (B) Analyze the average connectivity of 1-20 soft threshold power. (C) Genes are grouped into various 
modules by hierarchical clustering, and different colors represent different modules.  
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Identification and validation of hub genes 
 

The highly connected genes of the module were 

investigated as potential key factors related to CD8+ T 

cell infiltration level. According to the cut-off standard 

(Module-Membership > 0.8 and Gene-Significance > 

0.5), 30 genes were selected as candidate hub genes 

(Figure 4B). From the protein-protein interactions (PPI) 

network, cut-offs of reliability > 0.7 and connectivity > 

15 (node/edge) were applied to identify 30 genes as 

central nodes, and we visualized these results using 

Cytoscape (Figure 4A). Ten genes were selected in both 

analyses designated as hub genes (LCK, CD2, CD3D, 

CD3G, IRF1, IFNG, CCR5, CD8A, CCL5 and CXCL9) 

(Figure 4C). To investigate the relationship between 

these hub genes and CD8+ T cells, we analyzed the 

expression data for these genes in the TIMER database. 

The results showed positive correlation of the 

expression values of the 10 genes with the infiltration 

levels of CD8+ T cells (correlation coefficient of at least 

0.75 for all genes except CXCL9) (Figure 5A). As an 

example, we show a scatter plot of CCL5 expression 

and CD8+ T cell infiltration level in Figure 5B. We next 

queried the TISIDB database to obtain the Spearman 

correlation values between abundance of tumor-

infiltrating lymphocytes and gene expression. The 

results show a positive correlation between hub genes 

and tumor-infiltrating lymphocytes. The correlation 

values were highest for Activated CD8+ T cell (Act 

CD8) and Effector memory CD8+ T cell (Tem CD8) 

(Figure 5C). These analyses verified the identified hub 

genes as strongly associated with the CD8+ T cell 

infiltration level and playing significant roles in the 

immune microenvironment. 

 

 
 

Figure 3. Key modules and feature notes. (A) Heatmap shows correlations of module eigengenes with T-cell infiltration. (B) The first 20 
enriched terms are shown as a bar chart on the left. The network diagram on the right is constructed with each enrichment term as a node 
and the similarity of the node as the edge. Nodes with the same cluster ID are the same color. 
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Determination of immune and clinical 

characteristics  

 

We searched for the Spearman correlations of 

expression of these 10 hub genes with the expression of 

immune factors in TISIDB database, including immune-

inhibitory factors, immune-stimulatory factors, chemo-

kines, and receptors. These correlations are presented as 

heat maps (Supplementary Figure 2). We identified 38 

immune-related factors with average correlations with 

the 10 hub genes greater than 0.5. We constructed an 

immune infiltration interaction network based on the 10 

hub genes and the 38 immune-related factors to explore 

the infiltration mechanism of CD8+ T cells using the 

STRING database. The results were imported into 

Cytoscape for visualization (Figure 5D). We next 

obtained the expression levels of the 10 genes of ccRCC 

from the The Cancer Genome Atlas (TCGA). The 

expression levels of these genes were higher in tumor 

tissues than in normal tissues (P < 0.05) based on

 

 
 

Figure 4. Identification of hub genes. (A) PPI network of genes from the green module. The higher the number of connected nodes, the 
larger the size of the node. The green nodes represent a central node with more than 15 connections. (B) A scatter plot of the genes in the 
green module. Each green dot represents a gene, and dots within the red box indicate genes of Module Membership > 0.8 and Gene 
Significance > 0.5. (C) Hub genes were selected based on overlap between PPI and co-expression networks. 
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Wilcoxon signed-rank test (Figure 6A–6J). Volcanic 

map also showed that the expression of 10 genes in 

tumor tissues was higher than that in normal tissues 

(Figure 6K), with corrected p values of all genes less 

than 0.05, indicating statistical significance. The fold 

changes of CCL5 and CXCL9 were more than 2.5-

fold higher in tumor tissues than the levels in normal 

tissues (Supplementary Table 4). The relationships 

between hub genes and pathological stages are shown 

by boxplot (Figure 7A). Expression levels of all hub 

genes show significant differences in pathological 

stages (p < 0.05) and showed an upward trend with 

increased stages. Finally, we investigated the 

connection between tumor grades and hub genes 

(Figure 7B), in which LCK, CD2, CD3D, IFNG, 

CD8A, and CCL5 showed significant correlation with 

different tumor grades (p < 0.05), with grade increase 

corresponding to increased gene expression. 

Although no significant difference was detected for 

CD3G, IRF1, CCR5, and CXCL9, the gene expression 

level showed an upward trend with increased tumor 

grades. 

 

 
 

Figure 5. Validation of hub genes and PPI map construction. (A) Relationship between 10 hub genes expression and CD8+ T cell 
infiltration level; P < 0.05 is considered statistically significant. (B) Scatter plot of CCL5 expression and CD8+ T cell infiltration level. (C) The heat 
map shows the correlation between the ten identified hub genes and the TIICs from the TISIDB database. The redder color indicates a higher 
correlation, and greener color indicates a lower correlation. (D) Protein-protein interaction map of the ccRCC immune microenvironment.  
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Identification of prognostic biomarker 
 

We analyzed 10 hub genes by Kaplan-Meier analysis, 

and only the results of CCL5 and IFNG were 

statistically significant (p < 0.05). For these two 

genes, the survival prognosis of patients with high 

expression was poor (Figure 8A, 8B). To validate 

differential expression of 10 genes in tumor and 

normal tissues, we used Oncomine to perform a meta-

analysis of five analyses using four data sets, all of 

which included both tumor tissues and normal 

controls for 10 genes (Figure 8C). Data for IFNG 

were not included in these data sets, so we obtained 

meta-analytical results for the other nine genes. LCK, 

CD2, CD3D, CCR5, CCL5, and CXCL9 have Median 

Rank values less than 1000, CD3G is 3007.0, IRF1 is 

1445.0, and CD8A is 1577.0. The results show these 

genes exhibit significant overexpression in tumor 

tissues which was consistent with the TCGA datasets 

analyses. Through Kaplan-Meier and Oncomine meta-

analysis, we selected CCL5 as a prognostic biomarker 

for further analysis. 

 

 
 

Figure 6. Differential expression of the hub genes in transcriptional data of TCGA. (A) LCK, blue dots represent normal tissue and 
red dots represent tumor tissue. The y-axis shows the expression value of the gene. (B) CD2. (C) CD3D. (D) CD3G. (E) IRF1. (F) IFNG. (G) CCR5. 
(H) CD8A. (I) CCL5. (J) CXCL9. (K) The volcano plot of differentially expressed genes. Red dots indicate overexpression genes, green dots 
indicate low expression genes, and black circles represent hub genes. 
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Gene set enrichment analysis of CCL5 
 

According to CCL5 expression median value, ccRCC 

samples from TCGA were divided into high expression 

group and low expression group for pathway gene set 

enrichment analysis. The enrichment results showed that 

immune-related pathways were enriched in the high 

expression group, with a total of 23 pathways statistically 

significantly enriched (p-value < 0.05, q-value < 0.05). 

The three most enriched pathways were “Antigen 

procession and presentation”, “Cell adhesion molecules 

cams”, and “Autoimmune thyroid disease” (Figure 9A, 

9B, Supplementary Table 5). There were no significantly 

enriched pathways for the low expression group. 

 

 
 

Figure 7. Analysis of hub genes and clinical indicators in the TCGA dataset. (A) Box plot of the hub genes for different pathological 
stages. (B) Box plot of the hub genes for different tumor grades. 
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Knockdown of CCL5 significantly inhibited cell 

proliferation and invasion 

 

Because CCL5 is overexpressed in ccRCC and is related 

to poor prognosis, we next conducted functional 

experiments to explore the potential biological function 

of CCL5. First of all, we used small interfering RNAs to 

lower expression levels of CCL5 in the renal cell 

carcinoma cell line 769-P (Figure 9C) and evaluated the 

cell proliferation ability by Cell Counting Kit-8 (CCK-

8). The results showed decreased cell line proliferation 

ability after CCL5 knockdown (Figure 9D). Finally, the 

invasion ability of the cell line decreased significantly 

after CCL5 knockdown (Figure 9E). 

DISCUSSION 
 

Clear cell renal cell carcinoma is the main histological 

subtype of RCC, and has relatively poor prognosis [22]. 

The successful application of immune checkpoint 

inhibitors in ccRCC has increased interested in exploring 

the potential targeting of specific immune-related factors 

for immunotherapy [7]. CD8+ T cells plays a central role 

in immunotherapy. In this study, we identified 10 hub 

genes whose expression correlated to CD8+ T cell 

infiltration level, suggesting a potential mechanism 

through which these genes promote the progress of 

ccRCC. Of the identified 10 genes, CCL5 was identified 

as a potential prognostic biomarker and target.

 

 
 

Figure 8. Kaplan-Meier analysis and Oncomine meta-analysis. (A) The overall survival analysis of CCL5. (B) The overall survival 
analysis of IFNG. (C) A meta-analysis of gene expression from Oncomine datasets. Colored squares represent the median of genes (relative to 
normal tissue) in five analyses. Red represents overexpression, blue represents low expression. This P value gives the average rank analysis. 
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Significant progress has been made in the study of the 

molecular basis of ccRCC by using animal tumor 

models, in-vitro cell lines, and clinical samples. 

However, the complexity of the ccRCC micro-

environment requires further analysis and larger 

datasets. We used gene expression matrix to construct 

the co-expression network and calculate the infiltration 

level of T cells, and correlations were determined to 

identify the genes most related to CD8+ T cells. The 

gene enrichment analysis of the selected module shows 

that it is a highly immune-related module. The most 

highly connected genes in the co-expression network 

and the protein-protein network were considered hub 

genes (LCK, CD2, CD3D, CD3G, IRF1, IFNG, CCR5,

 

 
 

Figure 9. GSEA and experiment of CCL5. (A) The above picture shows the enrichment fractional broken line of the three pathways, and 
the lines in the lower figure correspond to the genes of each pathway. (B) The circle diagram shows three enrichment pathways and the core 
genes that play a role in the enrichment process. The larger the circle corresponding to each gene, the larger the rank metric score value. (C) 
The relative mRNA levels of normal control and si-CCL5 of 769-P cells. (D) The results of CCK-8 assay showed decreased proliferation ability of 
769-P cells when treated with si-CCL5. (E) The invasion assay results showed decreased invasion ability of 769-P cells treated with si-CCL5. 
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CD8A, CCL5 and CXCL9). Querying the relationship 

between these 10 genes and immune cells in the 

TIMER/TISIDB database revealed positively correlated 

expression of these genes with immune cells, particularly 

CD8+ T cells. We used hub genes and related immune 

factors to construct a CD8+ T cell infiltration network 

using the TISIDB and STRING databases as a strategy to 

explore the immune mechanism of ccRCC. The TCGA 

datasets were used to observe the differential expression 

and clinical characteristics of the selected 10 genes. The 

results showed overexpression of the 10 genes in tumor 

tissue, indicating potential use as biomarkers. Expression 

correlated with increase of tumor stage and grade are 

especially important for potential prognostic factors. These 

10 hub genes can explain why the prognosis of ccRCC is 

poor in the case of highly infiltrated CD8+ T cells. We 

performed Kaplan-Meier analysis for the 10 hub genes. 

Only the results of CCL5 and IFNG were statistically 

significant, and the prognosis was poor when these genes 

were highly expressed. The Oncomine database was used 

to perform a meta-analysis, and the difference between 

cancer tissue and normal tissue of CCL5 expression was 

the most significant. Combined with these two analyses, 

CCL5 was selected as the best potential biomarker for the 

detection and prediction prognosis of renal cell carcinoma.  

 

Chemokine ligand 5 (CCL5) belongs to the CC 

chemokine family, which acts mainly by binding to its 

corresponding chemokine receptor. Several studies have 

focused on the effect of CCL5 on tumors, finding that 

CCL5 can significantly promote tumor growth, 

metastasis [23], angiogenesis [24, 25], and immune 

escape [26, 27]. CCL5 is expressed not only in immune 

cells, but also in tumor cells [28]. The expression of 

CCL5 in breast cancer cells promotes the proliferation 

and invasion of breast cancer cells through an autocrine 

pathway [29, 30]. CCL5 also promotes the progression 

of melanoma [31] and pleomorphic glioma [32]. 

However, there has been no experimental study of the 

effect of CCL5 on the proliferation and invasion of 

ccRCC cells. The experimental results show that si-

CCL5 can decrease the proliferation and invasion ability 

of ccRCC cells, indicating that CCL5 could be utilized 

as a therapeutic target. 

 

In short, this study is the first attempt to use WGCNA and 

CIBERSORT algorithms to identify potential CD8+ T cell 

related biomarkers of ccRCC. Ten hub genes were 

identified which were overexpression in tumor and 

promoting tumor progression. Through multiple verifica-

tion of bioinformatics and experiments, CCL5 was 

identified as a potential biomarker and target for clear cell 

renal cell carcinoma immunotherapy. However, this study 

has certain limitations. Additional sample data are needed 

to verify these results and the specific mechanism of 

CCL5 in ccRCC requires further investigation. 

MATERIALS AND METHODS 
 

Gene expression data and processing 

 

We downloaded ccRCC RNA expression data from the 

Gene Expression Omnibus (GEO, http://www.ncbi. 

nlm.nih.gov/geo/), which contains data related to 265 

samples [33]. The dataset of GSE73731 was obtained 

using the platform Affymetrix Human Genome U133 

Plus 2.0 Array (HG U133 Plus 2.0). We used the R 

package “limma” [34] to normalize the RNA-

sequencing data. Small variation of gene expression 

data often represents noise, so we used Coefficient of 

Variation values to select the most variant genes, which 

were then used to construct the network. 

 

Evaluation of tumor-infiltrating immune cells 
 

In this study, we used the R package “CIBERSORT” to 

estimate the fraction of immune cells of GSE73731 

samples. Specifically, the CIBERSORT algorithm was 

used to calculate the fractions of the 22 types of TIICs 

[20]. CIBERSORT is considered better to previous 

deconvolution methods for analysis of unknown mixture 

content and noise. This algorithm can be used to 

statistically estimate the relative proportions of cell sub-

populations from complex tissue expression profiles, 

making it a useful tool to estimate the abundances of 

special cells in mixed tissue.   

 

Co-expression network construction 
 

Expression values of 4411 genes were used to construct 

a weight co-expression network using the R package 

“WGCNA” [17]. First, based on the Pearson’s 

correlation value between paired genes, the expression 

levels of individual transcripts were converted into a 

similarity matrix. Next, the similarity matrix was 

transformed to an adjacency matrix, as calculated by 

amn = |cmn| β (cmn = Pearson’s correlation between 

paired genes; amn = adjacency between paired genes). 

Parameter β can improve strong correlations and 

decrease weak correlations between genes. The 

adjacency matrix was then converted into a topological 

overlap matrix when the power of β = 3. To categorize 

genes with similar expression patterns into different 

modules, we applied a dynamic hybrid cutting method, 

using a bottom-up algorithm with a module minimum 

size cutoff of 30. 

 

Construct module trait relationships   
 

Module eigengenes were used to perform component 

analysis of each module. We calculated the correlation 

between module eigengenes and the infiltration level of 

T cells to determine the significance of modules by 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Pearson test. An individual module was considered 

significantly correlated with T cells when p < 0.05. We 

selected the interest T cell subtype and module with the 

highest correlation coefficient and defined that as a hub 

module. 

 

Pathway and process enrichment analysis 
 

To determine the function of genes in the identified  

hub module, we used the web tool “Metascape” 

(http://metascape.org) for pathway and process 

enrichment analysis [35]. The tool displays the first 20 

enriched terms as a bar graph. In order to further 

explore the relationship between terms, terms with 

similarity greater than 0.3 are connected by edges and 

presented as a network graph. 

 

Identification of hub genes 

 

We selected candidate hub genes based on the modular 

connectivity and clinical traits relationship of each 

gene in the hub module. Module connectivity is 

defined as the absolute value of the Pearson’s 

correlation between genes (Module Membership). 

Clinical trait relationship is defined as the absolute 

value of the Pearson’s correlation between each gene 

and the trait (Gene Significance). We set the Module-

Membership > 0.8 and the Gene-Significance > 0.5 for 

candidate hub genes. Meanwhile we selected all genes 

in the hub module and used the Search Tool for the 

Retrieval of Interacting Genes (STRING; https:// 

string-db.org/) database to construct PPI network and 

looked for central nodes [36]. Genes with node 

connectivity > 15 were considered central nodes. We 

used Cytoscape to present the network (https:// 

cytoscape.org/) [37]. We did Venn analysis to compare 

candidate hub genes and central nodes in the PPI 

network using the online tool (http://bioinformatics. 

psb.ugent.be/webtools/Venn/).  

 

Validation of hub genes 

 

We used two immune-associated databases that are based 

on TCGA to validate these hub genes, as described below. 

First, we obtained the content of CD8+ T cells in each 

sample of ccRCC based on data in the Tumor Immune 

Estimation Resource (TIMER; https://cistrome. 

shinyapps.io/timer/) [38]. Spearman correlations between 

the infiltration level of CD8+ T cells and the expression of 

hub genes were calculated, and the results were compared 

using the R package “ggstatsplot”. Second, the Tumor 

Immune System Interactions Database (TISIDB; 

http://cis.hku.hk/TISIDB) [39] was then searched to 

determine Spearman correlations between the hub genes 

and TIICs. We present these results as a heat map 

constructed using the R package “pheatmap”. 

Immune and clinical characteristic identification 
 

Spearman correlations between hub genes and 

different immune factors were obtained from the 

TISIDB database, which includes immune-inhibitory 

and immune-stimulatory factors, chemokines, and 

receptors. We then constructed a heat map by using 

the R package “heatmap”. Immune factors related to 

hub genes with average correlation coefficients 

greater than 0.5 were picked to construct a network 

using STRING and Cytoscape [37]. To explore the 

clinical characteristic of hub genes, RNA expression 

data and clinical data of ccRCC were obtained  

from The Cancer Genome Atlas (TCGA; https:// 

cancergenome.nih.gov/). The R packages “limma” 

and “beeswarm” were used to construct a scatter 

differential diagram of the data. The statistical 

significance of differences in expression between 

normal and tumor samples was analyzed using the 

Wilcoxon signed-rank test. The differences of all 

coding genes were analyzed by R package “limma”, 

and the volcano map was drawn using the R package 

“ggplot2”. Finally, a boxplot was constructed to 

display the relationship between genes and clinical 

features, and the statistical significances were 

analyzed by the Kruskal-Wallis test. 

 

Kaplan-Meier analysis and Oncomine mata-analysis 

 

We found best separation through the R package 

“survminer” to divide the patients into high and low 

expression groups, such grouping minimizes the p 

value of the survival curve. Then took Kaplan-Meier 

analysis for the groups by R package “survival”. To 

validate the expression patterns of the hub genes, four 

independent microarray datasets were used from the 

Oncomine Cancer Microarray database (Oncomine, 

https://www.oncomine.org) to perform meta-analysis 

[40–43]. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA is a computational method used to determine 

whether a set of basically defined gene sets exhibits 

statistically significant differences between two 

biological states [44]. According to the median value of 

gene expression, the samples were divided into two 

groups, and “c2.cp.kegg.v7.0.symbols” gene set 

enrichment analysis was carried out, with p-value < 

0.05 and q-value < 0.05 as indicative of statistical 

significance. The enrichment pathway was visualized 

using the R packages “ggplot2” and “clusterProfiler”. In 

the circle diagram, we only show the core genes of the 

enrichment process, and the size of the dots represent 

the Rank metric score, which indicates the amount of 

sequencing value of the gene.  

http://metascape.org/
https://string-db.org/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://cis.hku.hk/TISIDB
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.oncomine.org/
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Cell culture and siRNA-PTEN construction 
 

The 769-P cells were cultivated in DMEM with 10% of 

fetal calf serum, 100 U/ml penicillin and 100 μg/ml 

streptomycin. The cells were cultured at 37 °C, with 5% 

CO2. The CCL5-310 siRNA sequences were as follows: 

5’-GCUGAACAAGGGAAGCUUTT-3’ 5’-AAGCUU 

GCCCUUGUUCAGCTT-3’. The    CCL5-286 siRNA 

sequences were: 5’-GCAGGAUUUCCUGUAUG 

ACTT-3’ and 5’-GUCAUACAGGAAAUCCUGCTT-

3’. The CCL5-240 siRNA sequences were: 5’-UC 

GUCCACAGGUCAAGGAUTT-3’ 5’-AUCCUUGAC 

CUGUGGACGATT-3’ 

 

RNA extraction and quantitative RT-PCR 

 

RNA samples were extracted from cells with the 

FastPure Cell/Tissue Total RNA Isolation kit 

(Vazyme Biotech) and they were reverse-transcribed 

by HiScript III RT SuperMix for qPCR (Vazyme 

Biotech). To determine the relative transcript level, 

PCR was quantified in real-time using a LifeECO 

PCR machine (BIOER Technology Co, Ltd). SYBR 

Green was used as the fluorophore. The CCL5 

primers sequences were as follows:  5′-CTC 

ATTGCTACTACTGCCCTCTGCGCTCCTGC-3′ and 

5′GCTCATCTCCAAAGAGTTGATGTACTC -3′. 

The PCR parameters were: 95 °C 5min, followed by 

50 cycles of 30 s and 1 min at 60 °C. Each sample was 

measured in three independent reactions. The 

threshold values of each sample/primer were 

determined, and the average error and standard error 

were calculated. Melting curve analysis was 

performed, and the mRNA expression levels were 

normalized against that of β-actin. 

 

Cell proliferation analysis and invasion experiment 
 

769-P cells were cultivated in five 96-well cell 

culture plates (1500 cells/well) respectively for 

5 days. A volume of 10 μl of CCK-8 solution was 

added to each well in a plate at an interval of 24 h. 

The cells were cultures for 3 h in 37 °C, and then a 

photometry test was performed at wavelength of 

450 nm. The 769-P cells were then transferred into 

the top layer holes in a basement membrane plate 

with wells containing the medium without serum. 

The lower cavity was filled with 12% fetal calf serum 

medium to allow chemical attraction. The medium 

was removed after 12-hour incubation and the 

implant in the upper cavity was discarded. Cells 

invading the lower cavity were fixed with 700 ml of 

4% PFA and stained with crystal for 1 h to visualize. 

The cells in the lower cavity were counted and 

normalized to the number in control conditions to 

measure the relative invasion capacity. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 

 
 

Supplementary Figure 1. Sample clustering (GSE73731): sample dendrogram and trait indicator. In the heat map, the darker the 
color, the higher the degree of infiltration of the seven kinds of T cells. 
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Supplementary Figure 2. Heat map of the correlation between immune factors and hub genes. (A) Chemokines. (B) Receptors. 
(C) Immune-inhibitory factors. (D) Immune-stimulatory factors. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. Gene expression matrix for constructing gene co-expression network. 

Supplementary Table 2. The fractions of six subtypes of T cells in every sample. 

Supplementary Table 3. Genes of green module and Matascape enrichment analysis result. 

 

Supplementary Table 4. The result of differential analysis of gene expression between normal tissue and tumor 
tissue by R package “limma”. 

Gene logFC AveExpr t P.Value adj.P.Val B 

CCL5 2.761844 4.760074 16.69318 8.34E-52 1.82E-50 106.7216 

CD2 2.28705 3.233462 15.32089 4.60E-45 7.75E-44 91.25291 

CXCL9 2.625227 3.859447 13.8642 3.42E-38 4.27E-37 75.49697 

CD3D 2.063852 2.945952 13.82764 5.04E-38 6.23E-37 75.11169 

CCR5 1.667775 2.207914 13.2961 1.32E-35 1.44E-34 69.57093 

CD8A 2.076911 2.644136 12.42316 9.51E-32 8.71E-31 60.73685 

CD3G 1.022994 1.294262 10.84224 3.62E-25 2.40E-24 45.68733 

IRF1 0.899948 3.35192 8.877243 7.60E-18 3.42E-17 28.98526 

LCK 0.966669 2.169819 8.614633 6.00E-17 2.55E-16 26.94321 

IFNG 0.555027 0.53599 6.865693 1.63E-11 5.02E-11 14.62135 

 

 

Please browse Full Text version to see the data of Supplementary Tables 5. 

 

Supplementary Table 5. The results of gene set enrichment analysis. 

 


