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INTRODUCTION 
 

Risk stratification (also commonly called “prognostic 

modeling”) is a useful tool in cancer management, since 

it enables timely interventions for high-risk patients while 

obviating unnecessary treatments for low-risk patients [1, 

2]. Classical prognostic factors such as the clinical tumor-

node-metastasis (cTNM) stage and pathological stage 

(pTNM) are not completely prognostically relevant in 

some patients [3–5]. Accordingly, the guidelines for 

prognostic assessments have been continually modified 

to improve their accuracy while reducing their 

complexity for daily clinical use [6–9]. 

 

Novel molecular factors such as immunoscores assessing 

in situ immune cell infiltration in tumors, abnormal DNA 

levels and mRNA levels are more accurate risk predictors 

than the existing tumor parameters [10–12]. High-

throughput technologies provide an efficient means of 

measuring the molecular disruptions in tumors [13]. For 

example, a prognostic landscape of cancer was recently 

developed, which integrated the transcriptomes and 

clinical data of approximately 26,000 patients across 39 

malignancies to establish the patterns and determinants of 

responses to targeted therapy [14]. Since numerous 

cancer-related microarrays and sequencing platforms have 

been generated in recent years, it is essential to integrate 

www.aging-us.com AGING 2020, Vol. 12, No. 4 

Research Paper 

Development of a four-gene prognostic model for pancreatic cancer 
based on transcriptome dysregulation 
 

Jie Yan1, Liangcai Wu2, Congwei Jia1, Shuangni Yu1, Zhaohui Lu1, Yueping Sun3, Jie Chen1 
 
1Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and 
Peking Union Medical College, Beijing 100730, China 
2Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 
200011, China 
3Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 
100020, China 
 

Correspondence to: Jie Chen; email: chenjie@pumch.cn 
Keywords: prognostic prediction model, pancreatic cancer, TCGA, robust rank aggregation, WGCNA 
Received: November 2, 2019 Accepted: February 4, 2020  Published: February 20, 2020 
 

Copyright: Yan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 

We systematically developed a prognostic model for pancreatic cancer that was compatible across different 
transcriptomic platforms and patient cohorts. After performing quality control measures, we used seven 
microarray datasets and two RNA sequencing datasets to identify consistently dysregulated genes in pancreatic 
cancer patients. Weighted gene co-expression network analysis was performed to explore the associations 
between gene expression patterns and clinical features. The least absolute shrinkage and selection operator 
(LASSO) and Cox regression were used to construct a prognostic model. We tested the predictive power of the 
model by determining the area under the curve of the risk score for time-dependent survival. Most of the 
differentially expressed genes in pancreatic cancer were enriched in functions pertaining to the tumor immune 
microenvironment. The transcriptome profiles were found to be associated with overall survival, and four 
genes were identified as independent prognostic factors. A prognostic risk score was then proposed, which 
displayed moderate accuracy in the training and self-validation cohorts. Furthermore, patients in two 
independent microarray cohorts were successfully stratified into high- and low-risk prognostic groups. Thus, we 
constructed a reliable prognostic model for pancreatic cancer, which should be beneficial for clinical 
therapeutic decision-making. 
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the large amounts of available data and translate these 

molecular findings into clinical decision-making tools. To 

this end, clinical data from The Cancer Genome Atlas 

(TCGA) Pan-Cancer analysis project have been integrated 

[15], and genotype-to-phenotype databases have been 

developed [16] for clinical interpretation [17].  

 

Pancreatic cancer has a dismal prognosis, with a five-

year survival rate of only 9% [18]. It is characterized by 

desmoplastic stroma, perineural invasion [5], 

invasiveness and immune suppression [13], which are 

largely responsible for the early metastasis [19], 

chemoresistance [20] and cachexia [21] observed in 

patients. Based on the transcriptome data of pancreatic 

cancer cells, tumors can be classified into the squamous, 

pancreatic progenitor, aberrantly differential endocrine 

exocrine, and immunogenic subtypes [13]. The 

squamous subtype is associated with a poor prognosis, 

and the immunogenic subtype involves the upregulation 

of gene networks for acquired immune suppression. A 

better understanding of the molecular landscape of 

pancreatic cancer would enable the development of 

novel therapeutic strategies to improve clinical 

outcomes and facilitate the stratification of patients into 

prognostic groups to guide personalized treatment. 

However, a comprehensive prognostic model with 

compatibility across different transcriptomic platforms 

and patient cohorts has not been systematically 

developed. 

 

To determine the prognostic significance of the 

pancreatic cancer transcriptome, we screened multiple 

RNA-Seq and microarray datasets for genes that were 

differentially expressed between normal and tumorous 

tissues, and identified genes that were significantly 

associated with overall survival. We then developed a 

prognostic risk score and successfully validated it in 

three independent pancreatic cancer cohorts. We 

thereby devised a prognostic model that can predict the 

post-surgical prognosis of pancreatic cancer patients 

with moderate accuracy. 

 

RESULTS 
 

Combined analyses of multiple pancreatic cancer 

microarray datasets 
 

We searched the Gene Expression Omnibus (GEO) 

database for all the human tissue microarrays that 

included pancreatic cancer tissues and paired/unpaired 

normal pancreatic tissues. Then, we used Transcriptome 

Analysis Console software (Applied Biosystems, 

version 4.0.2) to evaluate the data for hybridization and 

labeling controls. Affy [22] was used to assess RNA 

degradation, and simpleAffy [23] was used to determine 

the 3’-to-5’ ratios of β-actin and GAPDH 

(Supplementary Figure 2). Two pancreatic ductal 

adenocarcinoma (PDAC) datasets (GSE22780 and 

GSE27890) were thus excluded, and seven datasets 

(GSE32676, GSE16515, GSE71989, GSE41368, 

GSE15471, GSE28735 and GSE62452) were selected 

for further analysis (Table 1). 

 

After seven cases were excluded from these datasets, the 

data of 177 normal pancreatic tissue samples and 226 

PDAC tissue samples were included in subsequent 

analyses. A robust rank aggregation analysis [24] 

identified 616 differentially expressed genes (DEGs) 

between the normal and PDAC samples across all 

datasets, with an adjusted p value < 0.05 and |log2
FC (fold 

change)| > 1 as the cut-offs. Among these genes, 403 were 

upregulated and 213 were downregulated in PDAC 

tissues. The heatmap displaying the top 10 significantly 

overexpressed or suppressed genes is shown in Figure 

1A.  

 

Gene Ontology (GO) analysis of the DEGs revealed 

significant enrichment in the GO terms for 158 

biological processes (BPs), 26 cellular components 

(CCs) and 28 molecular functions (MFs) (p value < 0.01 

and q value < 0.01 as cut-offs) (Figure 1B). The top BP 

terms were related to three aspects: i) extracellular 

stroma formation, including extracellular structure 

organization and extracellular matrix organization, 

which was not surprising, since stiffness is the defining 

characteristic of PDAC; ii) immune cell responses, such 

as the innate immune response, neutrophil activation 

and neutrophil mediated immunity; and iii) fundamental 

pancreatic functions, such as regulating pancreatic juice 

secretion and epithelial cell proliferation. Major CC 

terms included the extracellular matrix and various 

components of the intracellular lumen and the apical 

part of the cell. The most enriched MF terms were 

extracellular matrix formation, cell adhesion and 

receptor ligand activity.  

 

Thus, through a combined analysis of seven high-

quality GEO microarrays, we identified 616 genes that 

were consistently differentially expressed between 

normal pancreatic tissues and PDAC tissues. Most of 

the DEGs were associated with the pancreatic extra-

cellular stroma and the tumor immune micro-

environment.  

 

Combined analyses of TCGA and GTEx RNA-Seq 

datasets 
 

To determine whether the DEGs were independent of the 

detection method, we also analyzed their expression in 

PDAC RNA-Seq datasets. Since TCGA only contains 

data from four normal pancreatic tissue samples [25], we 

also included normal tissue data from the Genotype-Tissue
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Table 1. Enrolled PDAC cases from seven GEO datasets after quality control. 

Country Organization name Series Platform Normal Tumor Quality control Publication 

USA 
University of Los 

Angeles 
GSE32676 GPL570 7 25 Passed [77] 

USA Mayo Clinic GSE16515 GPL570 16 36 Passed [78] 

USA University of Florida GSE71989 GPL570 8 13 
Excluded one non-tumor 

sample  
[79] 

Romania ICI GSE15471 GPL570 35 36 Excluded one normal tissue [81] 

Italy 
Sapienza University 

of Rome 
GSE41368 GPL6244 6 6 Passed [80] 

USA NCI/NIH GSE28735 GPL6244 44 43 
Excluded one normal and 

two tumor samples 
[82, 83] 

USA 
National Cancer 

Institute 
GSE62452 GPL6244 61 67 Excluded two tumor samples [84] 

ICI: National Institute for Research in Informatics 
 

Expression (GTEx) database, which contains normal 

tissue samples from 54 human body sites and is 

maintained by The Broad Institute of MIT and Harvard 

[26, 27]. The GTEx and TCGA RNA-Seq data and 

phenotypic information were obtained from the 

University of California Santa Cruz (UCSC) Xena 

platform (https://xena.ucsc.edu/), which is routinely 

updated and integrated [28]. 

 

 
 

Figure 1. Identification and GO analysis of DEGs in seven PDAC datasets. (A) A heatmap of the top 10 significantly upregulated or 
downregulated genes. The expression of each gene in each dataset is shown in a colored box with the log2

FC inset. Red and blue boxes 
indicate upregulated and downregulated genes, respectively, and the color saturation correlates with the gene level. (B) GO analysis of all the 
DEGs. The seven most enriched GO terms in each category (BP, CC and MF) are listed next to the left axis. The size of the circle indicates the 
number of enriched genes, and the color is associated with the respective -log10 p value. 

https://xena.ucsc.edu/
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In total, 171 normal and 178 pancreatic cancer samples 

were analyzed, and 5,886 DEGs were identified by the 

same cut-off criteria used to analyze the PDAC 

microarrays (|log2
FC| > 1 and false discovery rate < 

0.05). Among these genes, 2,980 were upregulated and 

2,906 were downregulated in pancreatic cancer tissues 

relative to normal pancreatic tissues. These DEGs were 

enriched in 600 BP, 106 CC and 32 MF terms, and the 

most significantly enriched BP terms were related to 

leukocyte function, extracellular matrix formation, 

inflammation, etc. (Figure 2A). Consistent with the 

DEGs in the microarrays, most of the genes were 

enriched in the extracellular matrix or junctions for 

adhesion and antigen-binding functions (Figure 2B). 

Thus, both sequencing and multi-microarray data 

indicated that the tumor immune and stroma 

microenvironment was significantly disturbed during 

pancreatic tumorigenesis. 

 

Identification of 542 genes that were consistently 

differentially expressed across independent 

platforms  

 

We next investigated whether the 616 DEGs identified 

by the seven microarrays were consistent with the 5,886 

DEGs identified by PDAC transcriptome sequencing. 

When we compared the DEG profiles obtained by these 

two methods, we detected 542 common genes. 

Surprisingly, all of the overlapping genes displayed 

consistent expression trends in the two types of profiles 

(Supplementary Table 1).  

 

Since transcription factors (TFs) and kinases are key 

components of cancer regulatory networks and are 

preferred targets for drug development [29, 30], we 

cross-referenced the DEGs with both the Cistrome 

Cancer human TF database [31] and a list of 518 human 

kinases [32]. Of the DEGs, 19 displayed TF activity 

(Table 2) and 16 were kinases, of which six belonged to 

the Tyrosine Kinase group (Table 3). Thus, we 

identified 542 pancreatic-cancer-related genes that were 

consistently dysregulated in both multi-microarray 

datasets and sequencing datasets, including 35 well-

defined protagonists harboring core regulatory 

functions. 

 

The dysregulated transcriptome is associated with 

overall survival in pancreatic cancer patients 

 

To determine the phenotypic relevance of the DEGs, we 

performed a weighted gene co-expression network 

analysis (WGCNA) [33] to identify gene modules 

 

 
 

Figure 2. GO enrichment analysis of the DEGs from the RNA-Seq datasets of TCGA and GTEx. (A) GO Cluster. The inner dendrogram 
indicates the hierarchical clustering of the gene expression profiles, the outer circle represents the log2

FC of each DEG, with the color 
corresponding to the gene level, and the outermost circle represents the GO BP terms assigned to the gene. (B) The 10 most significantly 
enriched CC and MF terms. The size of a circle indicates the number of enriched genes, and its color corresponds to the adjusted p value. 
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Table 2. The 19 differentially expressed TFs in pancreatic cancer. 

Gene 
Seven GEO datasets TCGA combined GTEx datasets 

Log2
FC p value Adjusted p value Log2

FC p value FDR 

GCG -1.97 1.96E-11 4.90E-07 -1.13 0.038 0.039 

FOXQ1 1.61 5.62E-09 1.41E-04 3.39 1.54E-51 7.57E-51 

DKK1 2.29 1.65E-12 4.13E-08 2.47 1.36E-42 3.29E-42 

KLF5 1.46 1.79E-07 4.49E-03 3.17 7.69E-48 2.49E-47 

AHR 1.16 7.41E-08 1.85E-03 2.96 3.53E-56 1.30E-54 

ARNTL2 1.61 5.71E-10 1.43E-05 1.94 2.39E-54 3.24E-53 

ID1 1.25 9.58E-09 2.40E-04 2.15 3.63E-43 9.03E-43 

PPARG 1.27 8.74E-08 2.19E-03 2.00 4.27E-47 1.31E-46 

LEF1 1.45 4.60E-08 1.15E-03 1.80 2.38E-49 8.74E-49 

PTTG1 1.13 4.99E-09 1.25E-04 2.06 1.29E-53 1.15E-52 

MXD1 1.07 2.05E-08 5.13E-04 1.68 3.89E-51 1.79E-50 

DTL 1.22 1.18E-10 2.94E-06 1.13 7.81E-53 5.14E-52 

ETV1 1.04 9.97E-07 2.49E-02 1.29 7.00E-52 3.63E-51 

ZNF521 1.19 1.99E-06 4.98E-02 1.05 1.29E-41 3.00E-41 

NCAPG 1.01 1.14E-07 2.85E-03 1.07 8.97E-49 3.14E-48 

BCAT1 -1.12 1.91E-08 4.78E-04 -1.51 1.91E-36 3.79E-36 

ZBTB16 -1.51 6.22E-10 1.56E-05 -1.88 5.90E-43 1.45E-42 

NR5A2 -2.12 3.54E-14 8.86E-10 -2.27 1.65E-48 5.66E-48 

CTRL -3.37 2.22E-19 5.55E-15 -8.38 8.32E-55 1.45E-53 

 

Table 3. The 16 differentially expressed kinases in pancreatic cancer. 

Entrez 

ID 
Gene SK Group Family 

Seven GEO datasets 
TCGA combined GTEx 

datasets 

Log2
FC p value 

Adjusted p 

value 
Log2

FC p value FDR 

1969 EPHA2 SK122 TK Eph 1.02 1.10E-06 0.028 2.77 1.21E-48 4.18E-48 

4233 MET SK227 TK Met 1.17 1.07E-06 0.027 2.45 2.22E-49 8.18E-49 

55359 STYK1 SK530 TK TK-Unique 1.47 3.72E-09 9.30E-05 1.85 1.25E-53 1.13E-52 

4486 MST1R SK332 TK Met 1.58 1.10E-07 0.003 1.66 4.74E-37 9.57E-37 

9833 MELK SK298 CAMK CAMKL 1.54 3.07E-10 7.67E-06 1.57 2.93E-50 1.19E-49 

983 CDK1 SK065 CMGC CDK 1.03 1.99E-07 0.005 1.86 5.32E-52 2.82E-51 

4751 NEK2 SK251 Other NEK 1.08 1.05E-08 0.000 1.61 5.66E-53 3.91E-52 

9448 MAP4K4 SK437 STE STE20 1.01 2.85E-07 0.007 1.56 3.46E-53 2.55E-52 

55872 PBK SK529 Other TOPK 1.10 3.76E-08 0.001 1.35 1.74E-53 1.47E-52 

9891 NUAK1 SK195 CAMK CAMKL 1.02 5.09E-08 0.001 1.38 3.78E-50 1.52E-49 

701 BUB1B SK053 Other BUB 1.28 3.42E-09 8.56E-05 1.10 5.88E-49 2.09E-48 

2043 EPHA4 SK124 TK Eph 1.06 2.30E-07 0.006 1.27 5.14E-48 1.69E-47 

4915 NTRK2 SK378 TK Trk -1.06 4.81E-07 0.012 -1.06 9.65E-30 1.65E-29 

5166 PDK4 SK280 Atypical PDHK -1.76 6.11E-13 1.53E-08 -1.49 5.54E-19 7.88E-19 

5063 PAK3 SK269 STE STE20 -1.59 2.81E-12 7.02E-08 -2.09 8.26E-45 2.22E-44 

8569 MKNK1 SK235 CAMK MAPKAPK -1.01 1.82E-08 0.000 -4.04 2.02E-55 4.75E-54 
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(groups of highly interconnected genes) that were 

significantly associated with the clinico-pathological 

features of pancreatic cancer. Since sufficient sample 

sizes and adequate phenotypic data (including 

prognostic data) are prerequisites for analyzing gene co-

expression networks that are associated with clinical 

characteristics, we only extracted the gene expression 

profiles and corresponding clinical data of the PDAC 

patients from TCGA who met these criteria (N = 135). 

Fourteen clusters (modules) of highly interconnected 

genes with co-expression similarity values > 0.75 for 

the module eigengenes were identified (Supplementary 

Figure 3, Supplementary Table 2). 

 

Since we had already identified the characteristic gene 

co-expression profiles of each module, we searched for 

significant correlations between the module eigengenes 

and clinical traits. Overall survival status was associated 

with three modules, although the Pearson correlations 

were weak; for example, the black module correlated 

positively (r = 0.27, p = 0.001) and the pink module 

correlated negatively with overall survival (r = -0.26, p 

= 0.002) (Figure 3). Additionally, age and tumor grade 

were associated with one module each, while the other 

four clinical traits we examined (gender, tumor stage, T 

classification and N classification) were not associated 

with any module. Thus, WGCNA analysis indicated 

that overall survival was the main clinical trait 

associated with the pancreatic cancer profiles in TCGA, 

so we focused on overall survival in our subsequent 

investigations.  

 

Construction of a prognostic model for pancreatic 

cancer 

 

Since GSE62452 and TCGA harbored an adequate 

number of cases and sufficient clinical follow-up data, 

we performed a univariate Cox regression analysis of 

 

 
 

Figure 3. Module-trait relationships. Each row represents a color-coded module eigengene, each column represents a clinical trait, and 
each cell represents the Pearson correlation coefficient (top number) and p value (in parentheses) of the corresponding module-trait. The 
color of each cell indicates the degree of correlation, as shown in the key. Abbreviations: T, Primary tumor; N, Regional lymph nodes. 
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these datasets to investigate the prognostic significance 

of the 542 consistently identified DEGs described 

above. A prognosis-associated gene was defined as 

impacting overall survival with a hazard ratio (HR) and 

95% confidence interval (CI) greater than or less than 1. 

While 92 of the 542 DEGs had prognostic value in 

GSE62452 (p < 0.05), 76 of these 92 genes were still 

prognostically relevant in the cohort from TCGA (p < 

0.05) (Figure 4). 

 

A least absolute shrinkage and selection operator 

(LASSO) regression model [34] was then used to 

select key prognosis-associated genes. In the LASSO-

penalized Cox regression, as log λ (a tuning 

parameter) changed, the corresponding coefficients of 

certain genes were reduced to zero, indicating that 

their effects on the model could be omitted because 

they were shrinking parameters (Figure 5A). 

Following cross-validation, nine genes achieved the 

minimum partial likelihood deviance (Figure 5B). 

Moreover, at this point, log λ was approximately -

2.16, and the nine genes displayed non-zero effects, 

all contributing positive HRs to the model. The nine 

genes that were thus fit into the Cox model were PBK, 

which encodes MAPKK-like protein kinase; 

DLGAP5, which encodes a mitotic phosphoprotein; 

RACGAP1, also called Rac GTPase activating protein 

1; DSG3, also called cadherin family member 6; 

ARNTL2, which functions as a TF; NUSAP1, also 

called nucleolar and spindle associated protein 1; 

DKK1, also called Dickkopf WNT signaling pathway 

inhibitor 1; KRT7, which encodes a cytokeratin; and 

C15orf48, a protein-coding gene that is also called 

chromosome 15 open reading frame 48. 

 

Then, we randomly divided the 176 pancreatic cancer 

patients in TCGA (two cases in the enrolled TCGA 

pancreatic cancer cohort (N=178) were excluded due 

to insufficient follow-up data) into a training cohort 

(N = 88) for the construction of a prognostic model, 

and a validation cohort (N = 88) for internal self-

validation (Table 4). Multivariate Cox regression 

analysis of the training cohort indicated that ARNTL2, 

NUSAP1, DSG3 and KRT7 were independent 

prognostic factors (Figure 5C). The prognostic risk 

score was calculated as: expression of DSG3 × 0.17 + 

expression of ARNTL2 × 0.58 + expression of 

NUSAP1 × 0.92 + expression of KRT7 × 0.22, where 

the numbers indicate the respective multivariate Cox 

regression coefficients.  

 

Thus, through univariate Cox regression analysis, 

LASSO model shrinkage and multivariate Cox model 

construction, we obtained four DEGs (DSG3, 

ARNTL2, NUSAP1 and KRT7) for prognostic risk 

evaluation. 

Stratification of TCGA training and self-validation 

cohorts using the four-gene signature 
 

We then divided the training cohort into high-risk and 

low-risk groups (Figure 6A). We used the median risk 

score (6.12) as the cut-off because the risk score usually 

exhibits a skewed distribution. The high-risk group 

displayed a higher frequency of poor survival outcomes 

than the low-risk group (Figure 6B). The three-year 

survival rates of the high-risk and low-risk groups were 

7.78% and 51.3%, respectively (Figure 6C). To 

determine the predictive accuracy of this prognostic 

model, we performed a receiver operating characteristic 

(ROC) curve analysis, which demonstrated that the area 

under the curve (AUC) was 0.805 for one-year survival 

and 0.839 for three-year survival in the training cohort 

of TCGA (Figure 6D). 
 

The model was further tested in the self-validation 

cohort by the same protocol (Figure 6E), which 

indicated that higher scores corresponded to worse 

overall survival (Figure 6F). The three-year survival 

rate was 28.6% in the high-risk group and 50.4% in the 

low-risk group (Figure 6G). Moreover, the AUCs for 

one-year and three-year survival in the validation cohort 

were 0.747 and 0.695, respectively (Figure 6H). Thus, 

the prognostic model successfully stratified pancreatic 

cancer patients from TCGA into high- and low-risk 

groups with moderate predictive power. 
 

The four-gene prognostic model is reliable in 

independent cohorts  
 

The predictive capacity of the four-gene model was 

further tested on two independent GEO microarray 

datasets (GSE28735 and GSE62452) that also included 

clinical data. The risk scores were calculated as 

described above (Figure 7A), and the expression of each 

gene was found to be greater in the high-risk group than 

in the low-risk group (Figure 7B). Consistent with the 

results in the entire TCGA cohort (Figure 7C), the risk 

score accurately stratified the patients of both datasets 

in terms of their survival outcomes. The three-year 

overall survival rates of the high- and low-risk groups in 

GSE28735 were 14.8% and 41.3%, respectively (Figure 

7D), while those in GSE62452 were 5.15% and 45.3%, 

respectively, displaying an even greater prognostic 

difference (Figure 7E). Therefore, the four-gene 

signature is an accurate, reliable and independent 

predictive tool for determining the prognosis of 

pancreatic cancer patients. 

 

DISCUSSION 
 

In this study, a pancreatic cancer prognostic model based 

on transcriptome dysregulation was developed, which was 
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compatible across the microarray and RNA-Seq platforms 

and among different patient cohorts. Our prognostic model 

containing four DEGs (DSG3, ARNTL2, NUSAP1 and 

KRT7) was used to determine the risk scores of pancreatic 

cancer patients, and patients with high risk scores were 

found to exhibit poor overall survival.  

Molecular predictors such as the multi-gene expression 

assays in lung cancer [35] and renal cell carcinoma [36] 

or the immunoscore in colon cancer [10] have shown 

promise in facilitating clinical decision-making in large 

international validation studies. However, commonly 

mutated genes are not the primary determinants of 

 

 
 

Figure 4. Forest plots visualizing the HRs of 76 prognostic DEGs identified by univariate Cox analysis of GSE62452 (A) and TCGA (B). The first 
three columns display the gene name, p value, and HR and 95% CI, respectively. In the forest plot, protective associations are shown in green 
and risk factors are shown in red. 
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PDAC prognosis [4]. On the other hand, transcriptome 

profiles have been successfully translated into 

prognostic markers in some prospective studies; for 

instance, a 21-gene signature was recently developed 

for breast cancer (the Oncotype DX breast cancer assay) 

[37]. To this end, we constructed a prognostic model for 

pancreatic cancer by analyzing the transcriptomes of a 

large number of pancreatic cancer patients across 

multiple datasets, and subsequently developed a four-

gene risk score. 

 

Since gene expression platforms are based on different 

analytical and data processing methods, it is often 

challenging to compare and integrate results from 

multiple datasets. In some previous studies, researchers 

have obtained integrated results by intersecting the 

results from different cohorts, which may lead to bias. 

Therefore, we used the robust rank aggregation method 

to screen for significantly altered genes across seven 

microarray datasets in an unbiased manner, and 

subsequently identified 542 DEGs that overlapped 

between the microarray datasets and the RNA-Seq 

datasets from TCGA and GTEx. A similar approach has 

been used to identify DEGs in prostate cancer [38] and 

bladder cancer patients [39], as well as in Pan-cancer 

[40] and multi-omics analyses [41]. The pancreatic-

cancer-related DEGs were functionally enriched in the 

tumor immune microenvironment, with particular 

influence on the desmoplastic stroma, immune cell 

infiltration and perineural invasion, which contribute to 

cancer progression [5], metastasis [42] and chemo-

therapy resistance [43]. 

 

 

 

Figure 5. LASSO regression model. (A) LASSO coefficient profiles of the 76 prognostic DEGs. Each curve represents a coefficient, and the 
x-axis represents the regularization penalty parameter. As λ changes, a coefficient that becomes non-zero enters the LASSO regression 
model. (B) Cross-validation to select the optimal tuning parameter (λ). The red dotted vertical line crosses over the optimal log λ, which 
corresponds to the minimum value for multivariate Cox modeling. The two dotted lines represent one standard deviation from the minimum 
value. (C) HRs and 95% CIs of the four genes based on multivariate Cox regression analysis of the training cohort from TCGA. 



www.aging-us.com 3756 AGING 

Table 4. Clinico-pathological characteristics of patients in the training and self-validation cohorts of TCGA and two 
independent GEO validation datasets. 

Characteristics 

TCGA  
training cohort 

TCGA  
validation cohort 

GSE62452 
validation cohort 

GSE28735 
validation cohort 

(N = 88) (N = 88) (N = 64) (N = 40) 

Age at initial diagnosis (year) 64.7 + 1.2 64.6 + 1.1 NA NA 

Gender 
  

NA NA 

Male 53 (60.2%) 43 (48.9%) 
  

Female 35 (39.8%) 45 (51.1%) 
  

Neoplasm histological grade 
   

NA 

G1 13 (14.8%) 17 (19.3%) 2 (3.1%) 
 

G2 50 (56.8%) 44 (50.0%) 31 (48.4%) 
 

G3 22 (25.0%) 26 (29.5%) 29 (45.3%) 
 

G4 1 (1.1%) 1 (1.1%) 1 (1.6%) 
 

Not report 2 (2.3%) 0 (0.0%) 1 (1.6%) 
 

Primary tumor (T) 
  

NA NA 

T1 3 (3.4%) 4 (4.5%) 
  

T2 13 (14.8%) 11 (12.5%) 
  

T3 71 (80.7%) 69 (78.4%) 
  

T4 1 (1.1%） 2 (2.3%) 
  

Not report 0 (0.0%) 2 (2.3%) 
  

Tumor stage at diagnosis 
   

NA 

Stage I 7 (8.0%) 14 (15.9%) 4 (6.3%) 
 

Stage II 76 (86.4%) 69 (78.4%) 45 (70.3%) 
 

Stage III 1 (1.1%) 2 (2.3%) 9 (14.1%) 
 

Stage IV 3 (3.4%) 1 (1.1%) 6 (9.4%) 
 

Not report 1 (1.1%) 2 (2.3%) 0 (0.0%) 
 

Overall survival time (years) 1.31 (0.79–1.83) 1.25 (0.67–1.95) 1.27 (0.74–2.27) 1.28 (0.6–2.03) 

Overall survival status 
    

Alive 41 (46.6%) 43 (48.9%) 16 (25.0%) 13 (32.5%) 

Dead 47 (53.4%） 45 (51.1%) 48 (75.0%) 27 (67.5%) 

NA: Not available. 
 

High-throughput data tend to be interpreted from a 

clinical transformation perspective in the precision 

oncology era [44, 45]. It is necessary to integrate all the 

available information to identify the most relevant 

markers in a critical and comprehensive analysis. 

WGCNA is a powerful bioinformatics tool that detects 

clusters of functionally correlated genes and therefore 

can identify clinically relevant markers [13, 46]. 

WGCNA has been successfully used to identify 

molecular signatures in brain cells with distinct spatial 

distributions [47], to determine the key factors 

promoting hepatic ischemia-reperfusion injury [46] and 

to demarcate the molecular subtypes of pancreatic 

cancer [13]. The LASSO regression algorithm is 

another genotype-to-phenotype “bridge” that has been 

used to construct prognostic models from key radiomic 

[48] and immunohistochemical [49] features. Using 

these approaches, we found that overall survival was the 

main clinical trait associated with the transcriptome 

profiles of pancreatic cancer patients, and that DSG3, 

ARNTL2, NUSAP1 and KRT7 were independent 

prognostic factors.  

 

Desmoglein 3 (DSG3) is a component of desmosomes, 

the button-like structures in the cytomembrane that 

facilitate intercellular and cell-to-matrix adhesion. 

DSG3 is overexpressed in head and neck cancer, where 

it functions as an oncogene [50, 51]. Previous studies 

have demonstrated that DSG3 is an accurate biomarker 

for staging sentinel lymph nodes in head and neck 

cancer [52, 53], and for distinguishing lung squamous 

cell carcinoma from other subtypes of lung cancer [54]. 
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Figure 6. Development of the prognostic scoring model in TCGA cohorts. The distribution of risk scores is shown for the training (A) 
and validation (E) cohorts from TCGA. The dotted horizonal line indicates the cut-off level of the risk score used to stratify patients, and the 
dotted vertical line separates patients on the basis of low-risk (green) or high-risk (red). (B, F) The distribution of overall outcomes in the 
training (B) and validation (F) cohorts from TCGA. Surviving patients are shown in green, while deaths are shown in red. (C, G) Kaplan-Meier 
survival plots of patients predicted to be at risk for poor outcomes in the training (C) and validation (G) cohorts from TCGA. The number of 
patients remaining at a particular timepoint is shown at the bottom. (D, H) Time-dependent ROC curves for predicting one-year and three-
year survival in the training (D) and validation (H) cohorts from TCGA. 
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Similarly, high expression of the pro-metastatic 

transcription factor ARNTL2 predicts poor survival in 

lung adenocarcinoma [55]. Forced expression of Arntl2 

in estrogen receptor-negative breast cancer cells was 

found to increase their metastatic potential and thus 

portend a poor prognosis [56]. NUSAP1 promotes 

mitosis, cell cycle progression and the DNA damage 

response as a substrate of Cyclin F [57–59]. Over-

expression of NUSAP1 correlates with poor survival in 

melanoma [60], cervical carcinoma [61], prostate cancer 

[62] and glioblastoma multiforme [63]. KRT7, a 

membrane-cytoskeleton linker required for cell 

adhesion, is overexpressed in colon cancer [64] and 

esophageal squamous cell carcinoma [65], and is 

associated with poor survival and metastasis in colon 

cancer [64]. In an in vivo model, KRT7 was found to 

promote the transition of basal cells into the multi-

layered epithelium and Barrett’s esophagus [66]. Thus, 

all of the above genes have displayed pro-metastatic 

effects associated with poor outcomes in multiple 

cancers.  

According to the transparent reporting of a 

multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD) statement, internal 

validation (also called self-validation) is a necessary 

part of model development, and external validation to 

evaluate the performance of a model with other 

datasets is strongly recommended [67]. Therefore, we 

formulated our four-gene risk score based on the 

expression and Cox regression coefficient of each 

gene. Our model stratified pancreatic cancer patients 

of three independent cohorts into high- and low-risk 

groups with moderate accuracy. This three-cohort 

validation, together with the fact that our study was 

conducted with nine pancreatic cancer datasets in a 

platform-independent manner, indicates that our model 

is compatible across different platforms.  

 

Several bioinformatic investigations in pancreatic 

cancer have previously been conducted from different 

perspectives. A nine-gene signature (MET, KLK10, 

COL17A1, CEP55, ANKRD22, ITGB6, ARNTL2,

 

 
 

Figure 7. Validation of the four-gene model in two independent microarray datasets. (A) The risk score distribution in the 
GSE28735 and GSE62452 cohorts. (B) Heatmap displaying the levels of the four genes in the high- and low-risk groups. The color of each case 
corresponds to the log2

FC of the gene level, as shown in the key. (C–E) Kaplan-Meier survival plots of high- or low-risk patients in the cohorts 
from TCGA (C), GSE28735 (D) and GSE62452 (E). The number of patients remaining at a particular timepoint is shown at the bottom.  
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MCOLN3 and SLC25A45) [68] and a four-gene 

signature (LYRM1, KNTC1, IGF2BP2 and CDC6) [69] 

were proposed to predict the overall survival of 

pancreatic cancer patients. Four of the genes identified 

by these two studies (MET, CEP55, ITGB6 and 

ARNTL2) were also identified as prognosis-associated 

genes in our study. The AUCs for three-year overall 

survival prediction with the previously reported nine-

gene model were 0.621, 0.814 and 0.670 in one training 

and two external validation cohorts, respectively, while 

the AUCs for three-year overall survival prediction with 

our four-gene model were 0.839, 0.695, 0.747 and 0.872 

(the latter two are data not shown) in one training, one 

internal and two external validation cohorts, 

respectively. Thus, our four-gene prognostic model 

achieved moderate accuracy with less complexity than 

the nine-gene model. 

 

On the other hand, certain proposed models, such as a 

five-gene [70] or 25-gene signature [71], were 

developed through the comparison of gene expression 

profiles between long-term and short-term survival 

groups of pancreatic cancer patients. In these studies, 

genes involved in extracellular matrix organization, cell 

adhesion and immune response suppression tended to 

be activated in the short-term survival group, consistent 

with our findings (Figures 4 and 7B). Other previous 

bioinformatics studies included only one or two PDAC 

datasets, and thus could not characterize common 

prognosis-associated genes across various datasets [72–

74]. In contrast, our risk score was based on multiple 

datasets, a significantly larger number of patients and 

both microarray and sequencing platforms. This 

difference in patient groups and data processing 

methods may account for the different results. 

 

This was the first study to combine comprehensive 

pancreatic cancer cohorts in a systematic analysis 

strategy. The major strengths of this study were the 

performance of quality control measures, the cross-

validation of the results and the use of multiple cohorts 

for consistency. The use of publicly available data from 

millions of assays is a challenge [75], and one 

prerequisite is retaining the quality of the raw data. 

Since issues with technique or RNA degradation may 

occur, we checked the quality of the enrolled cases and 

removed any cases with potential problems. Another 

concern when integrating different platforms is 

balancing the different batch effects or detection 

methods, so we adopted robust rank aggregation to 

perform an unbiased analysis. 

 

Our prognostic model, which was derived from multiple 

cohorts and validated by three cohorts, deserves further 

validation and translation into clinical practice, since the 

four genes in our model encode proteins and can be 

examined in clinical practice through routine cost-

effective methods. However, since this model was 

developed from microarray and sequencing expression 

profiles, more common and practical methods (e.g., 

quantitative real-time PCR or immunohistochemistry) 

need to be used to translate the model into clinical 

practice. Additional studies are needed to elucidate 

whether the protein levels of these genes are consistent 

with their transcriptional levels in pancreatic cancer. For 

oncological research, these consistently altered genes 

are worthy of further investigation, and the prognosis-

associated genes should be further characterized for 

both their involvement in cancer progression and their 

value as therapeutic targets. 

 

In conclusion, we constructed a four-gene prognostic 

model for pancreatic cancer that can predict post-

surgical prognosis with moderate accuracy and facilitate 

therapeutic decision-making and clinical monitoring.  

 

MATERIALS AND METHODS 
 

Study design and cohorts 
 

In order to avoid biases caused by single or small 

numbers of cohorts, such as those based on a specific 

race, detection method or analysis technique, here we 

conducted a systematic retrospective analysis. We 

screened all the available high-throughput Affymetrix 

microarray datasets (up to August 2, 2019) in the GEO 

database to identify datasets that included both normal 

and cancerous pancreatic tissues and passed our quality 

control assessment for all the enrolled raw data. The 

analysis strategy is summarized in Supplementary 

Figure 1. Ultimately, we enrolled two RNA-Seq cohorts 

and seven microarray datasets. We first sought to 

identify common DEGs across all nine enrolled cohorts. 

WGCNA was then performed to connect clinical traits 

with pancreatic cancer expression profiles in TCGA. 

Based on the results of the WGCNA, we focused on 

determining the significance of the DEGs in predicting 

post-operation overall survival. 

 

To establish the molecular prognostic model, we 

combined the prognosis-associated genes from TCGA 

and GSE62452 in a univariate Cox regression analysis. 

Next, the intersecting results were shrunk with the 

LASSO regression algorithm, such that highly 

interconnected genes were alternated to avoid 

overfitting. The filtered genes were entered into the 

multivariate Cox regression analysis, and a scoring 

model was built to predict overall survival. 
 

The cohort from TCGA was randomly divided into two 

comparable sub-cohorts (each N = 88). The training 

cohort was used to optimize the parameters in the 
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LASSO and multivariate Cox regression analyses to 

build the risk score model, while the validation cohort 

was used to self-validate its performance. Two 

independent GEO microarray cohorts (GSE28735 and 

GSE62452) were also used to further validate the 

prognostic prediction model. 

 

Data acquisition  
 

RNA-Seq data and clinical information from pancreatic 

cancer patients were downloaded from GTEx [26, 27] 

and TCGA [25, 76] via the UCSC Xena platform 

(https://xena.ucsc.edu/) [28]. The normal pancreatic and 

pancreatic-cancer-related RNA-Seq datasets are named 

‘GTEX_RSEM_gene_fpkm’ and ‘TCGA-PAAD/ 

Xena_Metrices/TCGA-PAAD.htseq_fpkm’, while the 

downloaded clinical data are entitled ‘GTEX_ 

phenotype’ and ‘TCGA-PAAD/Xena_Metrices/TCGA-

PAAD.GDC_phenotype’. In addition, seven pancreatic 

cancer microarray datasets – GSE32676 [77], 

GSE16515 [78], GSE71989 [79], GSE41368 [80], 

GSE15471 [81], GSE28735 [82, 83] and GSE62452 

[84] – were downloaded from the GEO database [85]. 

The human TF list was retrieved from the Cistrome 

Cancer website (http://cistrome.org/CistromeCancer/ 

CancerTarget/) [31], and the list of human protein 

kinases was obtained from the Kinome of Homo sapiens 

[32]. 

 

Microarray raw data quality control and 

identification of DEGs 

 

Since all the selected GEO datasets were based on the 

Affymetrix platform, quality control was performed with 

Transcriptome Analysis Console software (Applied 

Biosystems, version 4.0.2) and the R ‘simpleAffy’ [23] 

and ‘Affy’ [22] packages. After averaging the expression 

values of the genes corresponding to the multi-microarray 

probes, we calculated the log2
FC ratios between the normal 

and tumorous samples in each dataset, and determined 

their statistical significance with the R ‘limma’ package 

[86]. The ‘RobustRankAggreg’ R package was then used 

to identify the DEGs across the multi-microarray datasets 

based on a prioritized gene list, with a numerical core and 

p value determined through Bonferroni correction [24].  

 

TCGA and GTEx sequencing data integration and 

DEG identification 

 

After the UCSC Toil RNA-Seq Recompute data were 

downloaded, the FPKM (fragments per kilobase of 

transcript per million mapped reads) values from GTEx 

were log2
(x+0.001) transformed, and the values from 

TCGA were log2
(x+1) transformed. Both forms were 

unified as log2
(x+1), and the ‘limma’ package was used to 

screen for DEGs between normal and tumorous 

pancreatic tissues, with a |log2
FC| > 1 and a false 

discovery rate < 0.05 as the cut-offs. For both the 

sequencing and microarray platforms, a log2
FC > 0 

indicated gene overexpression in the tumor tissues. 

 

Construction of the heatmap and GO plot 

 

The DEGs in each sample were plotted with the R 

‘pheatmap’ package [87]. Entrez gene annotations were 

referred to ‘org.Hs.eg.db’ (Carlson M, 2019. 

org.Hs.eg.db: Genome wide annotation for Human. R 

package version 3.8.2.), and the GO analysis was 

performed in the R ‘clusterProfiler’ package [88] with 

an adjusted p value < 0.01 and a q value < 0.01 as the 

cut-offs. The GO cluster was plotted with the R 

‘GOplot’ package [89]. 

 

WGCNA 

 

The R ‘WGCNA’ package was used to detect gene 

modules and evaluate the correlation of each module 

with clinico-pathological factors. To be specific, (i) we 

extracted data from TCGA on pancreatic cancer patients 

with complete clinical data regarding age, gender, 

tumor histological grade, clinical stage, TNM 

classification (except for M, as there were numerous 

cases lacking metastasis information), overall survival 

rate and duration, along with their gene expression 

profiles; (ii) sample clustering was performed to detect 

any outliers; (iii) the power (soft thresholding) β value 

was set to 10 so that we could achieve a scale-free 

topology fit index (scale-free R2) greater than 0.9 and 

maintain optimal mean connectivity; (iv) the adjacency 

matrix was transformed into a topological overlap 

matrix (TOM) to define gene co-expression similarity; 

(v) the ‘hclust’ algorithm was used to create a gene 

hierarchical clustering based on the TOM dissimilarity 

measure; (vi) the optimal module size was set to 30, and 

a dynamic tree cut was used to identify the modules; 

(vii) after the dissimilarity of the module eigengenes 

was calculated, the similarity cut-off was set to 0.75 in 

order to merge the modules; (viii) since we had already 

identified the featured gene expression profiles for each 

module and the clinical traits of the patients, the 

correlations of the module eigengenes with the clinico-

pathological factors were determined. 

 

Construction of the prognostic model 

 

Prognosis-associated genes were identified by the R 

‘survival’ package [90] as those impacting overall 

survival with HRs and 95% CIs greater than or less than 

1. Identified genes were then subjected to univariate 

Cox regression analysis with p < 0.05 as the 

significance threshold. The list was further narrowed 

down by the LASSO algorithm with the R ‘glmnet’ 

https://xena.ucsc.edu/
http://cistrome.org/CistromeCancer/CancerTarget/
http://cistrome.org/CistromeCancer/CancerTarget/
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package [91], and the optimal tuning parameter (λ) was 

chosen to achieve the minimal partial likelihood 

deviance in the cross-validation plot. The genes still 

harboring non-zero corresponding coefficients were 

entered into the multivariate Cox model. Finally, the 

expression of each gene was multiplied by its Cox 

regression coefficient, and these values were summed to 

calculate the risk score. 

 

Training and validation of the prognostic model 

 

The R ‘caret’ package [92] was used to divide the 

cohort from TCGA randomly into training and self-

validation sets (N = 88 each). Two microarray datasets 

(GSE28735 and GSE62452) were selected as 

independent validation cohorts. The risk score was 

calculated for each patient, and the patients were then 

divided into high-risk and low-risk groups based on the 

median risk score of the training cohort. The 

performance of the model was evaluated in terms of its 

ability to predict one-year and three-year overall 

survival in the high- and low-risk groups. 

 

Statistical analysis 

 

Continuous variables with normal distributions are 

reported as the mean + standard deviation, while those 

with skewed distributions are reported as the median 

(25th percentile - 75th percentile). Categorical variables 

are reported as frequencies (proportions). All analyses 

were conducted with the R foundation for statistical 

computing (version 3.6.1). Pearson correlation analysis 

was used to determine the correlation between a module 

eigengene and a clinico-pathological factor, with p < 

0.05 indicating statistical significance. Kaplan-Meier 

survival analysis and the log-rank test were performed 

with the R ‘survival’ package. The time-dependent 

ROC curve from censored survival data was plotted 

with the R ‘survivalROC’ package [93]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Flowchart presenting the study design of this retrospective analysis. “Uni-Cox” refers to univariate Cox 
regression, and “Multi-Cox” refers to multivariate Cox model construction. 

 

 
 

Supplementary Figure 2. Quality control results from four pancreatic cancer microarrays. For each panel, the raw data names of 
each case are presented in the first column, the % present calls (top) and average background (bottom) are displayed in the second column, 
and the range within which the scale factor should be located (a horizontal line with a dot at the top) is indicated by the blue stripe. The 3’-
to-5’ ratios of β-actin and GAPDH are plotted as triangles and circles, respectively. Outliers of the ratio are shown in red, and otherwise are 
shown in blue. The representative results of 10 samples in each array demonstrate the all-passed (A and B), one outlier case (C) and all-failed 
(D) samples in our quality control recheck. 
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Supplementary Figure 3. Modules of TCGA pancreatic cancer expression profiles (N = 135). (A) Sample dendrogram and clinical 
trait heatmap. With the exception of four outliers, all the samples could be hierarchically clustered. Binary variables (overall survival status, 
gender) are presented as red or white blocks, and continuous variables (overall survival days, age, grade, stage, T, N) are presented as color-
coded blocks, with the color saturation corresponding to the value of the variable. (B) Determination of the soft-thresholding power for the 
optimal scale-free topology fit index (scale-free R2) (left) and mean connectivity (right). The red horizontal line represents R2 = 0.9. (C) Module 
identification. The dendrogram represents the gene clustering based on the TOM dissimilarity measure. Genes with relative interrelatedness 
are located on the same or neighboring branches. A dynamic tree cut at module size 30 resulted in 17 color-coded modules. By merging the 
modules after calculating the dissimilarity of the module eigengenes at a cut-off of 0.75, we identified 14 modules. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. The 542 differentially expressed genes in both the sequencing and multi-microarray datasets. 

Supplementary Table 2. The correlation of a gene with its Gene Significance (GS) for a specific clinical trait or Module 
Membership (MM) in a specific module. 
 


