
www.aging-us.com 3911 AGING 

 

INTRODUCTION 
 

Although mild cognitive impairment (MCI) has been 

accepted as a symptomatic pre-dementia stage, over the 

past decade there has been an increasing interest in the 

pre-clinical asymptomatic stage of dementia, i.e., 

subjective cognitive decline (SCD). According to the  

 

definition provided by the Subjective Cognitive Decline 

Initiative Working Group, SCD refers to a self-perceived 

worsening in cognitive capacity but a normal age- and 

education-adjusted performance on standardized cognitive 

assessments, which are used to diagnose MCI and 

dementia [1]. It has been documented that SCD is 

potentially a pre-MCI stage. Support for this contention is 
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ABSTRACT 
 

Discriminating between those with and without subjective cognitive decline (SCD) in cross-sectional investigations 
using neuropsychological tests is challenging. The available magnetoencephalographic (MEG) studies have 
demonstrated altered alpha-band spectral power and functional connectivity in those with SCD. However, whether 
the functional connectivity in other frequencies and brain networks, particularly the default mode network (DMN), 
exhibits abnormalities in SCD remains poorly understood. We recruited 26 healthy controls (HC) without SCD and 
27 individuals with SCD to perform resting-state MEG recordings. The power of each frequency band and functional 
connectivity within the DMN were compared between these two groups. Posterior cingulate cortex (PCC)-based 
connectivity was also used to test its diagnostic accuracy as a predictor of SCD. There were no significant between-
group differences of spectral power in the regional nodes. However, compared with HC, those with SCD 
demonstrated increased delta-band and gamma-band functional connectivity within the DMN. Moreover, node 
strength in the PCC exhibited a good discrimination ability at both delta and gamma frequencies. Our data suggest 
that the node strength of delta and gamma frequencies in the PCC may be a good neurophysiological marker in the 
discrimination of individuals with SCD from those without SCD.  
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derived from longitudinal cohort studies showing strong 

associations between SCD and prospective objective 

cognitive performance, as well as the incidence of 

dementia [2–5]. Despite these promising findings, it 

remains difficult to investigate the functional correlates of 

SCD through cross-sectional studies. This is because the 

detection of subtle cognitive changes using neuro-

psychological assessments at one particular time point is 

challenging [6, 7]. However, the cross-sectional 

identification of neural signatures of SCD has a great 

clinical impact on the early detection and prognostic 

prediction of the dementia spectrum.  

 

Individuals with SCD can be distinguished from healthy 

older individuals without SCD in cross-sectional studies 

using functional imaging technologies. Previous 

functional magnetic resonance imaging (MRI) research 

has revealed a reduction of functional connectivity  

in individuals with SCD versus healthy controls (HC) 

[8–10]. However, other studies have shown an opposite 

pattern, indicating increased functional connectivity  

in SCD [11, 12]. Compared with hemodynamic 

responses, electrophysiological recordings, such  

as electroencephalography (EEG) and magneto-

encephalography (MEG), are able to directly measure 

the neural activities in the time and/or frequency 

domains [13, 14]. For example, available resting EEG 

studies have shown elevated alpha [15] and delta [16] 

powers in SCD versus HC. However, a recent MEG 

study showed a reduced alpha power in bilateral 

prefrontal and occipital lobes [17]. In addition, Lopez-

Sanz et al. found a disruption of alpha-band functional 

connectivity in SCD [18]. In the aforementioned 

findings, the power spectral characteristics in different 

frequency bands are inconsistent. Furthermore, apart 

from the alpha band, whether the functional 

connectivity in other frequencies and brain networks 

exhibits abnormalities in SCD remains poorly 

understood.  

 

In the research of resting-state brain activities, the 

default mode network (DMN) is a key network 

associated with episodic memory function; it is affected 

in patients with MCI [19, 20] and dementia [21, 22]. 

The DMN is composed of several cortical hubs, 

including the posterior cingulate cortex (PCC), 

precuneus (PCu), lateral temporal cortex (LTC), medial 

temporal cortex, medial frontal cortex, and inferior 

parietal lobule [23–25]. Among the DMN nodes, PCC is 

considered a key region because it is the only hub that 

directly interacts with other DMN nodes [26]. Previous 

functional MRI or positron emission tomography (PET) 

studies have demonstrated a disruption of DMN with 

PCC as a node in patients with MCI and Alzheimer’s 

disease (AD) [27–29]. There is also evidence 

demonstrating that, compared with younger adults, 

activation of the PCC in the elderly shows a significant 

reduction; this reduction is markedly greater in patients 

with dementia [30]. These findings suggest that the 

PCC plays a vital role in differentiating dementia from 

healthy aging. However, utilization of the spectral 

power of the PCC or the characteristics of functional 

connectivity with the PCC for the segregation of SCD 

from HC remains undocumented.  

 

MEG, as it possesses a better spatial resolution than 

EEG, is suitable for elucidating the local cortical 

activities and functional connectivity in different 

oscillatory bands at the source level. Moreover, the 

minimum norm estimate (MNE) is a distributed source 

imaging method that can reconstruct a number of 

distributed neural generators overlapping in time [31]. 

Hence, MNE is considered as a preferred method when 

investigating multiple sources compared with other 

reconstruction solutions [32, 33].  

 

Specifically, the present study had three aims. Firstly, at 

the regional level, we attempted to comprehensively 

examine whether the resting-state power of delta, theta, 

alpha, beta, and gamma oscillations in the DMN nodes 

would show significant differences between individuals 

with and without SCD. Secondly, at the network level, we 

sought to investigate whether individuals with SCD would 

show aberrant connectivity among the DMN nodes at 

specific frequency bands. Finally, given the crucial role of 

the PCC in the DMN, we aimed to test whether PCC-

based connectivity strength could serve as a good neuro-

physiological marker for the discrimination of individuals 

with SCD from HC.  

 

RESULTS 
 

Demographics and clinical profiles 
 

Table 1 shows the demographic data and 

neuropsychological assessment scores of the HC and 

SCD groups. The two groups did not significantly differ 

in terms of gender distribution, age, living status, or 

years of education. In addition, both groups exhibited 

equivalent cognitive performance except for in the 

Boston Naming Test, in which the score of phonemic 

cues of the SCD group was significantly lower than that 

of the HC group. The frequencies of apolipoprotein E 

ε4 (APOE 4) carriers also did not significantly differ 

between these two groups.  
 

Resting-state spectral power in the DMN 
 

The patterns (peak power frequency and power 

distribution) of the resting-state oscillatory activities in 

each region of interest (ROI) were comparable between 

the HC and SCD groups. Peak frequency shifting or 
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Table 1. Demographic variables and neuropsychological measures as mean ± SD. 

 HC (n = 26) SCD (n = 27) p 

Sex (male/female) 9/17 9/18 0.92 

Age (years) 67.00 ± 8.10 67.00 ± 9.29 1.00 

Education (years) 13.27 ± 2.97 12.85 ± 3.28 0.63 

Living status (alone/not alone) 3/23 4/23 0.73 

APOE 4 (yes/no) 6/20 6/21  0.94 

MMSE 28.96 ± 0.96 29.11 ± 1.09 0.60 

STM 2.58 ± 0.70 2.52 ± 0.80 0.78 

CVVLT    

Total 31.19 ± 3.26 31.44 ± 3.84 0.80 

Delayed 8.38 ± 0.85 8.59 ± 0.64 0.32 

WMS Logic memory    

Immediate 15.31 ± 3.73 16.11 ± 3.72 0.44 

Delayed  14.38 ± 4.02 14.63 ± 3.76 0.82 

CFT    

Copy 32.62 ± 2.38 32.93 ± 2.18 0.62 

Immediate 25.37 ± 6.16 24.30 ± 7.24 0.57 

Delayed  24.73 ± 6.44 23.54 ± 7.02 0.52 

VFT- animal  19.27 ± 4.41 18.41 ± 5.21 0.52 

BNT    

Spontaneous 27.00 ± 2.37 27.56 ± 2.01 0.36 

Semantic cues 0.38 ± 0.57 0.41 ± 0.64 0.89 

Phonemic cues 1.81 ± 1.41 0.96 ± 0.90 0.01 

Digit Span Test    

Forwards 8.35 ± 1.16 8.44 ± 0.70 0.71 

Backwards 5.50 ± 1.56 5.67 ± 1.36 0.68 

Trail Making Test    

Part A (s) 17.19 ± 15.88 13.48 ± 10.74 0.32 

Part B (s) 37.62 ± 26.42 37.22 ± 21.96 0.95 

SD, standard deviation; HC, healthy control; SCD, subjective cognitive decline; STM, short-term memory; CVVLT-total, 
Chinese-version Verbal Learning Test-total immediate recall; CVVLT-delayed, Chinese-version Verbal Learning Test-long 
delayed free recall (10 min); WMS-Logic memory, Wechsler Memory Scale-Logic memory; CFT, Rey-Osterrieth Complex 
Figure Test; VFT-animal, Verbal Fluency Test-animal; BNT, Boston Naming Test.  
 

abnormal power increases were not observed in the 

SCD group. Accordingly, statistical examination of the 

normalized spectral power values of each ROI at each 

frequency band did not yield a significant main effect 

for groups (all p > 0.05). This finding indicated that the 

normalized powers of each frequency band in the 

identified ROIs were not conspicuously altered in SCD. 

 

Resting-state functional connectivity in the DMN 

 

The node strength of each ROI within the DMN is 

shown using color-coded values for the delta to 

gamma2 bands in the HC and SCD groups (Figure 1). 

The difference map (HC minus SCD) of node strength 

demonstrated the increased DMN connectivity at 

specific bands and regions for the SCD group. 

Significant differences were observed at the delta band 

in the bilateral PCC (left, HC: 3.1 ± 0.9 vs. SCD: 4.4 ± 

1.6; right, HC: 3.2 ± 1.0 vs. SCD: 4.3 ± 1.6); at the theta 

band in the left PCC (HC: 3.0 ± 0.8 vs. SCD: 4.2 ± 1.6); 

at the gamma1 and gamma2 bands in the left LTC 

(gamma1, HC: 1.5 ± 0.3 vs. SCD: 2.6 ± 1.7; gamma2, 

HC: 1.6 ± 0.4 vs. SCD: 2.9 ± 1.7), the right PCu 

(gamma1, HC: 1.7 ± 0.4 vs. SCD: 2.7 ± 1.5; gamma2, 

HC: 1.9 ± 0.5 vs. SCD: 3.0 ± 1.6) and the left (gamma1, 

HC: 2.4 ± 0.9 vs. SCD: 3.5 ± 1.4; gamma2, HC: 2.6 ± 
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1.0 vs. SCD: 3.7 ± 1.5), and the right PCC (gamma1, 

HC: 2.4 ± 1.0 vs. SCD: 3.4 ± 1.4; gamma2, HC: 2.6 ± 

1.1 vs. SCD: 3.7 ± 1.4) (all corrected p < 0.05). In 

contrast, there was no clear difference in DMN 

connectivity at the alpha and beta bands (all p > 0.05).  

 

The cortical areas with significant between-group 

differences were further examined in terms of 

functional connectivity in DMN to detect the altered 

connections in SCD (Figure 2). At the delta band, 

amplitude envelope correlation (AEC) values in SCD 

were increased in the connectivity between the left LTC 

and right PCC (p = 0.0005), right LTC and left PCC (p 

= 0.0005), and right PCu and right PCC (p = 0.0005). 

At the gamma1 band, increased functional connectivity 

in SCD was observed between the left LTC and left 

PCC (p = 0.0012), left LTC and right PCC (p = 0.0044), 

and right PCu and right PCC (p = 0.0007), as well as at 

the gamma2 band in the connectivity between right PCu 

and right PCC (p = 0.0023). In general, for the resting-

state neural activities of the PCC within the DMN, the 

alterations correlated with the individuals with SCD 

were increases in node strength and functional 

connectivity. 

 

Network measurement for the detection of SCD  
 

Receiver operating characteristic (ROC) curve analysis 

was used to evaluate whether network measurement 

could serve as a good neurophysiological marker for the 

discrimination of SCD from HC. In this study, the node 

strength and AEC values with significant group 

differences were used in the ROC curve analysis; 

moreover, the summation of node strength from 

bilateral ROIs was also explored. Notably, node 

strength in the PCC exhibited a good discrimination 

ability at the delta (area under curve [AUC] = 0.759, 

sensitivity = 0.704, specificity = 0.731, p = 0.001), 

gamma1 (AUC = 0.789, sensitivity = 0.851, specificity 

= 0.769, p < 0.001) and gamma2 (AUC = 0.803, 

sensitivity = 0.778, specificity = 0.808, p < 0.001) 

bands (Figure 3). In contrast, when using node strength 

or AEC values in other DMN areas, all the AUC values 

were < 0.7 at the corresponding bands.  

 

 
 

Figure 1. Upper panel: The intrinsic functional connectivity of default mode network viewed from the left and right side. Lower panel: Node 
strength of each brain area from delta to gamma2 bands was color-coded for healthy controls (HC) and individuals with subjective cognitive 
decline (SCD). The difference (HC minus SCD) of the node strength demonstrated the alterations of functional connectivity due to SCD. *p < 
0.05. 
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Based on these findings, we further examined whether 

higher node strength correlated with more cognitive 

complaints. Our results showed that the node strength of 

the PCC at the gamma1 band was significantly 

associated with more complaints of cognitive decline 

among individuals with SCD (rho = 0.252, p = 0.035, 

one-tailed).  

 

DISCUSSION 
 

The goal of this cross-sectional study was to investigate 

the functional correlates, both at the regional and 

network levels, underlying SCD by means of resting-

state MEG imaging. There were no significant 

differences observed between groups regarding the peak 

frequency and power in each identified DMN node. 

However, compared with the HC group, the SCD  

group showed significantly increased delta-band 

connectivity between the LTC and PCC, and between 

the PCu and PCC. In addition, the SCD group exhibited 

elevated gamma-band connectivity between the LTC 

and PCC, and between the PCu and PCC. The ROC 

curve data also showed that the node strength of the 

delta and gamma frequencies in PCC was a good

 

 
 

Figure 2. The significant differences regarding the functional connectivity between healthy controls (HC) and individuals with 
subjective cognitive decline (SCD). In the delta (A) and gamma1 (B) oscillations, SCD showed significantly stronger functional connectivity 
between posterior cingulate cortex and precuneus, and between posterior cingulate cortex and lateral temporal cortex. In the gamma2 
oscillations (C), SCD showed significantly stronger functional connectivity between posterior cingulate cortex and precuneus. *p < 0.05, **p < 
0.01.  

 

 
 

Figure 3. Receiver operating characteristic curves of delta, gamma1 and gamma2 frequency bands for the discrimination of 
healthy controls from individuals with subjective cognitive decline.  
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neurophysiological marker for the discrimination of 

SCD from HC.  

 

At the regional level, we did not find significant 

between-group differences in the spectral characteristics 

at each frequency band. The slowing of alpha peak 

frequency has been well documented in patients with 

MCI [17, 34–36] and AD [35, 37, 38]. However, 

investigation of alpha frequencies in SCD has been 

limited. The first study, conducted by Alexander et al. 

(2006), did not detect the slowing of peak alpha 

frequency between those with and without SCD [15]. A 

recent study performed by Lopez-Sanz et al. (2016) also 

showed comparable peak alpha frequency values 

between SCD and HC [17], in line with our present 

MEG data. In the comparisons of power between HC 

and SCD, the results were extremely contentious. By 

calculating the absolute power values, Alexander et al. 

found an elevated alpha strength in SCD, which 

significantly correlated with better performance in the 

Digit Span Backward Test; on the other hand, by using 

a relative power method, a significantly decreased alpha 

power over wide brain regions was observed in SCD 

versus HC [15]. In contrast to the aforementioned 

findings, we did not detect any significant difference in 

relative power at any of the frequency bands, including 

alpha, between the HC and SCD groups using MEG 

combined with MNE source modeling. Taken together, 

although SCD is likely a pre-MCI stage, the available 

empirical results suggest that regional spectral 

characteristics (in either frequency or power) do not 

have sufficient capacity to separate SCD from HC 

through cross-sectional examination.  

 

A long-held viewpoint has suggested the DMN, at the 

macroscopic scale, to be a key network that can reflect 

pathological changes across the spectrum of dementia 

[39, 40]. In particular, the PCC is recognized as a 

critical node in the DMN [41]. A previous functional 

MRI study revealed increased functional connectivity in 

the DMN (including the PCC, left PCu, right 

hippocampus, and right superior temporal gyrus) in 

SCD versus HC [11]. Our present MEG study also 

highlighted the role of the PCC in DMN functional 

connectivity, revealing that individuals with SCD 

demonstrated significantly increased delta- and gamma-

band connectivity between the PCC and LTC, and 

between the PCC and PCu, compared with HC. The 

exact neural mechanism underlying the increased delta- 

and gamma-band functional connectivity in SCD 

remains poorly understood. A plausible, but at this stage 

likely speculative explanation, may be that the increased 

PCC functional connectivity reflects a compensation 

mechanism in the very early stages of memory 

impairments. The enhanced connectivity may 

compensate for inefficient processing elsewhere in the 

brain, which was not explored in the present study. 

However, a longitudinal study is warranted to follow up 

with these participants with SCD and compare those 

who remain stable with those who progress to MCI or 

AD. Another tentative suggestion is that the increased 

PCC functional connectivity may be related to 

pathological changes [42, 43] or temporary adaptations 

to the subjective memory complaints, which exhibit an 

upregulation of synchronization in the asymptomatic 

SCD stage followed by a breakdown of the functional 

connectivity in the MCI or AD stage.  
 

Although delta rhythm has been well documented to be 

involved in the integration of cerebral activity with 

homeostatic functions, such as reward and autonomic 

and metabolic processes, an increasing body of 

evidence also suggests that it is implicated in many 

aspects of cognitive processing, including attention and 

memory [44]. For example, an increment of baseline 

power in the delta frequency band has been found in 

patients with AD [45, 46]. In the present study, despite 

the absence of significant between-group differences in 

delta power in the regional DMN nodes, we 

hypothesized that SCD, a very subtle symptom on the 

neurodegenerative spectrum, may still exhibit 

abnormalities. These abnormalities are initially in the 

form of functional connectivity and subsequently in the 

form of local dysfunction after symptom progression. In 

addition, delta activity is sensitive to internal stimuli 

signaling, such as pain, fatigue, and hypoxia [44]. 

Extending the available findings, we further suggest that 

the increased delta-band functional connectivity 

observed in SCD may also be related to the sensitivity 

of internal cognitive ability. Notably, all participants 

with SCD in this study proactively sought medical help 

due to worries and sensitivities regarding their self-

reported cognitive deterioration. Further studies 

comparing participants with SCD both with and without 

worries/sensitivities are warranted to validate this 

hypothesis.  
 

One may argue that the gamma oscillations pertain to a 

relatively local, rather than long-range, synchronization. 

Compared with the HC group, we found that the SCD 

group demonstrated stronger gamma oscillations over 

short-distance (e.g., right PCC to right PCu) and long-

distance (e.g., right PCC to left LTC) connectivity. Over 

the past decade, there has been increasing evidence 

suggesting that gamma-band oscillations are involved in 

both local and long-range connectivity [47]. For 

example, Rodriguez-Rojo et al., recruiting 36 

cognitively intact older females, found that compared to 

BDNF Val/Val individuals, those with Val/Met showed 

diminished antero-posterior gamma connectivity (e.g., 

left gyrus rectus-right lateral superior occipital lobe) 

[48]. Although the mechanisms behind the increased 
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gamma-band connectivity in SCD versus HC remain 

elusive, our present results suggest that the altered 

synchronization of this frequency band in both short- 

and long-distance connectivity may represent one of the 

underlying neural signatures of SCD.  

 

To the best of our knowledge, this was the first study 

utilizing ROC curve analysis to determine the 

diagnostic values of these connectivity patterns in SCD 

based on the significant between-group differences in 

the node strength and AEC values. Node strength in the 

PCC showed good accuracy in discriminating SCD 

from HC, suggesting that the PCC may also play a 

critical role in the early identification of SCD at the 

individual level. Previous empirical studies have shown 

that the metabolism and regional blood flow of the PCC 

is potentially one of the earliest markers to predict 

cognitive deterioration from MCI to AD [49–51]. With 

a seed in the PCC, functional connectivity appeared to 

be further disrupted with the increasing severity of AD 

[52]. It is valuable for future research to use PCC 

functional connectivity in the characterization of the 

different stages of cognitive impairments, from 

asymptomatic SCD to severely symptomatic dementia.  

 

There were a few limitations in the present study. 

Firstly, the results were limited by a relatively modest 

sample size. However, based on our literature review, 

sample sizes with >20 participants in each group have 

been considered reasonable and statistically powerful 

[53, 54]. Secondly, the current study pertained to an 

exploratory research design. Based on our results, 

additional longitudinal studies are warranted to further 

verify the role of PCC functional connectivity in 

predicting the development of objective cognitive 

decline and disease progression. Thirdly, the spatial 

resolution and localization accuracy of MEG is 

considered limited in the deep brain structures, such as 

midline cortical regions. However, there is increasing 

evidence showing that the posterior midline cortices 

(e.g., PCu and PCC) could be reliably localized using 

MEG recordings [55, 56]. More importantly, a recent 

resting-state MEG study demonstrated that the 

reconstruction of posterior midline cortical activation by 

MNE, which is the method we applied in the present 

study, was markedly better than that obtained by the 

linearly constrained minimum variance Beamformer 

[57]. Nevertheless, cautions should be exercised in 

relating the present findings to those of functional MRI 

studies. Finally, up to the date, there is no consensus on 

the assessment of SCD. Although there have been some 

self-reported and informant-reported questionnaires 

with psychometric validation [58], their clinical utility 

or application in the general population requires further 

improvement. For example, the Everyday Cognition 

scale exhibits excellent discrimination ability between 

those with and without dementia [59, 60]. However, in 

this questionnaire, the participants are asked to rate their 

ability to perform certain everyday tasks at present 

versus 10 years earlier [59, 60]. When applying this 

assessment to individuals with SCD, it may not be 

feasible for them to compare their cognitive function 

using such a long-term timeframe. Thus, future studies 

on SCD are warranted to develop clinically feasible 

assessments.  

 

In conclusion, our MEG data demonstrated an increased 

DMN functional connectivity in individuals with SCD 

versus HC, suggesting that the self-reported subjective 

cognitive complaint is a reflection of objective 

alterations in brain function. Furthermore, the node 

strength of the delta and gamma frequencies in the PCC 

may be a good imaging indicator in the discrimination 

of SCD from HC.  

 

MATERIALS AND METHODS 
 

Research participants 

 

A total of 27 individuals with SCD (nine males; mean 

age: 67 ± 9.3 years) were recruited from the memory 

clinic of the Department of Neurology, Taipei Veterans 

General Hospital (Taipei, Taiwan). All participants with 

SCD were seeking help for self-experienced cognitive 

decline compared with their level two years earlier. 

They had to report at least one complaint by responding 

to 12-item questionnaire such as: “Do you usually 

forget where you put objects (such as keys or glasses) in 

your home or office?”, “Do you have any difficulty in 

remembering specific facts from a newspaper or TV 

program after you have just finished it?”, “Do you 

usually forget appointments with your friends or 

doctor?”, “Do you have any difficulty in word-finding 

during conversations with others?”, etc. In addition, 

they exhibited normal age- and education-adjusted 

neuropsychological performance with the absence of a 

diagnosis of MCI or dementia [1]. Healthy community-

dwelling older adults without reported cognitive decline 

(N = 26; nine males; mean age: 67 ± 8.1 years) were 

also recruited in the present study, forming the healthy 

control group (HC). None of the SCD or HC 

participants had a history of major neurological or 

psychiatry disorders, including coronary heart disease, 

stroke, Parkinson’s disease, depression, anxiety, etc.  

 

None of the participants received treatment with anti-

dementia drugs. In the HC group, one participant was 

on an antidepressant and two participants were 

receiving treatment with benzodiazepines. In the SCD 

group, some participants were receiving treatment with 

an antidepressant (n=1), z-drug (n=1), benzodiazepines 

(n=3), or a combination of benzodiazepines and z-drug 
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(n=1). However, all participants were asked to refrain 

from taking their medication 24 h prior to the MEG 

recordings to minimize the potential effects on brain 

imaging data. 

 

This study was approved by the Institutional Review 

Board of Taipei Veterans General Hospital, and was 

performed in accordance with approved guidelines and 

regulations. Written informed consent was provided by 

all participants.  

 

Neuropsychological assessments 

 

All participants were Chinese and underwent the 

following Chinese-version neuropsychological tests: 

Mini-Mental State Examination, Chinese-version 

Verbal Learning Test, Wechsler Memory Scale-Logic 

Memory Test, Boston Naming Test, Rey-Osterrieth 

Complex Figure Test, Trail Making Test part A and B, 

Digit Span Forward and Backward Test, and Verbal 

Fluency Test. Apolipoprotein E ε4 (APOE 4) 

genotyping was also performed for all participants.  

 

MEG recordings 
 

Neuromagnetic data were recorded using a whole-scalp 

306-channel MEG (Vectorview; Elekta Neuromag, 

Helsinki, Finland), composed of 102 identical triple 

sensor elements (one magnetometer and two orthogonal 

planar gradiometers). Four coils, representing the head 

position, were placed on the scalp of the participant 

with their positions in the head coordinate frame. The 

positions were specified by the nasion and two pre-

auricular points using Cartesian coordinates and 

measured with a three-dimensional digitizer. For 

accurate registration, approximately 100 additional 

scalp points were also digitized. These landmarks of the 

head position enabled further alignment of the MEG 

and MRI coordinate systems. Moreover, electro-

oculography (EOG) and electrocardiography (ECG) 

recordings were also simultaneously performed during 

the MEG recordings. Individual brain MR images were 

captured using a 3T MR system (Discovery 750; GE 

Medical Systems, Milwaukee, Wisconsin, USA), with a 

repetition time of 9.4 ms, echo time of 4 ms, recording 

matrix of 256 × 256 pixels, field of view of 256 mm, 

and slice thickness of 1 mm. 

 

The MEG recordings were initiated with a 3-min 

empty-room recording to capture sensor and environ-

mental noise, which was used to calculate the noise 

covariance for offline source analysis. In the subsequent 

5-min resting-state recordings with a digitization rate of 

1,000 Hz, the participants sat comfortably with their 

head supported by the helmet of the MEG. They were 

asked to close their eyes, and remain awake and 

relaxed. The recordings were terminated and repeated if 

the participant fell asleep or had excessive head 

movement during the recordings.  

 

Data preprocessing 

 

We took the following strategies to exclude the 

contaminations of non-brain or environmental artifacts 

from spontaneous MEG data: (1) we applied the 

MaxFilter from the Neuromag software system [61, 62]; 

(2) we visually inspected all data for segments 

containing artifacts caused by head movements or 

environmental noise and discarded the contaminated 

segments; (3) notch filters (60 Hz and its harmonics) 

were used to remove powerline contaminations; and (4) 

identified heartbeat and eye blinking events from ECG 

and EOG data were used to independently define the 

projectors through principal component analysis. The 

principal components meeting the artifact’s sensor 

topography were then manually selected and excluded 

through orthogonal projection [63]. Furthermore, T1-

weighted structural volumetric images were 

automatically reconstructed into the surface model for 

further source analysis using BrainVISA (4.5.0, 

http://brainvisa.info). The detailed geometric 

reconstruction of the scalp, brain gray and white matter, 

and tessellations provided a topographical three-

dimensional representation of the brain surface and was 

used to estimate the gray and white matter border 

(Figure 4).  

 

Spectral power and functional connectivity analysis 

of resting-state data  
 

To obtain the source-based cortical activation, the 

distributed source model of the MEG data was 

estimated using the depth-weighted MNE analysis. The 

forward model of the MNE analysis was established 

using the overlapping sphere method, which presented 

each cortical vertex as a current dipole and included 

~15,000 vertices [64]. Subsequently, the inverse 

operator, estimating the distribution of current sources 

that account for data recorded at the sensors, was 

calculated as follows: (1) the source orientations were 

constrained to be normal to the surface regions; (2) a 

depth weighting algorithm was used to compensate for 

any bias affecting the calculation of superficial sources; 

and (3) a regularization parameter, λ2 = 0.33, was used 

to minimize numerical instability, reduce the sensitivity 

of the MNE to noise, and effectively obtain a spatially 

smoothed solution. The regularization parameter 

determines the weight to be assigned to the MEG signal 

model relative to the background noise model; in other 

words, it is related to the signal to noise ratio (SNR). 

Therefore, it is defined as the reciprocal of the SNR of 

the MEG recordings. In the Brainstorm software, the 

http://brainvisa.info/
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default SNR is "3", which adopts the definition of SNR 

from the original MNE software [65]. The cortical 

source model of each participant was then morphed into 

a common source space defined by ICBM152 anatomy. 

The MNE analysis was performed using the Brainstorm 

program [66]. 

In this study, we defined the ROIs in the T1 template 

volume using Mindboggle cortical parcellation [67]. We 

selected 12 DMN-related brain regions based on 

previous studies [23, 68–71], including the bilateral 

PCC, PCu, inferior parietal lobule, medial temporal 

cortex, medial frontal cortex, and LTC (Figure 5). In the 

 

 
 

Figure 4. Procedures of resting-state MEG data analysis. 
 

 
 

Figure 5. Selected regions of interest within the default mode network and the corresponding MNI coordinates. 
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MEG source analysis, each cortical vertex (~15,000 

vertices in the cortex) represents a current dipole. The 

averaged current density from all vertices within the 

ROI was obtained to further estimate the source-based 

oscillatory power and functional connectivity  

[63, 68, 69, 72]. 

 

The dynamic source density in each ROI was further 

analyzed using the Brainstorm software to extract the 

oscillatory characteristics and functional connectivity in 

the DMN. Firstly, the estimate of the power spectral 

density (PSD) on each ROI was calculated using the 

Welch method (window duration 5 s with 50% overlap). 

The spectral power was normalized by means of 

dividing the power at each frequency band by the total 

power, which has been reported to adequately reduce 

the inter-individual variability [73]. Secondly, 

amplitude envelope correlation (AEC) analysis was 

used to determine the oscillatory functional 

connectivity. The amplitude envelope is defined as the 

absolute value of the Hilbert transform of a given 

cortical oscillation, which is obtained from the 

bandpass-filtered cortical source activities at each 

frequency band, and reflects the amplitude fluctuations 

in an oscillation over time [74]. AEC is calculated by 

correlating the amplitude envelopes of the cortical 

oscillatory activities from two ROIs. High AEC values 

indicate synchronous amplitude envelope fluctuations 

between cortical areas or networks. The connectivity 

between 12 ROIs of the DMN constructed the full 

12×12 adjacency matrix. The node strengths (the sum of 

AEC values connected to the node) of the 12 regions 

were individually estimated to represent the magnitude 

of connectivity within the network [68, 72]. Spectral 

power (i.e., PSD) and oscillatory connectivity (i.e., 

AEC) were categorized by frequency bands: delta (2–4 

Hz), theta (5–7 Hz), alpha (8–12 Hz), beta (15–29 Hz), 

gamma1 (30–59 Hz), and gamma2 (60–90 Hz). 

 

Statistical analysis 

 

The demographics and clinical profiles of the HC and 

SCD groups were compared using independent t- or chi-

squared tests, as appropriate. The group differences in 

the spectral power and node strength of each ROI at 

each frequency band were examined using analysis of 

variance (ANOVA) with the correction for multiple 

comparisons using a false discovery rate (FDR). In the 

subsequent analysis, the AEC values between ROIs at 

specific frequency bands, with significant difference in 

node strength, were compared between groups. To 

control the type I errors detected by the multiple 

comparisons of AEC values, p < 0.0045 (i.e., 0.05/11) 

was considered statistically significant using the 

Bonferroni method. Furthermore, the network 

measurements with significant between-group 

differences were also evaluated to determine the 

diagnostic value of SCD using the ROC curve analysis, 

which provided the AUC for the evaluation of the 

performance. All data are presented as the mean ± 

standard deviation (SD).  
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