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INTRODUCTION 
 

Myocardial infarction is characterized by sudden 

ischemia, cardiomyocyte death, and fibrosis [1, 2]. 

Many signaling pathways can cause cardiomyocyte 

death including the mitochondrial apoptosis pathway 

and the inflammatory response [3]. Antiapoptotic and 

antioxidative agents have been shown to reduce 

cardiomyocyte damage [4]. Additionally, therapeutic 

strategies that target the mitochondria in damaged 

cardiomyocytes may protect against cardiomyocyte 

death following myocardial infarction [5, 6]. 

Damaged mitochondria release reactive oxygen 

species (ROS) into the cytoplasm, which can lead to 

apoptosis [7]. Mitochondria are important for 

producing ATP to sustain cardiomyocyte contractility 

and function. They also release pro-apoptotic factors 

to initiate programmatic cell death and are therefore 

critical regulators of cell face and function [8, 9].  

 

Mitophagy is a mechanism by which damaged 

mitochondria are removed by autophagy to maintain 

mitochondrial structure and function. Mitophagy can 

block the release of ROS release from mitochondria and 

prevent apoptosis following mitochondrial damage in a 

lysosome-dependent process [10, 11]. Optic atrophy 1 

(Opa1) is a dynamin-like GTPase that regulates fusion 

of the mitochondrial inner membrane [12]. Opa1 has 

been shown to regulate mitophagy through fusion-

dependent and -independent mechanisms [13]. 

Interestingly, Opa1 has been shown to have 

cardioprotective effects [14]. Increased Opa1 expression 

was shown to reduce oxidative stress in cardiomyocytes 

in hypoxia-reperfusion injury through Ca2+/calmodulin-

dependent protein kinase II (CaMKII signaling) [15]. 

Additionally, Opa1 upregulation reduced myocardial 

ischemia through activation of the Brain-derived 

neurotrophic factor (BDNF)/tropomyosin-related kinase 

B (TrkB) pathway [16]. Reduced Opa1 expression 
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inhibited mitophagy resulting in myocardial ischemia-

reperfusion injury [17]. Finally, inhibition of mitophagy 

through PTEN-dependent upregulation of Opa1 

protected cardiomyocytes against lipopolysaccharide 

(LPS)-mediated inflammation in a model of septic 

cardiomyopathy [18–20]. Thus, Opa1 may play a role in 

protecting cardiomyocytes from damage following 

myocardial infarction by regulating mitophagy [21, 22].  

 

Mitophagy is important for regulating mitochondrial 

energy metabolism, oxidative stress, and apoptosis [23, 

24]. Here, we investigated whether Opa1 promotes 

mitophagy to protect cardiomyocytes following 

myocardial infarction. Additionally, we explored whether 

irisin, a drug that has been shown to regulate 

mitochondrial function and suppress septic 

cardiomyopathy, could regulate Opa1-induced mitophagy 

following myocardial infarction [25–28].  

 

RESULTS 
 

Opa1 is downregulated in the infarcted heart and in 

hypoxia-treated cardiomyocytes 

 

We previously established an in vivo model of myocardial 

infarction [29, 30]. Using that model, we analyzed Opa1 

expression in infarcted hearts compared to controls using 

quantitative real-time PCR and western blotting. Opa1 

expression was lower in infarcted hearts compared to 

controls (sham) indicating Opa1 expression is 

downregulated following myocardial infarction (Figure 

1A–1D). A reduction in Opa1 expression was also 

observed by immunofluorescence.  

 

We also established an in vitro model of myocardial 

infarction in which cardiomyocytes were subjected to 

hypoxic conditions. Opa1 expression was reduced in 

cardiomyocytes cultured under hypoxic conditions for 48 

hours compared to controls (Figure 1E, 1F), which is 

consistent with those of a previous findings [31]. 

Overexpression of Opa1 increased the viability hypoxia-

treated cardiomyocytes as compared to untransfected 

controls (Figure 1G). Correspondingly, Opa1 

overexpression in reduced the incidence of apoptosis 

among hypoxia-treated cardiomyocytes (Figure 1H–1I). 

These data suggest that Opa1 is important for protecting 

cardiomyocytes against hypoxia-induced damage.  

 

Opa1 mediates mitophagy in the infarcted heart 

 

Previous studies demonstrated that Opa1 can promote 

mitophagy [32, 33]. We therefore investigated the effect 

of hypoxia on mitophagy in cardiomyocytes by flow 

cytometry using the fluorescent reporter mt-Keima. We 

observed a reduction in mitophagy in hypoxia-treated 

cardiomyocytes compared to controls (Figure 2A, 2B). 

Interestingly, Opa1 overexpression resulted in an 

increase in mitophagy in hypoxia-treated 

cardiomyocytes, suggesting it may induce mitophagy in 

the infarcted heart [34, 35]. 

 

We previously demonstrated that irisin modulated 

mitochondrial function in a model of septic 

cardiomyopathy. We therefore hypothesized that irisin 

could modulate Opa1-induced mitophagy in hypoxia-

treated cardiomyocytes following myocardial infarction. 

Interestingly, we observed a decrease in the levels of 

various mitophagy-associated proteins under hypoxic 

conditions by western blotting. This effect was reversed 

by treatment with irisin, suggesting that irisin can 

activate Opa1-induced mitophagy in cardiomyocytes 

under hypoxic stress (Figure 2C–2F). 

 

Irisin activates Opa1-induced mitophagy and 

restores mitochondrial energy metabolism 

 

To investigate the mechanisms underlying the 

protective effects of Opa1-induced mitophagy, we 

evaluated the alterations in mitochondrial function [36]. 

A reduction in the levels of mitochondria-derived ATP 

was observed in hypoxia-treated cardiomyocytes. 

Treatment with irisin resulted in an increase in ATP 

levels in hypoxia-treated cardiomyocytes compared to 

controls (Figure 3A) [37, 38]. The increase in ATP was 

inhibited by knockdown of Opa1 by siRNA (si-Opa1) 

(Figure 3A). We also observed downregulation of the 

levels of the mitochondrial respiratory complex in 

response to hypoxia, which was reversed by treatment 

with irisin (Figure 3B–3D). Knockdown of Opa1 by 

siRNA abolished the irisin-mediated protective effects 

on the mitochondrial respiratory complex (Figure 3B–

3D). These results indicate that irisin exerts 

cardioprotective effects by activating Opa1-induced 

mitophagy. 

 

Opa1-induced mitophagy maintains mitochondrial 

function and reduces oxidative stress 

 

We further analyzed the protective effects of irisin and 

Opa1-induced mitophagy following myocardial 

infarction [39, 40]. An increase in ROS in mitochondria 

was observed in hypoxia-treated cardiomyocytes 

(Figure 4A, 4B). Irisin reduced the levels of ROS 

whereas Opa1 knockdown by siRNA suppressed the 

antioxidative effects of irisin in hypoxia-treated 

cardiomyocytes (Figure 4A, 4B). Additionally, we 

found that the levels of components of the antioxidative 

system including glutathione (GSH), superoxide 

dismutase (SOD), and glutathione peroxidase (GPX), 

were reduced under conditions of hypoxic stress (Figure 

4C–4E). Interestingly, irisin promoted Opa1-induced 

mitophagy and increased the levels of GSH, SOD, and 



 

www.aging-us.com 4476 AGING 

GPX (Figure 4C–4E). Thus, irisin promotes Opa1-

induced mitophagy, which reduces oxidative stress.  

 

We also found that the mitochondrial membrane 

potential, a marker of mitochondrial function, was 

disrupted by hypoxic stress (Figure 4F, 4G) [41, 42]. 

Irisin treatment restored the mitochondrial membrane 

potential in hypoxia-treated cardiomyocytes whereas 

Opa1 knockdown disrupted the mitochondrial membrane 

potential in irisin-treated cardiomyocytes (Figure 4F, 

4G). These data indicate Opa1-induced mitophagy is 

important for maintaining mitochondrial function and 

reducing oxidative stress in cardiomyocytes. 

Opa1-induced mitophagy inhibits apoptosis 

 

We investigated whether Opa1-induced mitophagy 

could protect cardiomyocytes against hypoxia-induced 

apoptosis [43]. Caspase-3 activity increased in hypoxia-

treated cardiomyocytes, which was indicative of 

activation of apoptotic cell death (Figure 5A) [44]. 

Treatment of hypoxia-treated cardiomyocytes with 

irisin inhibited caspase-3 activation. Finally, 

knockdown of Opa1 enhanced caspase-3 activation in 

irisin-treated cardiomyocytes (Figure 5A). These data 

indicate that the antiapoptotic effects of irisin are 

mediated by Opa1-induced mitophagy.  

 

 
 

Figure 1. Opa1 is downregulated in the infarcted heart and in hypoxia-treated cardiomyocytes. (A–D) Quantitative real-time PCR 

and western blot analysis of Opa1 expression. (E, F) Analysis of Opa1 expression in cardiomyocytes in vitro by immunofluorescence. (G) MTT 
assays of cardiomyocyte viability. (H, I) Analysis of cardiomyocyte apoptosis by PI staining. *P < 0.05 vs. the control group; #P < 0.05 vs. the 
hypoxia + ctrl-OE group. 
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Figure 2. Irisin activates Opa1-induced mitophagy. (A, B) Flow cytometry analysis of mitophagy using the fluorescent probe mt-Keima. 

(C–F) Analysis of the expression of mitophagy-associated proteins by western blotting. *P < 0.05 vs. the control group; #P < 0.05 vs. the 
hypoxia + irisin group. 

 

 
 

Figure 3. Irisin activates Opa1-induced mitophagy to restore mitochondrial energy metabolism. (A) Measurement of ATP 

production by ELISA. (B–D) Measurement of mitochondrial respiratory complex activity by ELISA. *P < 0.05 vs. the control group; #P < 0.05 vs. 
the hypoxia + irisin group. 
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The mitochondrial apoptotic pathway is characterized 

by cytochrome C (cyt-c) translocation to the 

cytoplasm. We observed an increase in cytoplasmic 

cyt-c levels by western blotting in hypoxia-treated 

cardiomyocytes (Figure 5B, 5C). Irisin treatment 

resulted in a decrease in the levels of cytoplasmic cyt-

c in an Opa1-dependent manner (Figure 5B, 5C).  

The mitochondrial apoptotic pathway is also 

characterized by upregulation of caspase-9 and Bax 

[45]. We observed upregulation of both caspase-9  

and Bax in hypoxia-treated cardiomyocytes by 

immunofluorescence (Figure 5D–5F). Treatment with 

irisin resulted in downregulation of caspase-9 and Bax 

in hypoxia-treated cardiomyocytes (Figure 5D–5F). 

Knockdown of Opa1 by siRNA resulted in an increase 

in caspase-9 and Bax levels in irisin- and hypoxia-

treated cardiomyocytes (Figure 5D–5F). These data 

suggest that the anti-apoptotic effects of irisin require 

activation of Opa1-induced mitophagy in hypoxia-

treated cardiomyocytes. 

 

 
 

Figure 4. Opa1-induced mitophagy maintains mitochondrial function and reduces oxidative stress. (A, B) Analysis of ROS levels 

in cardiomyocytes. (C–E) ELISA assays to evaluate the levels of antioxidants. (F, G) Measurement of alterations in the mitochondrial 
membrane potential using a JC-1 probe. *P < 0.05 vs. the control group; #P < 0.05 vs. the hypoxia + irisin group. 
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DISCUSSION 
 

Cardiomyocyte damage and death contributes to the 

pathogenesis of myocardial infarction [46, 47]. 

Myocardial infarction is caused by the sudden loss of 

blood supply to the heart and leads to cardiomyocyte 

death [48–50]. Death of cardiomyocytes results in 

activation of the inflammatory response [51, 52]. 

Additionally, the lack of blood flow and nutrients 

activates the transcription of pro-inflammatory factors 

that further enhance inflammation of the myocardium 

[53, 54]. Excessive inflammation can lead to the 

accumulation of pro-inflammatory cells such as white 

blood cells [55]. Although white blood cells are 

involved in repairing damage to the myocardium, they 

can also induce oxidative stress [56, 57]. The 

accumulation of these pro-inflammatory factors 

increases cardiomyocyte damage [58, 59].  

 

Both mitochondria-dependent and -independent 

apoptotic pathways can lead to cardiomyocyte death 

[60, 61]. The mitochondria-dependent pathway is 

initiated in response to unrepaired mitochondrial 

damage. In contrast, the mitochondria-independent 

pathway is regulated by the endoplasmic reticulum [62, 

63], lysosomes [64], and other factors. There are several

 

 
 

Figure 5. Opa1-induced mitophagy inhibits the mitochondrial apoptosis pathway. (A) Analysis of caspase-3 activity in 

cardiomyocytes by ELISA. (B, C) Western blot analysis of cyt-c levels in the cytoplasm and mitochondria. (D–F) Immunofluorescence analysis 
of Bax and caspase-9 expression in cardiomyocytes. *P < 0.05 vs. the control group; #P < 0.05 vs. the hypoxia + irisin group. 



 

www.aging-us.com  4480 AGING 

differences between the mitochondria-dependent and -

independent apoptosis pathways [65, 66]. The 

mitochondria-dependent pathway involves a reduction 

in mitochondrial membrane potential and activation of 

caspase-9 whereas the mitochondria-independent 

pathway is characterized by activation of caspase-3 and 

cellular membrane rupture [67]. We found that 

mitochondria-dependent apoptosis occurs during the 

progression of myocardial infarction. However, we 

could not exclude the possibility of mitochondria-

independent apoptosis [68, 69]. We also found that the 

inflammatory response and oxidative stress were 

activated following myocardial infarction and could 

trigger cardiomyocyte death through the mitochondria-

dependent apoptosis pathway [70]. 

 

Several studies have explored approaches for blocking 

mitochondria-dependent apoptosis in cardiomyocytes 

[71]. Mitophagy is a protective mechanism that involves 

the selective removal of dysfunctional mitochondria 

thereby allowing cellular repair [72]. Several proteins 

that are important for autophagy also play a role in 

mitophagy [73]. However, there are some proteins that 

are only involved in mitophagy including FUNDC1, 

BNIP3, PARK2, and NIX [74]. These proteins may 

have roles in cardiovascular diseases including 

myocardial infarction.  

 

We previously demonstrated that the inner 

mitochondrial membrane protein Opa1 has an important 

role in promoting mitophagy [75, 76]. Consistent with 

previous studies, we found that irisin could activate 

Opa1-induced mitophagy in cardiomyocytes [77, 78]. 

Irisin treatment was associated with an increase in Opa1 

expression. However, we did not evaluate whether there 

are differences in the expression of the Opa1 isoforms 

(L-Opa1 and S-Opa1) [79, 80]. Interestingly, Opa1 

knockdown suppressed mitophagy and abolished the 

cardioprotective effects of irisin, suggesting that the 

protective effects of irisin on cardiomyocytes following 

myocardial infarction are dependent upon Opa1-

induced mitophagy [81, 82].  

 

Collectively, our data indicate that Opa1 plays an 

important role in regulating cardiomyocyte viability 

following myocardial infarction by activating 

mitophagy. Irisin can activate Opa1-induced mitophagy 

in the infarcted heart and could have therapeutic 

efficacy in patients with acute myocardial injury.  

 

MATERIALS AND METHODS 
 

Cell culture and animal models 

 

Primary cardiomyocytes were isolated from and a 

model of myocardial infarction established as described 

[83, 84]. Cells were cultured under hypoxic conditions 

for 48 hours to mimic myocardial infarction [24, 85]. 

Cardiomyocytes were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM, Sigma, St. Louis, MO, USA) 

supplemented with 10% fetal bovine serum (Sigma, St. 

Louis, MO, USA) in a humidified atmosphere of 5% 

CO2 at 37°C. Irisin treatment was performed as 

described previously [86, 87].  

 

Immunofluorescence staining 

 

Cells seeded in plates were fixed with 4% 

paraformaldehyde and then blocked and permeabilized 

in solution containing 3% BSA (Sigma Aldrich, St. 

Louis, MO, USA), 10% normal goat serum (Vector 

Laboratories, Burlingame, CA, USA), and 0.3% Triton 

X-100 (Sigma Aldrich, St. Louis, MO, USA). The cells 

were then incubated with the indicated primary 

antibodies (Cell Signaling Technology, Danvers, MA, 

USA; Abcam, Cambridge, MA, USA) [88, 89]. 

Following the incubation, the cells were washed and 

incubated with corresponding Alexa Fluor secondary 

antibodies (Life Technologies, Carlsbad, CA, USA) [90, 

91]. Lipid droplets and nuclei were stained with 

Hoechst 33342 prior to imaging the cells by confocal 

microscopy [92]. 

 

ROS measurement 

 

Intracellular ROS levels were measured in cells plated in 

6-well dishes at an equal density. The cells were 

trypsinized, washed with phosphate-buffered saline (PBS) 

[93, 94], and then stained with 2 µmol/L chloromethyl-

20,70-dichlorodihydrofluorescein diacetate (CM-H2-

DCFDA) (Life Technologies, Carlsbad, CA, USA). 

Relative cell counts were determined using a FACSCanto 

II Analyzer flow cytometer (BD Biosciences, San Jose, 

CA, USA). Data were analyzed using the FlowJo software 

(FlowJo, LLC, Ashland, OR, USA) [95]. 

 

Opa1 knockdown and overexpression 

 

Opa1 knockdown was performed using siRNA as 

described [96–99]. Briefly, cardiomyocytes were 

cultured in 6-well plates (1 x 106 / well), 6 cm dishes 

(3 x 106 / dish), or petri dishes (3 x 105 / well) [100]. 

The siRNA dose was the following: 50 pmol / petri 

dish, 100 pmol / 6-well plates, 166 pmol / 6 cm dish, 

and 434 pmol / 10 cm dish. Cell transfection with 

siRNA was performed using the Lipofectamine 

RNAiMAX Reagent (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s instructions [101]. 

Knockdown efficiency was evaluated 36 hours after 

transfection by quantitative real-time PCR. 

Adenovirus overexpression assays were performed as 

described previously [102]. 
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Western blotting  

 

Cells were washed with PBS and lysed in cold lysis buffer 

containing a protease inhibitor cocktail as described [103, 

104]. Cell lysates were centrifuged at 13,000 g at 4 °C for 

40 min. The supernatants were collected and total protein 

quantified [105]. Equal quantities of total protein were 

separated by 10% SDS-PAGE and transferred to 

nitrocellulose membranes (Millipore, Bedford, MA, 

USA). The membranes were incubated with primary 

antibodies at 4°C for 15 hours [106]. Following the 

incubation, the membranes were incubated with the 

respective secondary antibodies at 25°C for 90 minutes. 

Proteins were visualized using the ECL substrate (Thermo 

Fisher Scientific, Waltham, MA, USA). GAPDH was 

used as a loading control [107, 108]. 

 

Quantitative real-time PCR 

 

RNA from serum was extracted using the TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s protocol [109, 110]. The mRNA was 

reverse transcribed into cDNA using the First Strand 

Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, 

USA) [111]. Real-time PCR was performed using an 

ABI7900 Real-time PCR system (Applied Biosystems, 

Foster City, CA, USA) using the SYBR Green Master Mix 

Kit (Takara, Dalian, China) [112]. We normalize mRNA 

expression to that of GAPDH. Relative gene expression 

was calculated using the comparative Ct method [113]. 

 

Enzyme-linked immunosorbent assays 

 

The levels of antioxidants such as GSH, SOD, and GPX 

were evaluated using enzyme-linked immunosorbent 

assay (ELISA) kits (Abcam, Cambridge, MA, USA) 

according to the manufacturer’s instructions [112, 114]. 

 

Statistical analysis 

 

Quantitative real-time PCR and ELISAs data were 

analyzed using GraphPad Prism 5 (GraphPad Software, 

La Jolla, CA, USA) [115]. The data are presented as the 

mean ± standard deviation. Differences between groups 

were analyzed using unpaired t-tests. *A P < 0.05 was 

considered statistically significant [116]. 
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