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INTRODUCTION 
 
Aging has pronounced effects on blood laboratory 
biomarkers used in the clinic such as testosterone [1] and 
plasma fibrinogen [2]. As worldwide populations undergo 
major demographic and aging shifts [3], it will be 
increasingly important to understand how aging relates to 
not just single blood biomarkers but combinations of 
many blood biomarkers together, particularly for age-
associated diseases that lack inexpensive and noninvasive 
tools for early detection and staging such as Alzheimer’s 
disease [4]. Studies of laboratory analytes and aging have 
traditionally considered a single analyte at a time [5–7] 
and have been limited in their inclusion of 
demographically diverse groups [8]. Simultaneously 
modeling many blood biomarkers together across 
population groups paints a more complete picture of 
health and disease and enables the systematic study of 
differences resulting from the definitions of age based on  

 

time since birth (“chronological age”) and as a cumulative 
measure of biological wear and tear (“biological age”) [9]. 
 
Recently, machine learning and statistical methods have 
enabled agnostic, data-driven approaches to age 
prediction based on methylation [10, 11], transcriptomic 
[12], and retinal imaging data [13]. For example, in 2018, 
researchers at Google used deep neural networks to 
analyze retinal fundus images to predict cardiovascular 
risk factors including a patient’s age [13]. While machine 
learning has been widely applied to fields such as 
medical imaging [14, 15] and speech recognition [16, 
17], it is comparatively underapplied in the study of 
blood laboratory biomarkers [18, 19], which may be 
among the cheapest to measure in individuals. 
 
In this study, we apply supervised machine learning 
methods to 356 blood laboratory measures from 67,563 
individuals. Our aim is to systematically study the 
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across age groups and discover new biomarkers to distinguish chronological and biological aging. 
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predictive capacity of individual and large collections of 
blood laboratory biomarkers for predicting chro-
nological age across the lifespan. We compute aging 
curves for all blood laboratory measures and assess 
whether changes in the predictive power of individual 
biomarkers are consistent across different populations 
with respect to gender, race, and income. We document 
how age predictors that perform highly accurately in 
one population may generalize poorly to different 
populations and use piecewise linear regression 
methods to investigate significant age-related changes 
in the trajectories of laboratory analytes. Our results 
identify clear demographic structure embedded in blood 
laboratory data and show that we are able to predict 
chronological age from laboratory analytes with high 

accuracy, which compares favorably to top predictors in 
the field [20]. 
 
RESULTS 
 
Age is highly predictable from blood laboratory 
analytes 
 
We trained a random forest model [21] to predict 
chronological age (in years) using data from 67,563 
individuals ranging in age from 1 to 85 years (mean: 
36.2, standard deviation: 23.1) from nine CDC National 
Health and Nutrition Examination Survey (NHANES) 
cohorts spanning 1999-2016 (Figure 1), a representative 
sample of the non-institutionalized population of the

 

 
 

Figure 1. Schematic overview of our study. (A) The CDC NHANES datasets from 1999-2016 (N refers to size before filtering) were used in 
our analyses; shown are summary statistics and an example row for a single individual in the dataset. (B) An overview of the machine learning 
pipeline used in the study. We filtered on a set missingness criteria (Methods) and then separated individuals into an 80/20 train/test split. 
We used a random forest model with hyperparameters tuned using a cross-validated grid search. After training the model we tested using 
cross-validation and the 20% held-out test set and analyzed outliers. (C) Aging curves for individual analytes were computed and analyzed for 
linear and non-linear trends. Piecewise regression analysis and breakpoint estimation were used to estimate breakpoints and compare slopes 
separated by breakpoints. (D) Models were trained separately for four U.S. Census age groups and feature importance scores were computed 
for each age group. (E) Models were trained on subgroups of the dataset separated by race and gender. The feature importance scores were 
calculated for each model and compared across race/gender groups. (F) Analyses of the trajectories of analytes across age ranges were used 
to compare chronological vs. biological definitions of age. 
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United States. The model included 356 features 
consisting of laboratory analytes (e.g. serum glucose, 
creatinine). Many of the analytes contained a large 
proportion of missing data (Supplementary Table 3), 
which was dealt with by imputing missing values using 
mean imputation. We evaluated model performance 
both using five-fold cross-validation and held-out data 
(Methods). Hyperparameters were selected by grid 
search (Methods). We define our baseline model for 
chronological age prediction as a linear regression 
model without regularization, using age as the response 
variable and the 356 laboratory analytes as covariates. 
Mean absolute error (MAE) for the baseline linear 
regression model was 10.53 (SE: 0.07) years in five-
fold cross-validation and 10.52 years in the 20% held-

out dataset. The R2 for the baseline model was 0.63 (SE: 
0.01) in the five-fold cross-validation and 0.62 in the 
held-out set. In our best random forest model, MAE was 
4.80 (SE: 0.013) years in cross-validation and 4.76 
years in the 20% held-out dataset. The R2 from the 
random forest model was 0.92 (SE: 0.0005) in the five-
fold cross-validation and 0.92 in the held-out set. 
 
We also trained separate random forest models for the 
four main United States Census [22] age groups: [1,18), 
[18,45), [45,65), 65+. The predictive accuracy of the 
models differed substantially across age groups 
(pairwise R2 comparisons were significant while 
adjusting for multiple comparisons; Methods) (Figure 2; 
Table 1). The model for the [1,18) age group had the 

 

 
 

Figure 2. Performance of prediction model across age groups. (A) Actual age vs. predicted age from the random forest model with R2 
and sample size (n) for each age range in the test set. (B) Observations with a residual error falling in the top 5% or bottom 5% were 
identified and compared to the overall NHANES population. (C) Gender, race, and income to poverty ratio distributions were compared 
between outliers and the overall NHANES population. (D) Analyte levels by age, colored by gender. Hemoglobin, red blood cell count, and 
alkaline phosphatase were selected to represent contrasting patterns in the separability of males and females at different age ranges. 
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Table 1. Performance of random forest models trained on different age ranges.  

RF Models Trained on Different Age Ranges  
Age Range Mean Absolute Error R2 

1-17 years 0.87 0.94 
18-44 years 5.15 0.44 
45-64 years 2.20 0.77 
65+ years 4.30 0.25 
1-85 years (Overall) 4.76 0.92 

Random forest models were trained on data from individuals across different age ranges  
within the dataset. Mean absolute error and R-squared are shown in the table as  
measurements of model performance on held-out data. 

 

most accurate predictions of the four and the model 
trained on the 65+ age group had the least accurate 
predictions of the four, as measured by R2 for age 
prediction in years. In the held-out dataset, the MAE for 
[1,18) was 0.87 years and the R2 was 0.94. For [18,45), 
the MAE in the held-out dataset was 5.15 years and the 
R2 value was 0.44; for [45,65), the MAE was 2.20 years 
and R2 value was 0.77; for the 65+ cohort, the MAE 
was 4.30 years and the R2 value was 0.25 (Figure 2). 
 
Feature importance differs substantially across age 
groups 
 
In order to estimate the predictive power of specific 
laboratory analytes in a comparable manner, we com-
puted variable importance scores (calculated using the 

decrease in node impurity using the Gini impurity 
measure; Methods) for each of the age-specific models 
across the 356 laboratory analytes. We define the Top-
10 set for each age bin as the 10 laboratory analytes 
with largest variable importance scores for the random 
forest model trained on that age group, denoted e.g. 
Top-10[1,18) for the [1,18) age group (similarly for Top-
5). We computed relative variable importance scores for 
each analyte for each age range, and the total relative 
importance of the Top-5 and Top-10 sets for each age 
group, denoted e.g. |Top-10[1,18)| for the [1,18) age range. 
 
The analytes in the Top-5 differed substantially across 
age ranges (Figure 3). The only analyte that appears in 
the Top-5 for multiple age groups is alanine amino-
transferase, which appears in both the [1,18) and 

 

 
 

Figure 3. Top-5 variables (based on feature importance score) across age bins. The Top-5 variables based on feature importance 
scores across the four age groups ([1,18), [18,45), [45,65), 65+) are shown. The variables are different for each age group except for alanine 
aminotransferase, which is present in the top variables of both [1,18) and 65+ age groups. 
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65+ groups. |Top-10[1,18)| was 0.751, |Top-10[18,45)| was 
0.294; |Top-10[45,65)| was 0.542; |Top-1065+| was 0.225. 
|Top-5[1,18)| was 0.567; |Top-5[18,45)| was 0.169; |Top-
5[45,65)| was 0.464; |Top-565+| was 0.144 (Supplementary 
Table 1). Top-5[1,18) consisted of hepatitis B, alkaline 
phosphatase, lactate dehydrogenase, aspartate 
aminotransferase, and alanine aminotransferase; Top-
5[18,45) consisted of total cholesterol, serum vitamin E, 
serum cholesterol, glycohemoglobin, and hepatitis B 
antibody; Top-5[45,65) consisted of herpes simplex 1, 
herpes simplex 2, toxoplasma, HIV 1,2 combo test, and 
varicella. Top-565+ consisted of alanine 
aminotransferase, blood urea nitrogen, lymphocyte 
percentage, creatinine, and homocysteine (Figure 3). 
 
Chronological vs. biological age in laboratory data 
 
In the held-out datasets (total n = 13,513), we defined 
‘outliers’ as individuals with residual errors in the top 
5% or bottom 5% of their age group, representing 
approximately 37.1 million individuals in the US (based 
on NHANES sample weights). For the bottom 5% of 
each age group, the model underestimated their age by 
an average of 2.20 years (sd = 0.50) for [1,18); 10.9 
years (sd = 1.64) for [18,45); 6.38 years (sd = 1.80) for 
[45,65); and 8.64 years (sd = 1.09) for 65+. For the top 
5% of each age group, the model overestimated the age 
of outliers by an average of 2.47 years (sd = 0.89) for 
[1,18); 12.23 years (sd = 1.91) for [18,45); 5.52 years 
(sd = 0.72) for [45,65); and 9.07 years (sd = 1.04) for 
65+. We compared the outliers from each age bin with 
the remaining individuals in the held-out dataset to 
assess differences in demographic features between 
these groups (Figure 2). After correcting for multiple 
comparisons, we found no significant differences 

between the outlier populations from each age bin and 
the rest of the individuals from that age bin in gender, 
race, and income to poverty ratio distributions. 
 
In order to investigate aging in males and females, we 
stratified 356 analytes individually by age and gender 
(Figure 2D, Supplementary Figure 2). We found that 
several analytes, including major blood labs such as red 
blood cell count, hemoglobin, and hematocrit, and other 
labs such as alkaline phosphatase, lactate dehydro-
genase, and calcium, showed age-related changes that 
differed starkly between males and females. For 
hematocrit, hemoglobin, and red blood cell count, male 
and female values are homogeneously mixed in younger 
children, separate in the teenage years until male and 
female values exhibit different ranges, and then cross 
over again in the senior years. For alkaline phosphatase, 
this trend is reversed, and sexual dimorphism is 
apparent in children below 15 years old, and then 
gradually reduces with age. 
 
Feature scores are highly correlated for males and 
females of different race/ethnicity groups 
 
We trained separate chronological age predictors for 
different subpopulations spanning combinations of 
gender (male, female) and race (Mexican American, 
Other Hispanic, Non-Hispanic White, Non-Hispanic 
Black, Other) groups in the NHANES population. We 
computed correlation coefficients to compare the 
variable importance scores for each pair of sub-
populations (e.g. Mexican American Females and Black 
Males). Figure 4 shows all pairwise correlations 
between the feature importance scores across the 10 
groups. Pairs of race/ethnicity groups of the same

 

Figure 4. Correlations of feature importance scores across gender and race subgroups. Pairwise correlations between feature 
importance scores from random forest models trained on subsets of the data (separated by gender and race/ethnicity). Correlations are 
consistently stronger across race groups for the same gender. 
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gender all had correlation coefficients above 0.85, with 
the majority above 0.9. Correlations between feature 
importance scores of males and females in the same 
race group and across race groups were considerably 
lower, ranging from 0.53-0.80. The strongest correlation 
between male and female feature importance scores 
across race groups occurred between white males and 
white females (0.80). 
 
Models accurate for one age group fail to generalize 
to other age groups 
 
We tested whether Top-5 and Top-10 for each age 
group could predict chronological age accurately for 
other age groups. Table 2 contains the MAE values for 
models containing only the Top-5 and Top-10 
variables when trained and tested on other age groups. 
The best performing Top-5 model for each age group 
was the model trained using the Top-5 from that age 
group. The same was true for the Top-10 models. For 
the [1,18) age group, the best Top-5 model gave a 
MAE of 1.35 and the best Top-10 model gave a MAE 
of 1.16.  For the [18,45) age group, the best Top-5 
model gave a MAE of 6.41 and the best Top-10 model 
gave a MAE of 5.51.  For the [45,65) age group, the 
best Top-5 model gave a MAE of 3.28 and the best 
Top-10 model gave a MAE of 2.91. And for the 65+ 
age group, the best Top-5 model gave a MAE of 4.63 
and the best Top-10 model gave a MAE of 4.49. These 
results demonstrate that an analyte’s predictive power 
is not necessarily the same for different age bins and 
that the set of most predictive analytes is not 
consistent across age bins. 
 
Widespread non-linearity in analyte aging 
trajectories 
 
Having observed strong predictive value in the pediatric 
cohort, we sought to identify significant transitions in 
biomarker trajectories occurring between the ages of 11 
and 30 for comparison against traditional age groupings. 
To do this, we examined 342 laboratory analytes for 
piecewise linearity by estimating ‘breakpoints’ in the 
aging curves (analyte level by age) for ages [11, 30] of 
each analyte using piecewise regression models [23] 
(Figure 5). Analytes that did not have data for children 
younger than 18 years were not included in the analysis. 
We tested the slopes of the regression lines on either 
side of the breakpoints for differences. Of the 342 
analytes tested, 97 were significant (28.4%) for 
differences in slope at a Bonferroni-adjusted p-value 
threshold of 1.46 x 10-4 (Methods). The median of the 
97 breakpoints was 16.4 years with 50% of the 
breakpoints falling in the range of 15.0-17.7 years. The 
mode (rounded in years) was 16 years, and the 
maximum breakpoint was 28.9 years. 

In addition to piecewise linearity for the adolescent to 
adult transition (11 to 30), several different categories 
of laboratory analyte “aging curves” were observed 
across the full lifespan, including the following, in order 
of increasing complexity: (1) linear (e.g. uric acid, 
iron); (2) piecewise linear (e.g. hematocrit, 
hemoglobin); (3) power (e.g. alkaline phosphatase, 
phosphorus); (4) U-shaped (e.g. measles antibody) 
(Figure 5). 
 
DISCUSSION 
 
In this study, we show that chronological age can be 
predicted highly accurately by applying supervised 
machine learning methods to blood laboratory data. Our 
analysis of individual laboratory analytes reveals strong 
linear and non-linear relationships between age and 
analyte levels that help explain the changing predictive 
power of different analytes across a lifetime. We also 
show that for different demographic groups (separated 
by age range or by gender and race) the set of laboratory 
analytes with the most power for predicting 
chronological age varies. With the graying of 
worldwide populations [3, 24, 25], efforts to understand 
the aging process in the elderly, especially for age-
related diseases like Alzheimer’s and dementia that lack 
robust biomarkers for early detection, must be 
accelerated. Our findings around gender and race/ 
ethnicity further underscore the importance of gathering 
large-scale data from diverse and traditionally 
underrepresented populations worldwide, and support 
initiatives such as the NIH’s All of Us Research 
Program, the UK Biobank, and the China Kadoorie 
Biobank. Specific applications include testing our age 
prediction models in these cohorts, re-evaluating 
traditional reference ranges for diverse groups, and 
identifying biomarkers that are informative of health 
risk in different populations [26–28].  
 
The models’ most important features across age groups 
revealed both known and novel analytes associated with 
aging. For example, levels of lactate dehydrogenase 
[29] and alkaline phosphatase [30, 31] are known to 
vary as children age, and total cholesterol levels rise 
steadily in adults from ages 18-45 [32]. However, 
several of the most important analytes were novel. For 
example, for 18-45 year olds, serum vitamin E was 
among the Top-5 variables despite little evidence to 
suggest that levels vary significantly within this age 
range [33, 34]. Vitamin E acts as an antioxidant, 
enhances lymphocyte proliferation, and inhibits platelet 
adhesion [35]. Vitamin E would likely not have been 
among the top analytes identified as relevant in aging 
when studied individually but was identified by our 
model when analyzed in conjunction with many other 
analytes. Future analyses that stratify by disease
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Table 2. Mean absolute errors (MAEs) for models trained and applied on different age ranges.  

MAE by Age Bin 
Age Group Tested 

Model Trained On [1-18) Years [18-45) Years [45-65) Years 65+ Years 
Top-5[1,18) 1.35 7.17 5.11 4.88 
Top-5[18,45) 1.60 6.41 5.12 5.26 
Top-5[45, 65) 2.21 7.18 3.28 NA 
Top-565+ 1.94 7.02 4.96 4.63 
Top-10[1,18) 1.16 6.36 4.79 4.61 
Top-10[18,45) 1.33 5.51 3.19 5.00 
Top-10[45, 65) 2.12 6.80 2.91 NA 
Top-1065+ 1.53 6.57 4.79 4.49 

Models containing only the Top-5 and Top-10 variables were trained in one age group and tested on all age groups. MAEs are 
from testing on the 20% held-out dataset in each case. 
 

outcomes may suggest analytes that work in concert 
with Vitamin E to affect aging. 
 
In the elderly, the top variables identified by our model 
were largely consistent with prior literature. Significant 
changes in levels of blood urea nitrogen [36], 
lymphocyte percentage [37, 38], creatinine [36, 39], 
homocysteine [40] and alanine aminotransferase [41–
43] are associated with the declining function of the 
liver, kidneys, immune system, and heart that may be 

expected with aging. Despite these known associations, 
the model still performed poorly in predicting age for 
the 65+ age group. Thus, the model was able to identify 
analytes relevant to aging but unable to use that 
information to predict a chronological age precisely. 
This suggests the need to study other blood biomarkers 
and data types in the elderly population in order to 
identify more predictive biomarkers of chronological 
and biological aging and look for biological predictors 
for age-related diseases like Alzheimer’s and dementia. 

 

 
 

Figure 5. Analysis of individual analytes for linear and non-linear trends. (A) Laboratory analytes exhibit clear linear and non-linear 
trends with respect to age. The interquartile ranges of analyte values, plotted by age, are shown for selected analytes. Analytes were selected 
from our analysis of the Top-10 feature importance scores for each age group, and exhibit linearity, piecewise linearity, power, and U-shaped 
curves. (B) Breakpoints were estimated using piecewise linear regression. (C) The distribution of breakpoints for 94 analytes with a significant 
difference in slope around the breakpoint is shown with a median estimated breakpoint of 16.4 years. 
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Further research should also investigate the 
inconsistencies in biological aging for the elderly 
relative to their analyte aging trajectories earlier in life 
and could stratify individuals by their predicted vs. 
actual age. Ideally, such analyses would include 
longitudinal and carefully measured outcomes. 
 
We found that the variables that predict age well vary 
substantially with age. This effect is seen in the 
differences in the Top-5 most important variables from 
models trained on different age ranges as well as the 
piecewise linear regression results. Further research 
could investigate precisely when these variables gain 
and lose predictive power across a person’s lifetime. 
Understanding these ‘biological transitions’, including 
when they happen, how suddenly they occur, and which 
analytes are involved may lead to new insights into the 
milestones of aging and the consequences associated 
with it.  
 
The model trained on the entire population and the 
model trained on just the pediatric cohort (ages [1,18)) 
were substantially more accurate for predicting ages in 
the range [1,18) than models trained on any other age 
range. Even with limited data for the youngest children 
(i.e.  many NHANES lab tests are not administered to 
children below 12 years), we were able to predict age in 
this pediatric group to within a year (MAE = 0.87). 
These levels of accuracy reveal a strong relationship 
between a child’s collection of laboratory analytes and 
their chronological age and motivate the development 
of models based on data of higher temporal resolution, 
younger populations, and combinations of many lab 
analytes. Our age predictor has the potential to improve 
understanding of child development, flag aberrant aging 
patterns in children (which may be associated with other 
conditions), and help establish clinical ranges of 
normality for groups of biomarkers, just as head 
circumference, weight, and height are used in clinical 
practice to survey a growing child’s health and 
nutrition. 
 
The varying predictive ability of individual laboratory 
analytes across demographics and age ranges illustrates 
that models that can predict age well for one group of 
people may fare poorly in other groups. This has 
potential impact on the use (and misuse) of current age 
prediction approaches (e.g., Putin et al [18]). With a 
large set of variables, the model space is exponentially 
large, and brute force methods for finding the best 
possible model for a specific group among all models 
become computationally overwhelming. The question 
of how to appropriately catalogue, parameterize, and 
search this model space is worth addressing so age 
prediction can be systematically explored and both 
optimal and problematic models can be identified. 

Limitations of the present study include primarily the 
substantial amount of missing or incomplete data in the 
CDC NHANES cohorts, which we addressed with 
imputation. Such missing or imputed data often encodes 
the structure of the data collection process in the dataset 
itself, as opposed to the blood laboratory values in 
isolation [44]. For NHANES, there are many laboratory 
analytes that are measured in certain age ranges and not 
tested in others. These age-specific tests can be used by a 
model as discriminants for predicting age within different 
age ranges and thus bias prediction. We performed 
sensitivity analyses by restricting to analytes and sets of 
analytes with complete data across age ranges, but there 
is no substitute for collecting more complete data. 
 
Modeling the relationship between a group of many 
biological markers and an individual’s chronological 
age raises questions about the nature of aging. In 
medicine, standards and reference ranges are often set 
with respect to a person’s “years since birth”, even 
though the biological state of two people born on the 
same day may be quite different. While age and 
demographic-related changes in blood laboratory 
biomarkers have been well documented for single 
analytes, our study reveals that large collections of lab 
analytes better predict chronological age and exhibit 
clear non-linear demographic structure. Translating 
biomarker studies across age groups is likely to require 
a comprehensive and diverse view of the aging process 
that considers varying predictability of biomarkers 
across the lifespan. 
 
MATERIALS AND METHODS 
 
Data 
 
We collected blood laboratory analyte measurements 
and demographic data from nine waves of the Centers 
for Disease Control and Prevention (CDC) National 
Health and Nutrition Examination Survey (NHANES) 
including the following cohorts: 1999-2000, 2001-2002, 
2003-2004, 2005-2006, 2007-2008, 2009-2010, 2011-
2012, 2013-2014, 2015-2016. Observations with zero or 
missing two-year survey weights were removed and all 
variable names with prefix ‘LBX’ were retained 
(Supplementary Table 2). Laboratory analytes with 
greater than 95% missingness were removed (i.e. 
analytes measured in < 3,901 of individuals), and 
individuals with fewer than 20 measured labs were also 
removed (Supplementary Table 3 shows the number of 
missing values for each laboratory variable). These 
criteria allowed for analytes to be included in the model 
with a large proportion of missing values (many 
contained over 50% missing values). We imputed all 
missing values using mean imputation, where each 
missing value was replaced by the mean value for that 
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analyte over all individuals. The final dataset included 
67,563 individual and 356 laboratory analytes. Code is 
available for download here: https://github.com/ 
manrai/Age-Prediction. 
 
Supervised learning for predicting age from 
laboratory data 
 
We used random forests [21] to train the main age 
prediction models in this study. Random forests are 
machine learning models composed of an ensemble of 
many decision/regression trees. Each of the individual 
trees in the “forest” is trained on a bootstrap sample of 
the training data, while the features used for splitting at 
each node are selected from a random subset of all 
possible features. Random forests are robust to outliers 
and perform well on data with linear and non-linear 
features. 
 
The random forest model used in this analysis was 
implemented with the scikit-learn library in Python 
[45]. The data was partitioned randomly using an 80%-
20% train-test split, missing values were imputed using 
mean imputation, and all variables were normalized. 
We selected hyperparameters using a grid search 
method in which the maximum number of trees in the 
random forest and the maximum number of features 
selected for evaluation at each tree were iteratively 
evaluated over 50 combinations and scored using five 
fold cross-validation while taking into account 
computational time (grid combinations included: max 
number of trees = 25, 50, 100, 200, 400, 500; max 
number of features selected = 1, 5, 10, 25, 50, 100; and 
bootstrap = True, False). We evaluated model accuracy 
using five-fold cross-validation (scored with the mean 
absolute error criterion) on the training data and then 
tested on the 20% held-out dataset. Ordinary least 
squares linear regression was used for baseline 
predictions. 
 
Statistical analysis 
 
Variable importance was calculated using Gini 
impurity, or Mean Decrease Gini, as implemented in the 
feature_importances_ function in scikit-learn. The 
importance of a variable Xm is calculated as suggested 
by Breiman [21, 46, 47]: 
 

 
 
where NT is the number of trees, v(st) is the variable in 
split st, and p(t)Δi(st, t) is the weighted impurity 
decrease (using Gini impurity) for all nodes t where Xm 

is used [46]. The sum of variable importance scores 
across all variables is 1: 
 

 
 
For each age range, we defined the total relative 
importance of the Top-5 and Top-10 variables as: 
 

  
 

 
 
Piecewise regression analysis was carried out using the 
segmented package [48] in R. Piecewise regression 
models were used to estimate a breakpoint, in this case 
an age that marks a change in trajectory, for each of the 
342 analytes used in the analysis. Breakpoint estimates 
and corresponding test statistics were computed using 
the Davies’ test (via the davies.test R function), which 
tests for non-zero differences in the slope parameter of a 
segmented relationship between the regression lines on 
either side of the estimated breakpoint [49]. We used a 
Bonferroni adjustment to set a threshold for statistical 
significance at p < 0.05/342, correcting for the 342 
analytes. 
 
A vector of feature importance scores was computed for 
models trained on subgroups consisting of gender and 
race combinations (10 total subgroups). Pearson 
product-moment correlations were then computed using 
pairwise complete importance scores for each subgroup 
against every other. R2 values were computed using 
predictions in the 20% held-out dataset compared. Chi-
squared tests were performed in R using the chisq.test 
function and the Kolmogorov-Smirnov test was 
performed using the ks.test function in R [50]. 
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SUPPLEMENTARY MATERIALS 
 

 

Please browse Full Text version to see Supplementary Figures and Tables of this manuscript. 
 
Supplementary Figures 
 
Supplementary Figure 1. Piecewise linear regression plots for 342 laboratory analytes with lines representing 
regression on either side of the determined breakpoint.   

Supplementary Figure 2. Analyte levels by age, colored by gender for 356 laboratory analytes. 

 
Supplementary Tables 
 
Supplementary Table 1. Cumulative relative importance scores for the Top-5 and Top-10 laboratory analytes for 
predicting age by age group. 

Supplementary Table 2. List of all potential variables with link to full descriptions.  

Supplementary Table 3. Number of missing observations by variable name. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


