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INTRODUCTION 
 
White matter lesions (WMLs), also called white matter 
hyperintensities (WMH), refer to hyperintense signals 
on T2-weighted or fluid-attenuated inverse recovery 
(FLAIR) images. These are largely thought to be due to 
cerebral small vessel disease and are widely prevalent 
among elderly individuals [1]. Histopathologically, 
WMLs may reflect demyelination, axon loss, or gliosis 
of brain white matter [2, 3], and they are associated with 
an increased risk of vascular cognitive impairment and 
dementia [4]. Neuroimaging studies have provided 
strong evidence that WMLs may be a useful surrogate  

 

biomarker predictive of cognitive decline and 
progression to dementia [5]. Consistent with that idea, it 
has been estimated WMLs contribute to nearly half of 
dementias worldwide, though the mechanism remains 
unknown [6–8]. 
 
WMLs are often accompanied by impairments in 
executive function, processing speed, attention, and 
memory [9, 10], and the volume of WMLs is associated 
with cognitive decline in older adults independent of 
brain atrophy [11, 12]. Not surprisingly, resent work 
indicates that the cognitive impairment reflects not only 
the volume of WMLs but also their location. For 
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ABSTRACT 
 
The purposes of this study were to explore the association between cognitive performance and white matter 
lesions (WMLs), and to investigate whether it is possible to predict cognitive impairment using spatial maps of 
WMLs. These WML maps were produced for 263 elders from the OASIS-3 dataset, and a relevance vector 
regression (RVR) model was applied to predict neuropsychological performance based on the maps. The 
association between the spatial distribution of WMLs and cognitive function was examined using diffusion 
tensor imaging data. WML burden significantly associated with increasing age (r=0.318, p<0.001) and cognitive 
decline. Eight of 15 neuropsychological measures could be accurately predicted, and the mini-mental state 
examination (MMSE) test achieved the highest predictive accuracy (CORR=0.28, p<0.003). WMLs located in 
bilateral tapetum, posterior corona radiata, and thalamic radiation contributed the most prediction power. 
Diffusion indexes in these regions associated significantly with cognitive performance (axial diffusivity>radial 
diffusivity>mean diffusivity>fractional anisotropy). These results show that the combination of the extent and 
location of WMLs exhibit great potential to serve as a generalizable marker of multidomain neurocognitive 
decline in the aging population. The results may also shed light on the mechanism underlying white matter 
changes during the progression of cognitive decline and aging. 
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example, declines in complex processing speed correlates 
mainly with anterior WML progression, while declines in 
visual-construction functions tend to correlate of 
posterior WML progression [13]. In addition, increased 
WML volume in the parietal lobes associates with an 
increased risk of incident dementia [14]. Still, the 
relationship between the anatomical location of WMLs 
and cognitive decline is poorly understood. 
Consequently, there is a need to better understand the 
mechanisms underlying the cognitive impairment 
associated with vascular risk factors and WMLs, and to 
improve diagnoses and interventions into vascular 
cognitive impairment and dementia in older subjects [15].  
 
Over the last decades, rapid improvements in medical 
imaging and machine learning technology and greater 
availability of neuroimaging datasets have provided 
opportunities for automatic detection and early prediction 
of cognitive decline [16, 17]. In the present study, we 
investigated the association between spatial maps of 
WMLs and multidomain cognitive performance in 
elderly adults, using MRI (structural MRI and diffusion 
tensor imaging/DTI) and various neuropsychological 
assessments of cognition (nonimpaired, mild cognitive 
impairment/MCI and dementia) with participants in the 
Open Access Series of Imaging Studies-3 (OASIS-3) 
[18]. We also explored whether it is possible to predict 
individual differences in cognitive function using the 
spatial probability maps of WMLs. 
 
RESULTS 
 
Behavioral performance and WML burden 
 
A total of 263 elderly subjects (aged 62-80 years), 
including 122 (46.39%) women, participated in this 
study. The demographic and neuropsychological 
features of the participants are summarized in Table 1. 
Among them, 207 subjects (78.71%) were cognitively 
normal; that is, their scores on the mini-mental state 
examination (MMSE) were within the normal range and 
their clinical dementia rating scores (CDRs) were equal 
to zero. The remaining 56 subjects (21.29%) were 
diagnosed with MCI or Alzheimer’s dementia. The 
volumes of white matter lesions extracted using the 
brain intensity abnormality classification algorithm 
(BIANCA) ranged from 1.21 ml to 41.63 ml (mean: 
7.89 ml). Lesion maps of WMLs segmented by 
BIANCA overlapped well with the manually segmented 
lesion mask. Statistical results revealed that WML 
volume was significantly related to age (Pearson’s 
correlation coefficient r=0.318, p<0.001). Poor 
neuropsychological performance was associated with 
both age and lesion volume. With increasing age and 
WML volume, cognitive performance tended to decline. 
In addition, the correlation between cognition and 

WML volume was more significant than the correlation 
between cognition and age. 
 
Spatial maps of WMLs were predictive of cognitive 
performance  
 
The results of predictions with voxel-level features 
derived from probability maps of WMLs are reported in 
Table 2. In 8 of the 15 neuropsychological testing scores, 
the predicted scores correlated highly with the actual 
scores (p<0.05). The predicted and actual scores from  
the MMSE showed the most significant correlations.  
The RVR model achieved a correlation coefficient  
(CORR) of 0.28 (p=0.003) and a normalized mean square 
error (norm MSE) of 0.38 (p=0.007). In addition, the 
predicted Category Fluency scores of ANIMALS and 
VEG also strongly correlated with the observed scores 
(ANIMALS: CORR=0.26, norm MSE=1.2, p<0.05; 
VEG: COOR=0.26, norm MSE= 0.61, p<0.05). The 
corresponding scatter plots illustrated in Figure 1 show 
the predicated clinical scores from the RVR model plotted 
against the observed scores. 
 
Weights in the RVR model and the association 
between diffusion metrics in the corresponding 
regions and cognition 
 
The top five regions contributing most to the RVR 
model for prediction of different measures of cognitive 
function are listed in Table 3 along with their weights, 
which are arranged from largest to smallest. The 
distributions of model weights were similar. White 
matter regions with large contributions to the RVR 
model mainly included the bilateral tapetum, posterior 
corona radiation, posterior thalamic radiation, and 
anterior limb of the internal capsule. Voxel-level weight 
maps of the RVR model predicting scores in ANIMALS 
is presented in Figure 2, where only voxels overlapping 
the JHU white-matter atlas are displayed. Overall, when 
compared to the anterior WMLs located in the frontal 
lobe, posterior WMLs located in the parietal and 
occipital lobes tended to have higher weights in the 
RVR model predicting cognition in the elderly subjects. 
The top five white matter regions with the highest 
weights in the prediction of cognitive performance are 
shown in Figure 3. 
 
Table 4 summarizes the results of a multivariate linear 
regression analysis of the relation between eight cognitive 
test scores and the mean values of the diffusion metrics in 
the top five white matter regions with the maximum 
weights in the RVR model. For the cognitive test 
ANIMALS, four different types of diffusion indexes in 
the top five weight regions were all significantly related to 
the observed scores (fractional anisotropy /FA: F=4.760, 
p=0.001; mean diffusivity/MD: F=5.135, p=0.0003; axial 
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Table 1. Subject demographics and neuropsychological performance (from the OASIS3 dataset). 

 Subjects (N=263) Correlation with age Correlation with WMLs  

Demographics    

Age 72.78±4.23 - 0.318** 

Gender (F/M) 122/141 - - 

Education 14.89±1.20 - - 

APOE ε4 status (n%) 109 (41.44) - - 

WMLs volume (mL) 7.89±6.16 0.318** - 

Level of independence (n%) 

Level 1 249 (94.68) - - 

Level 2 9 (3.42) - - 

Level 3 5 (1.90) - - 

Neuropsychological tests    

CDR 0.10±0.37 - - 

MMSE 28.36±2.58 -0.062 -0.102 

LOGIMEM 13.86±4.38 0.041 -0.195** 

DIGIF 8.48±2.00 -0.035 -0.104 

DIGIFLEN 6.70±1.11 -0.023 -0.074 

DIGIB 6.55±2.25 -0.034 -0.107 

DIGIBLEN 4.78±1.29 0.018 -0.083 

MEMUNITS 12.69±4.88 0.022 -0.195** 

MEMTIME 14.69±4.88 0.056** 0.033 

ANIMALS 20.59±6.16 -0.175** -0.192** 

VEG 14.10±4.34 -0.138* -0.168** 

TRAILA 32.44±11.77 0.043 0.166** 

TRAILB 88.03±49.69 0.124* 0.069 

TRALIB-A 55.59±43.85 0.128* 0.034 

WAIS 53.49±11.62  -0.129* -0.285** 

BOSTON 27.38±3.16 -0.075 -0.063 

APOE= apolipoprotein E. Level of independence: 1 = Able to live independently, 2 = Requires some assistance with complex 
activities, 3 = Requires some assistance with basic activities. MMSE= mini-mental state examination; LOGIMEM=logical 
memory; DIGIF= digit span forward; DIGIFLEN= digit span forward length; DIGIFB= digit span backward; DIGIFBLEN= digit span 
backward length; VEG=vegetables; TRAILA=trail making A; TRAILB=trail making B; TRAIL B-A=TRAILB-TRAILA; WAIS= Wechsler 
Adult Intelligence Scale; BOSTON=Boston naming test. Pearson’s correlations, controlled for gender and education, were 
used to assess how cognitive performance related to age and volume of WMLs (White matter lesions). *p < 0.05, ** p < 0.01. 
 

diffusivity/AD: F=4.538, p=0.001; radial diffusivity/RD: 
F=5.049, p=0.0003). With the exception of the scores in 
the TRAIL B-A test, AD and RD correlated linearly with 
all the other seven items in the cognitive tests, which were 
predicted with the RVR model. The FA in the top five 
white matter regions was significantly related only to the 
scores of MMSE and ANIMALS tests. 

DISCUSSION 
 
In the present study of 263 elderly individuals, we 
detected significant associations between increasing 
WML burden and declines across multiple cognitive 
functions. Using a multivariate modelling approach, we 
were able to predict multidomain cognitive performance 
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Table 2. RVR model predictions of cognitive functions based on WMLs segmented using BIANCA. 

Neuropsychological tests CORR p MSE p Norm MSE p 

MMSE 0.28 0.003 8.05 0.007  0.38  0.007  

ANIMALS 0.26 0.001 38.34 0.003  1.20  0.003  

VEG 0.26 0.001 18.54 0.001  0.64  0.001  

LOGIMEM 0.25 0.001 19.15 0.001  0.80  0.001  

WAIS 0.25 0.001 135.42 0.006  1.81  0.006  

TRAILB 0.20 0.002 2540.06 0.015  9.48  0.015  

TRALIB-A 0.18 0.003 2016.58 0.030  7.52  0.030  

MEMUNITS 0.17 0.003 24.94 0.040  1.08  0.040  

in elders based on spatial probability maps of WMLs. 
We therefore suggest that variation in WMLs (extent 
and location) contributes to differences in cognitive 
dysfunctions in different domains. 
 
Poor neuropsychological performance was 
significantly associated with larger WML volumes in 
elderly participants, which is generally in agreement 
with earlier studies [19]. Lesion volume correlated 
positively with increasing age and correlated 
negatively with cognitive function, especially 
language intelligence and memory. This association 

between WML burden and cognition was consistently 
found in both normally aging individuals and those 
with cognitive impairment, such as MCI and 
Alzheimer’s dementia [20–22]. Like medial temporal 
atrophy, apolipoprotein E (APOE) ε4 allele genotype, 
and β-amyloid burden, WML burden is a potentially 
useful surrogate biomarker with which to monitor 
cognitive performance and assess cognitive decline 
[23, 24]. Results from several studies support the 
hypothesis that this correlation between WMLs, 
especially periventricular lesions, and impaired 
cognition reflects a cholinergic deficiency [25–27]. 

 

 
 

Figure 1. Scatter plots relating cognitive performance predicted using a RVR model based on lesion probability maps of 
WMLs to observed performance in elderly individuals. (A) RVR-MMSE; (B) RVR-ANIMALS; (C) RVR-VEG; (D) RVR-LOGIMEM; (E) RVR-
WAIS; (F) RVR-TRAILB; (G) RVR-TRAIL B-A; (H) RVR-MEMUNITS. Scores of participants with cognitive impairment: participants with mild 
cognitive impairment (MCI) are colored orange, those clinically diagnosed with Alzheimer’s dementia (AD) are colored yellow. Cognitively 
healthy participants with WMLs are colored blue. 
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Table 3. Top five most relevant regions for prediction of cognitive performance based on the JHU white-matter atlas. 

Neuropsychological 
test Hemisphere Region description Contribution (%) ER 

MMSE 

R Tapetum 14.949  0.857  

L Tapetum 10.453  1.714  

R Posterior corona radiata 8.747  2.571  

R Posterior thalamic radiation  
(include optic radiation) 7.837  4.143  

L Posterior corona radiata 7.577  3.714  

ANIMALS 

R Tapetum 13.042  0.857  

L Tapetum 11.389  1.857  

R Posterior corona radiata 9.290  2.429  

L Posterior thalamic radiation 
(include optic radiation)  7.933  3.571  

R Posterior thalamic radiation 6.366  4.429  

VEG 

R Tapetum 19.474  0.857  

L Tapetum 9.938  1.714  

L Posterior thalamic radiation 7.496  3.714  

R Posterior corona radiata 7.158  3.143  

L Superior fronto-occipital fasciculus (could be 
a part of anterior internal capsule) 6.383  4.571  

LOGIMEM 

R Tapetum 13.760  0.857  

L Tapetum 10.637  1.714  

R Posterior corona radiata 8.071  2.714  

L Posterior corona radiata 7.703  3.286  

L Superior fronto-occipital fasciculus 6.496  4.857  

WAIS 

R Tapetum 13.155  1.000  

L Tapetum 9.753  1.857  

R Posterior corona radiata 7.332  3.143  

R Posterior thalamic radiation 6.955  4.143  

L Posterior corona radiata 6.493  4.000  

TRAILB 

R Tapetum 14.602  0.857  

L Tapetum 12.290  1.714  

L Posterior corona radiata 7.631  2.857  

R Posterior thalamic radiation 7.051  3.571  

L Superior fronto-occipital fasciculus 6.096  4.571  

TRAIL B-A 

R Tapetum  15.360  0.857  

L Tapetum  12.307  1.714  

L Posterior thalamic radiation 7.545  3.000  

R Posterior thalamic radiation 7.252  3.286  

R Posterior corona radiata 6.083  4.286  

MEMUNITS 
R Tapetum 13.135  0.857  

L Tapetum 10.157  1.714  
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R Posterior corona radiata 8.934  2.571  

L Posterior thalamic radiation 7.518  3.714  

R Posterior thalamic radiation 6.813  4.429  

ER=Expected ranking. The region of the posterior thalamic radiation, including the optic radiation and the superior fronto-
occipital fasciculus, could be part of the anterior internal capsule. 
 

A number of studies have focused on early prediction of 
cognitive impairment – i.e., the conversion from healthy 
cognition to MCI or from MCI to dementia. By 
combining large sample MRI data and machine learning 
models, several studies have achieved fairly high 
predictive accuracy [28–30]. Here, using a nonlinear 

multivariate regression model, RVR, we demonstrated 
that spatial probability maps of WMLs are predictive of 
multidomain cognitive performance by elderly 
individuals in tests of memory, language, intelligence, 
and executive functions (Table 2). Although recent 
evidence suggests the WML distribution may be a

 

 

 

Figure 2. Weight maps in the RVR-ANIMALS model. Only voxels with positive weights and overlapping with JHU white-matter atlas are 
presented. The redder the color, the larger the weight of the voxel. 
 

 

 

Figure 3. White matter fiber tracts in which WMLs made a higher contribution to the prediction of cognitive performances 
than lesions located in other brain areas. For each test, only the top 5 white matter tracts are displayed. 
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Table 4. Results of multivariate linear regression relating cognitive performance and diffusion metrics. 

Cognitive tests 
F 

FA MD AD RD 
MMSE 2.594* 4.106** 3.578** 4.275** 

ANIMALS 4.760** 5.135** 4.538** 5.049** 

VEG 1.280 5.572** 6.246** 5.069** 

LOGMEM 0.444 2.925* 3.232** 2.770* 

WAIS 2.273 2.904* 2.543* 2.962* 

TRAILB 1.677 2.273 2.638* 2.931* 

TRAIL B-A 1.929 1.833 1.630 1.938 

MEMUNITS 0.587 1.929 3.824** 2.710* 
 

predictor of cognitive impairment, those results were 
controversial [31]. Some investigators were unable to 
detect an association between overall WML volume and 
a higher risk of dementia, but did find an association 
between lesions in specific brain regions (e.g., the 
parietal lobe) and the risk of dementia [14, 32, 33]. 
Indeed, in elderly individuals, WMLs were predictive of 
adverse cognitive outcomes reflecting changes in 
executive functions, memory, language and processing 
speed, as measured with the MMSE, trail making, 
Boston naming, and various other neuropsychological 
tests [34–36]. Our results with the RVR model are 
consistent with those earlier studies and further confirm 
that spatial maps of WMLs are predictive of many 
aspects of cognition in both healthy and cognitively 
impaired older people at the level of individuals. 
 
Several specific regions, including the bilateral tapetum, 
posterior corona radiata, and posterior thalamic 
radiation (include optic radiation), showed strong 
associations with the prediction of cognitive 
performance, and these correlations were verified in 
DTI images. The tapetum is located on either side of the 
corpus callosum with fibers connecting the posterior 
corpus callosum and medial temporal lobe and covering 
the central part of the lateral ventricle. It has been 
reported that subjects with a family history of 
Alzheimer’s disease have a lower FA in the left tapetum 
[37], and that patients with Alzheimer’s disease have a 
lower FA and higher MD in these white matter regions 
[38, 39]. These regions were also associated with 
cognitive flexibility in young and middle-aged adults 
with dyskinetic cerebral palsy, a disease resulted from 
damage to the basal ganglia [40]. In addition, the 
bilateral posterior thalamic radiations, posterior corona 
radiata, and thalamocortical and corticocortical 
connections, which widely connect among the thalamus, 
parietal and occipital lobes, also appear to contribute 
greatly in the prediction of cognitive performance. This 

result is consistent with the significant association 
between thalamic pathology and memory loss in early 
Alzheimer’s disease, especially episodic memory, 
which is one of the earliest cognitive deficits in 
dementia [41, 42]. When predicting performance in 
neuropsychological tests, including the Wechsler 
Memory Scale-Revised, Category Fluency, and Trail 
Making Test (score: VEG, LOGIMEM and TRAILB), 
the superior fronto-occipital fasciculus, an association 
fiber tract connecting the frontal, occipital, parietal and 
temporal lobes, also exhibited high weight [43]. The 
superior fronto-occipital fasciculus is the only 
association fiber tract that projects medially to the 
thalamus and along the ventricle, and it is widely 
recognized to be an important connection between the 
insula and the parieto-frontal circuit, which are involved 
in crucial cerebral functions such as memory, language, 
emotion, and behavior [44]. 
 
In our results, WMLs located in posterior brain regions 
showed a slightly closer relation to  cognitive 
impairment than other regions, which is consistent with 
several studies indicating that parietal and occipital 
lobes were the regions where WMLs preferentially 
occurred [45–49].  
 
There are several limitations to the present study. A 
larger sample of participants will be needed verify the 
generalizability of our findings, especially the 
longitudinal data, which will be key to determining the 
predictive ability of WMLs for cognitive outcomes in 
elders. In addition, other modalities of neuroimaging, 
such as functional MRI (resting state and task driven) 
and positron emission tomography (PET), should also 
be examined. In future studies, combining WMLs with 
the other risk factors for cognitive decline in the elderly 
could further improve the predictive performance of our 
model and shed new light on the mechanism underlying 
WMLs in aging. 



www.aging-us.com 4829 AGING 

CONCLUSIONS 
 
In sum, both the volume and spatial distribution of WMLs 
are significantly associated with neuropsychological 
performance in elderly participants from a general 
population cohort. Multidomain cognitive performance 
could be predicted with the information on the intensity 
and spatial probability maps of WMLs. This may provide 
a basis from which to investigate the mechanisms 
underlying cognitive decline in aging, and help clinicians 
to identify elderly individuals at higher potential risk of 
early cognitive impairment. 
 
MATERIALS AND METHODS 
 
Participants 
 
The participants in the current study are a cohort of 
elderly individuals from an ongoing project, known as the 
OASIS-3 study, which is an ongoing longitudinal 
neuroimaging, clinical, cognitive, and biomarker dataset 
for normal aging and Alzheimer’s Disease [18]. This 
dataset consists of >1000 participants aged 18-96, 
including cognitively normal adults and individuals at 
various stages of cognitive decline. A total of 263 subjects 
ranging in age from 55 to 80 years were included in the 
present study. These participants are from both genders 
and are all right-handed. Individuals with major 
psychiatric disorders or disease that could affect cognitive 
abilities were excluded. All participants completed a 
battery of neuropsychological test at the Alzheimer 
Disease Research Center (ADRC). These included the 
MMSE, Wechsler Memory Scale-Revised, Category 
Fluency, Boston Naming, Trail Making, Digit Span and 
Wechsler Adult Intelligence Scale-Revised [50]. A total 
of fifteen neuropsychological scores were included in this 
study. The participants’ clinical information, including 
education, APOE ε4 allele genotype, and level of 
independence were also included. Combined with the 
CDR scale and clinical dementia diagnoses collected in 
accordance with National Alzheimer’s Coordinating 
Center Uniform Data Set (UDS), 43 of the 263 available 
subjects had been diagnosed with MCI (CDR=0.5) and 13 
were diagnosed with Alzheimer’s dementia (CDR>0.5) 
[51]. For each participant, T1 weighted (voxel size: 
1.2×1.0547×1.0547 mm3) and T2 weighted FLAIR (voxel 
size: 0.8594×0.8594×5/6 mm3) were obtained. In 
addition, DTI images (voxel size: 2.5×2.5×2.5mm3, 65 
directions, b0=1, b value=1000) were obtained from 124 
of the subjects. MRI images were obtained using 3-T 
Siemens scanners. 
 
MRI imaging process 
 
Identical imaging processing procedures were used for 
all subjects. The data was preprocessed using Statistical 

Parametric Mapping 12 (SPM12) (https://www.fil.ion. 
ucl.ac.uk/spm/software/spm12) running on MATLAB 
version 2016b, the PANDA toolbox (https://www.nitrc. 
org/projects/panda/), and the FMRIB software library 
v6.0 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). 
Structural brain images as well as T1 and FLAIR 
images were stripped followed by bias field correction 
using FSL BET and FAST [52, 53]. FLAIR images 
were registered to the base modality T1 using linear-
registration. The transformation between an individual’s 
native space and the standard Montreal Neurological 
Institute space coordinates was calculated as spatial 
features. After eddy current corrections, brain 
extraction, DTI index images, including FA, RD, AD, 
and MD, were calculated and normalized to the MNI 
standard space for further analysis. 
 
White matter lesions segmentation 
 
We applied the segmentation algorithm BIANCA, a free 
FSL package, to automatically quantify the WMLs of 
our participants (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 
BIANCA). BIANCA is a fully automated machine 
learning-based pipeline for detecting WMLs based on 
the k-nearest neighbor (KNN) classification algorithm, 
which offers highly flexible options for setting 
parameters such as modalities and location of training 
points [54]. In this study, we used T1 and FLAIR as 
features. T1 was set as the base space, and the training 
set consisted of 10 of the 263 subjects’ WML masks 
marked manually by an experienced neuroradiologist. 
Other options we used in BIANCA: spatial 
weighting=1; no patch; location of training points, any 
location for non-WMLs training points; number of 
training points, Fixed + unbalanced 2000 lesion points 
and 10000 non-lesion points. After segmentation, the 
probability maps of WMLs in T1 native space were 
extracted and volume of lesions was calculated. The 
intensity of each voxel was the probability that the 
voxel belongs to a WML and ranged from 0 to 1. Only 
voxels whose intensity exceeding 0.9 were retained; the 
others were set to zero. This threshold for the 
probability maps was set to obtain the best balance 
between false positive and false negative for the 
segmentation of WMLs, and was also suggested to be 
the optimal threshold for BIANCA [55]. Then lesion 
maps were spatially normalized to the standard space of 
2×2×2 mm3. All registration steps were visually 
inspected. 
 
Prediction of cognitive performance using relevance 
vector regression  
 
To investigate whether the spatial probability maps of 
WMLs were predictive of cognitive performance in 
elderly individuals, the relevance vector regression 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://www.nitrc.org/projects/panda/
https://www.nitrc.org/projects/panda/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA
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(RVR) model was applied.  RVR is a sparse kernel 
method based on a probabilistic Bayesian framework 
with zero-mean Gaussian priors for the model weights, 
which are governed by hyperparameters [56, 57]. 
Specifically, the RVR model took the computed lesion 
maps of WMLs, excluding voxels locating in the 
cerebellum, as input vectors and the performances on a 
given neuropsychological test as targets. The posterior 
distributions of many of the model weights were sharply 
peaked at zero estimated with the training data, and the 
non-zero weights were “relevance vectors,” which were 
then used as the weighted relevance vectors to predict 
the target. The reliability of the WML-based predictive 
RVR model was measured using a 7-cross validation 
approach.  
 
The RVR model provided a prediction of the clinical 
scores in a given test based on WML probability maps. 
The significance of the prediction performance was 
assessed using CORR, the MSE, and the norm MSE. 
 
CORR provides a measure of the linear dependence 
between the targets and predictions; the higher the 
correlation, the more accurate the prediction. CORR 
was determined using the following formula: 
 

2 2

( )( ( ) )
CORR

{ ( ) ( ( ) ) }
n n y n f

n n y n n f

y f x

y f x

µ µ

µ µ

∑ − −
=

∑ − ∑ −
 (1) 

 
MSE is a standard measure to assess goodness-of-fit for 
regression models, and different clinical scores have 
different scales. The higher the MSE, the less accurate 
are the predictions. MSE was calculated as:  

21MSE ( ( ))n n ny f x
N

= Σ −  (2) 

 
To minimize the effect of the scale of y on the MSE, we 
calculated the norm MSE: 
 

norm MSE
( )max min

MSE
y y

=
−

 (3) 

 
yn and f (xn) denote the observed and estimated scores 
corresponding to the input predictors. xn, µy and µf are 
the sample means of yn and f (xn), respectively. N is the 
total number of subjects in the test sample. ymax and ymin 
are the maximum and minimum y, respectively. 
 
Association between diffusion indexes and the 
distribution of RVR weights 
 
The model weights represent the contributions of each 
feature for the RVR predictive model. In this study, the 
region-level weight maps were respectively calculated 
based on the JHU white-matter label atlas containing 48 
white matter regions in the brain and the weights of 
voxels in the same brain region averaged to display the 
decision functions of the predictive models [58]. These 
regions were ranked in ascending order based on their 
weights. The expected ranking (ER) of each region is 
the ranking averaged across folds. Additionally, to 
examine the association between cognitive functions 
and the weight distribution of the corresponding RVR 
prediction model, we first calculated the mean diffusion 
indexes in top five white matter regions with largest 
weights in the RVR model, including FA, AD, RD and 
MD. We then applied multivariate linear regression to

 

 
 

Figure 4. Flow chart for analysis in the present study. First, FLAIR images were registered to the corresponding individual’s T1 space. 
Then, the k-nearest neighbor (KNN) classification algorithm was used to segment the white matter lesions (WMLs) automatically. Finally, a 
machine learning model, relevance vector regression (RVR), was used to predict cognitive performance based on the spatial probability maps 
of the WMLs. 
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assess how each type of diffusion measure in the five 
white matter regions was related to the corresponding 
scores in the cognitive performance tests. 
 
Statistics 
 
Partial Pearson’s correlations, controlled for gender and 
education, were used to assess how cognitive tests 
related to age and to the volume of WMLs detected by 
BIANCA. For the machine learning models used, 
permutation testing was performed to assess the 
models’ statistical significance. Specifically, each 
model was retrained 1000 times and P-values for 
CORR, MSE and norm MSE were calculated. Values of 
P < 0.05 were considered statistically significant. The 
overall procedure is shown in Figure 4. 
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