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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the sixth most 

common cancer and the third leading cause of cancer-

related death worldwide [1]. It is estimated that by 2020 

the number of HCC cases will reach 78,000 in Europe 

and 27,000 in the United States [1]. A better 

understanding of the underlying mechanisms of HCC 

diversity will increase the chances for effective 

treatment and improvement in survival rate. 

Genome-wide analyses of mRNA expression profiles 

have contributed to developing HCC targeted therapies 

over the past two decades. Boyault et al. performed 

transcriptome analyses on 57 HCCs and 3 

hepatocellular adenomas. Six robust subgroups of HCC 

(G1-G6) associated with clinical and genetic 

characteristics were identified [2]. Hoshida et al. 

classified a total of 603 patients into 3 robust HCC 

subclasses (S1, S2, and S3) based on gene expression 

profiles. Each subclass was correlated with clinical 
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parameters such as tumor size and extent of cellular 

differentiation [3]. Chiang et al. divided 91 HCC 

samples into 5 subclasses based on gene expression 

profiles [4]. Lee et al. analyzed global gene expression 

patterns of 91 HCCs. The samples were classified into 

two distinctive subclasses that were highly associated 

with patient survival [5]. The existing classifications are 

mainly based on gene expression profiles, and few of 

them are based on DNA methylation profiles. However, 

HCC is a complex disease arising from accumulation of 

both genetic and epigenetic alterations [6]. 

Transcriptome data alone is insufficient for revealing 

the heterogeneity of HCC. It has been demonstrated that 

classification of HCC with DNA methylation data is 

clinically significant [7]. 

 

As one of the core elements in epigenetic modifications, 

DNA methylation participates in a diverse range of 

cellular and biological processes such as cell 

differentiation, aging, tissue-specific gene expression, 

genome stability and genomic imprinting [8]. In 

addition to the implication during normal development, 

DNA methylation involves in pathologies such as 

carcinogenesis [9]. Hypermethylation of CpG islands in 

promoter sequences can cause epigenetic inactivation of 

tumor suppressor genes followed by mRNA transcript 

repression [9]. Unlike DNA aberrations, epigenetic 

changes are reversible, which makes them potential 

therapeutic targets [9]. 

 

Aberrant methylation of several tumor suppressor genes 

and tumor-related genes such as RASSF1A, hMLH1 and 

SOCS1 is constantly identified in HCC [10]. TMS1 is a 

proapoptotic gene with promoter methylation observed 

in 80% HCC patients [11]. Aberrant methylation of 

SEMA3B is reported in 80% HCCs [11]. SEMA3B 

induces apoptosis and is detected in lung cancers and 

gliomas [11]. A number of studies on these DNA 

methylation-driven genes have already been published 

[12, 13].  

 

To obtain a better understanding of HCC heterogeneity, 

we established an HCC classification based on 

integrated gene expression and methylation data of 

methylation-driven genes (MDGs). Consensus 

clustering identified 4 HCC subclasses significantly 

associated with prognosis value. The 4 subclasses 

showed distinct clinical features and enrichment in 

different signatures. Somatic mutations and copy 

number mutations data were analyzed and visualized. 

Besides, HCC patients were clustered into distinct CpG 

island methylator phenotype (CIMP) based on the 

methylation level of 674 most variable CpGs. The 

accuracy of the transcriptome-based prediction model 

constructed by machine learning algorithms was 

favorable. 

RESULTS 
 

Identification of 4 HCC subclasses 

 

Messenger RNA expression data and methylation data 

were integrated under the same sample with the 

MethylMix R package [14] to identify MDGs. 401 

MDGs with |logFC| > 0, P < 0.05 and |Cor| > 0.3 were 

reserved for subsequent analyses (Supplementary Table 

1). Then, 369 HCC patients were clustered based on the 

integrated mRNA expression and methylation data of 

401 MDGs by “ExecuteCNMF” function in 

CancerSubtypes package [15]. Optimal number of 

clusters was determined according to comprehensive 

consideration of Silhouette width value and clinical 

significance (Figure 1A, 1B and Supplementary Figure 

1). When the samples were classified into 2, 3 and 4 

subtypes, average silhouette widths were 0.93, 0.97 and 

0.94, respectively. If Silhouette width is close to 1, it 

means the samples are well classified. Silhouette widths 

for 2, 3 and 4 clusters were all close to 1. Besides, when 

the samples were classified into 3 groups, no 

significance in survival was identified (p=0.0692). We 

considered it more appropriate to divide the samples 

into 4 subclasses to provide more information for 

diagnosis based on their different molecular features. 

The 4 HCC subclasses identified were named HCC 

Subclass 1 (HS1), HCC Subclass 2 (HS2), HCC 

Subclass 3 (HS3) and HCC Subclass 4 (HS4). To 

validate subclasses’ assignments, we performed t-

distributed stochastic neighbor embedding (t-SNE) to 

decrease the dimension of features and found that 

subtype designations were largely concordant with two-

dimensional t-SNE distribution patterns (Figure 1C).  

 

Survival analysis was conducted, and significant 

prognostic difference was observed when using overall 

survival (OS) as an endpoint (log-rank test P = 0.0057, 

Figure 1D). A longer median survival time (MST) was 

detected for HS1 (MST=2839 days, 95% CI: 1749-3929 

days) compared with HS2 (MST= 1622 days, 95% CI: 

929-2315 days, P = 0.0609), HS3 (MST=1818 days, 

95% CI: 1213-2423 days, P = 0.5308) and HS4 (MST= 

1135 days, 95% CI: 450-1820 days, P = 0.0034). 

However, when using recurrence free survival (RFS) as 

an endpoint, there was no significant prognostic 

difference among HCC classifications (Figure 1D and 

Supplementary Table 2). 

 

The characteristics of 401 MDGs were then investigated. 

Metabolism and immune relevant gene lists were obtained 

from previous studies [16, 17]. Through intersecting these 

gene lists with 401 MDGs, we identified metabolism and 

immune associated MDGs (100 MDGs for metabolism 

and 51 for immunity). Besides, considering that DNA 

methylation alterations in tumor suppressor genes (TSGs) 
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Figure 1. Identification of HCC subclasses based on integrated transcriptome and methylation data of MDGs. (A) Consensus 
matrix for k = 2 to k = 5. (B) Silhouette values under corresponding k values. (C) T-SNE analysis of mRNA expression data from tumor samples 
included in the cluster analysis (D) OS and RFS of 4 HCC subclasses. Statistical significance of differences was determined by Log-rank test. (E) 
Heatmaps show the expression and methylation level of 401 MDGs in HCC subclasses. 401 MDGs were divided into 4 groups, including 
metabolism associated MDGs, immune associated MDGs, putative methylation driven TSGs and other MDGs. HCC: hepatocellular carcinoma; 
MDG: methylation driven gene; t-SNE: t-distributed stochastic neighbor embedding; OS: overall survival; RFS: recurrence free survival; TSG: 
tumor suppressor genes. 



 

www.aging-us.com 4973 AGING 

were involved in carcinogenesis, we intersected 401 

MDGs with putative TSGs to obtain putative methylation 

driven TSGs. The expression and methylation levels of 

these MDGs were both visualized in Figure 1E and 

detailed information was listed in Supplementary Table 3. 

 

Correlation of the HCC subclasses with clinical 

characteristics and classical classification 
 

The relationships between HCC classifications and 

clinical characteristics were then investigated (Figure 2 

and Supplementary Table 4). Results revealed that HS2 

was associated with histologic grade G3/G4 (46/99 vs 

82/259, P = 0.0089) and high serum α-fetoprotein 

(AFP) level (37/75 vs 58/201, P = 0.0014). HS3 was 

associated with lower proportion of virus infection 

(44/87 vs 58/166, P = 0.0160), histologic grade G1/G2 

(93/120 vs 137/238, P = 0.0002), and low serum AFP 

level (77/90 vs 105/186 in the rest, P < 0.0001). 

 

Then, our classification was also compared with 

previously reported HCC molecular subclasses, 

including Boyault’s classification [2] (G1 to G6), 

Chiang’s classification [4] (5 classes), Hoshida’s 

classification [3] (S1, S2, and S3), and The Cancer 

Genome Atlas (TCGA) classification [18] (iCluster1, 

iCluster2, and iCluster3). Results suggested that HS1 

was significantly associated with Chiang's Proliferation 

class (31/85 vs 52/278 in the rest, P = 0.0006). HS2 was 

significantly associated with Hoshida’s S2 (47/100 vs 

53/263 in the rest, P < 0.0001). HS3 was significantly 

associated with Boyault’s G5/G6 (66/122 vs 65/241 in 

the rest, P < 0.0001), Chiang's CTNNB1 class (45/122 

vs 44/241 in the rest, P = 0.0001), and Hoshida’s S3 

(111/122 vs 114/241 in the rest, P < 0.0001). HS4 was 

significantly associated with Boyault’s G3 (45/56 vs 

97/307 in the rest, P < 0.0001), Hoshida’s S1 (28/56 vs 

10/307 in the rest, P < 0.0001), and TCGA iCluster1 

(20/33 vs 41/145 in the rest, P = 0.0004). 

 

Correlation between HCC subclasses and CIMP 

 

Considering that MDGs based classification may result 

in different methylation status among subclasses, we 

then explored the methylation characteristics of 4 HCC 

subclasses. First, according to previously mentioned 

approach to find CIMP in HCC [7], we clustered 

samples into distinct groups using K-means method 

based on the methylation level of 674 most variable 

CpGs. Among these groups, C2 was defined as non-

CIMP group with the lowest methylation level of 674 

CpGs. C7 was defined as CIMP-H group with the 

 

 
 

Figure 2. Correlation of our classification (HS1, HS2, HS3 and HS4) with distinct clinical characteristics and previously 
published HCC subclasses. Prediction of previously published HCC classifications was performed with NTP analyses. Statistical significance 
of differences was determined by Chi-square test (ns represents no significance, * represents P < 0.05, ** represent P < 0.01, *** represent P 
< 0.001, **** represent P < 0.0001). HCC: hepatocellular carcinoma; NTP: Nearest Template Prediction. 
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highest methylation level of 674 CpGs. The remaining 

groups with moderate methylation level of 674 CpGs 

were defined as CIMP-L group (Supplementary Figure 

2A). Although no significant prognostic difference was 

observed among groups, CIMP-H (C7) group still 

showed a trend towards poorer prognosis 

(Supplementary Figure 2B and 2C). The relationship 

between our classification and CIMP was visualized in 

Supplementary Figure 2D, and results of statistical 

analysis revealed that samples in non-CIMP were more 

enriched in HS3 and HS4 than HS1 and HS2 (63/180 vs 

44/189, P = 0.0131). 

 

Correlation of HCC subclasses with metabolism and 

immune associated signatures 

 

The outcome that 100 of the 401 MDGs were involved 

in metabolism and 51 were involved in immunity drove 

us to investigate the characteristics of metabolism and 

immunity in HCC subclasses (Figure 3). First, 

 

 
 

Figure 3. Heatmaps show difference in metabolism signatures (glucose metabolism, amino acid metabolism, and lipid 
metabolism), immune related genes expression, immune-associated signatures and other signatures, immune and stromal 
cell populations predicted by MCP-counter among 4 HCC subclasses (see detailed information in Supplementary Figure 2).  
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metabolism and immune associated processes were 

quantified using Gene Set Variation Analysis (GSVA) 

and microenvironment cell populations-counter (MCP-

counter) methods. Then, statistical analyses were 

conducted, and results suggested that metabolic and 

immune processes in distinct classifications differed 

greatly (detailed statistical analyses were shown in 

Supplementary Figure 3A). Particularly, HS3 had 

higher signature scores for metabolism than other 

subclasses, except several lipid metabolic processes, 

including glycerophospholipid metabolism, ether lipid 

metabolism, shingolipid metabolism, arachidonic acid 

metabolism, and alpha−linoleic acid metabolism. HS4 

exhibited lower enrichment in these metabolic processes 

than other subclasses. HS1 and HS2 had moderate 

signature scores, and there was also no significant 

difference between HS1 and HS2. 

 

For immune associated processes, we first investigated 

the association between subclasses and the expression 

of 20 potentially targetable immune related genes, and 

results indicated that HS4 exhibited higher expression 

for multiple immune related genes (CD276, TGFB1, 
CXCR4, CTLA4, ICOS, TNFRSF9, CCL2, IL1A, 
HAVCR2, IL10, CD274, and PDCD1LG2) and lower 

expression for ADORA2A than other subclasses 

(Supplementary Figure 3B). HS3 exhibited lower 

expression for CD276, TGFB1, CTLA4, ICOS, PDCD1, 

TNFRSF4, CD274, and LAG3 than other subclasses. No 

significant difference for immune related gene 

expression was detected between HS1 and HS2. We 

then explored immune infiltration of 4 subclasses. The 

abundance of 10 immune and stromal related cell types 

was calculated using MCP-counter algorithm. 

Significant difference was observed between HS4 and 

other 3 subclasses, with higher abundance of 4 cell 

populations (T cells, myeloid dendritic cells, monocytic 

lineage, and Fibroblasts) for HS4 compared with other 3 

subclasses. In addition, HS3 exhibited lower enrichment 

of B lineage, CD8 T cells, T cells, and myeloid 

dendritic cells. There was no significant difference of 

cell abundance in most cell populations between HS1 

and HS2 (Supplementary Figure 3C). For immune 

associated signatures, HS4 exhibited higher enrichment 

for interferon (IFN) signature than HS1 and HS2 

(Supplementary Figure 3D).  

 

The difference of other critical signatures among 

HCC subclasses 
 

The associations between our HCC classification and 

several critical signatures involved in oncogenesis and 

progression of HCC were also investigated, including 

extracellular matrix (ECM) signature, epithelial 

mesenchymal transition (EMT) signature, TGF-β 

signature, mismatch repair signature, DNA damage 

repair signature, angiogenesis signature, cell cycle 

signature, differentiation signature, mTOR pathway 

signature, stem signature, and WNT activation signature 

(Figure 4A and 4B). Results showed that HS4 

demonstrated a higher enrichment of stromal relevant 

signature (ECM signature and TGF-β signature), DNA 

repair relevant signature, cell cycle signature, mTOR 

signature and lower enrichment of differentiation 

signature compared with other 3 subclasses. HS3 

exhibited lower enrichment of stem signature than other 

subclasses, and higher enrichment of differentiation 

signature than HS2. In addition, no significant 

difference of WNT activation signature was observed 

between HS2 and HS3, and both of them showed a 

higher enrichment of WNT activation signature than 

HS1 and HS4. HS1 and HS2 showed no significant 

difference in enrichment of ECM signature, TGF-β 

signature, DNA repair relevant signature, cell cycle 

signature, and mTOR signature. HS2 showed higher 

enrichment of stem signature compared with HS4. HS1 

showed higher level of angiogenesis signature and 

differentiation signature compared with HS3. 

 

Considering the limited evidence provided by 

transcriptome data, we further analyzed proteomic data 

to validate the conclusion. Reverse Phase Protein Array 

(RPPA) based proteomic data was download from The 

Cancer Proteome Atlas (TCPA) database. All proteins 

were annotated according to their corresponding genes. 

Because of the limited proteins detected by protein 

array, we only chose to investigate the difference of 

protein levels in PI3K/mTOR pathway, p53/Cell cycle 

pathway and TGF-β/Smad pathway among 4 HCC 

subclasses. In PI3K/mTOR pathway, HS4 exhibited 

higher expression of S6_pS240/S244, X4EBP1 and 

X4EBP1_pT70 than other 3 groups. HS3 had higher 

expression of AKT_pS473, Tuberin_pT1462 and 

P70S6K_pT389 than other groups (Figure 5A and 

Supplementary Figure 4A). In P53/Cell cycle pathway, 

HS4 had higher expression of ATM and CHK1_pS296, 

while HS3 had higher expression of CHK1, 

CHK1_pS345, P53, CDK1 and CDK1_pY15 (Figure 

5B and Supplementary Figure 4B). In TGF-β/Smad 

pathway, HS3 had lower expression of Smad3 and 

higher expression of Snail than other 3 groups (Figure 

5C and Supplementary Figure 4C). Significance was 

detected between HS1 and HS2 for the expression of 

AKT and AKT_pT308. 

 

Mutations and copy number alterations associated 

with HCC subclasses 

 

To investigate differences in mutations and copy 

number alterations among HCC subclasses, we 

analyzed the somatic mutation and copy number data. 

The mutation status of genes in p53/Cell cycle pathway, 
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Wnt/beta-catenin pathway, hepatic differentiation, and 

DNA methylation was visualized in Supplementary 

Figure 5A. Results of statistical analysis revealed that 

HS1 was associated with a low percentage of alterations 

in CTNNB1 (13/84 vs 70/265 in the rest, P = 0.0402) 

and a high percentage of alterations in AXIN1 (11/84 vs 

17/265 in the rest, P = 0.0495). HS2 was associated 

with a high percentage of alterations in AXIN1 (13/99 vs 

15/250 in the rest, P = 0.0271). HS3 was associated 

with a low percentage of alterations in TP53 (19/112 vs 

81/237 in the rest, P = 0.0009), MUC16 (10/112 vs 

44/237 in the rest, P = 0.0201) and AXIN1 (2/112 vs 

26/237 in the rest, P = 0.0032), and a high percentage of 

alterations in CTNNB1 (35/112 vs 48/237 in the rest, P 

= 0.0243). HS4 was associated with a low percentage of 

alterations in CTNNB1 (5/54 vs 77/295 in the rest, P = 

0.0174). Detailed results of the above statistical 

analyses were shown in Supplementary Table 5. 

Subsequently, mutation signatures in subclasses were 

investigated. First, we explored the proportion of 6 

single-nucleotide substitutions (C>A/G>T, C>G/G>C, 

C>T/G>A, T>A/A>T, T>C/A>G, and T>G/A>C) in 

each HCC subclass (Supplementary Figure 5B). Then 

we computed sample-wise signature profiles, and 

filtered out mutation signatures with no prognostic 

significance (P > 0.15 in Cox regression). 4 mutation 

 

 
 

Figure 4. Difference of progression-relevant signatures among HCC subclasses. (A) Heatmap of progression-relevant signatures in 4 
HCC subclasses. (B) Box plots (from 25th percentile to the 75th percentile with a line at the median) show the abundance of progression-
associated signatures. Statistical significance of overall differences was determined by Kruskal Wallis test (ns represents no significance,  
* represents P < 0.05, ** represent P < 0.01, *** represent P < 0.001, **** represent P < 0.0001).  
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signatures (Signature 4, 18, 22, and 24) were remained 

after filtration (Supplementary Table 6), and signature 

weight was transformed into mutation number for 

comparison among groups. Significant difference of 

Signature 24 among 4 subclasses was observed, with 

more mutations of Signature 24 in HS4 than in HS3. 

(Supplementary Figure 5C and 5D). 

 

Aside from point mutations and short 

insertions/deletions, we also analyzed DNA copy 

number alterations across distinct classifications based 

on segmentation data obtained from TCGA by using 

GISTIC2. Genome-wide focal amplification (red) and 

deletion (blue) peaks identified in different subclasses 

were presented in Supplementary Figure 6A. The 

number of specific amplification regions for HS1, 2, 3 

and 4 were 18, 6, 37 and 8, respectively. The number of 

specific deletion regions for HS1, 2, 3 and 4 were 15, 7, 

13 and 7, respectively. The common amplification 

regions of 4 subclasses were 5p15.33, 6q12, 11q13.3 

 

 
 

Figure 5. Difference of protein expression levels in PI3K/mTOR pathway, P53/Cell cycle pathway, and TGF-β/Smad pathway 
among 4 HCC subclasses. (A) Heatmap shows the expression level of 24 proteins in PI3K/mTOR pathway. The right half of the figure shows 
the basic components of PI3K/mTOR pathway. (B) Heatmap shows the expression level of 15 proteins in P53/Cell cycle pathway. The right 
half of the figure shows the basic components of P53/Cell cycle pathway. (C) Heatmap shows the expression level of proteins in TGF-β/Smad 
pathway. The right half of the figure shows the basic components of TGF-β/Smad pathway (see detailed information in Supplementary Figure 
3). Data is available for proteins inside grey boxes. HCC: hepatocellular carcinoma.  
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and 19p13.12, while common deletion region was 

9p21.3 (Supplementary Figure 6B and Supplementary 

Table 7). 

 

Class prediction of HCC patients based on 

transcriptome data 

 

We labeled each sample with its assigned cluster 

according to the HCC classification we established. A 

classification model was developed to investigate 

whether potential HCC samples can be distributed into 

groups identical with the training cohort based on 

transcriptome data of 2835 differentially expressed 

genes (DEGs) (Supplementary Table 8). The workflow 

was shown in Figure 6A. A transcriptome-based 

prediction model was constructed by random forest 

(RF) and Least Absolute Shrinkage and Selector 

Operation (LASSO) algorithm. The accuracy of the 

model in training cohort and testing cohort were 97.3% 

and 79.7%, respectively (Figure 6B). Then, we 

performed receiver operating characteristic (ROC) 

curves that can illustrate the relationship between TPR 

(sensitivity) and FPR (1-specificity) for each class. Area 

under the curve (AUC) close to 1 indicates that the 

classifier is predicting with maximum TP and minimum 

FP. Results of AUC for HS1, 2, 3 and 4 in training 

cohort were 1.000, 0.999, 0.999 and 1.000, respectively. 

In the testing cohort, AUC for HS1, 2, 3 and 4 were 

0.950, 0.939, 0.960 and 0.980, respectively (Figure 6C).  

 

DISCUSSION 
 

This integrative analysis based on DNA methylation 

and gene expression profiles of MDGs in HCC revealed 

4 subclasses with distinct features (Figure 6D). HS1 

was well differentiated with the best prognosis and high 

percentage of AXIN1 mutations. HS2 had high serum 

AFP level that was correlated with its poor outcome. 

High percentage of CTNNB1 mutations corresponded 

with HS2’s activation in WNT signaling pathway. HS3 

was well differentiated with low serum AFP level and 

enriched in metabolism signatures, but was barely 

involved in immune signatures. HS3 also had high 

percentage of CTNNB1 mutations and enriched in WNT 

activation signature. HS4 was poorly differentiated with 

the worst prognosis and enriched in immune-related 

signatures, but was barely involved in metabolism 

signatures. HS3 and HS4 both enriched in non-CIMP. 

Machine learning algorithms were applied to building a 

prediction model, and results showed that the model had 

high sensitivity and specificity in distributing potential 

HCC samples into distinct classifications. 

 

The best prognosis value of HS1 was associated with high 

GSVA score in differentiation and lower score in WNT 

activation signature. The poor prognosis of HS2 was 

associated with higher enrichment in stemness and WNT 

signaling pathway activation. WNT signaling activation is 

mainly due to mutations in CTNNB1, a β-catenin gene 

[19]. The frequent mutations of CTNNB1 in HS2 

corresponded with its activation in WNT signaling. HS3 

patients also had high percentage of alterations in 

CTNNB1. HS3 presented lower score in stemness and 

higher score in differentiation. On the contrary, HS4 had 

higher score in ECM, TGF- β pathway, mismatch repair, 

DNA damage repair, cell cycle, mTOR pathway and 

lower score in differentiation. The worst prognosis of HS4 

was correlated with its involvement in the above 

mentioning carcinogenesis signatures. 

 

HS2 and HS3 patients may be beneficial from therapeutic 

approaches that aim to target the Wnt–β-catenin pathway. 

For example, a small peptide called CGX1321 can inhibit 

Wnt lipid modifications. It is tested by a phase I trial in 

patients with advanced solid tumors, including  

HCC (https://clinicaltrials.gov/ct2/show/NCT02675946). 

Another phase I trial tests the efficacy of OMP-54F28, a 

fusion protein targeting Wnt ligands (https://clinicaltrials. 

gov/ct2/show/NCT02069145). DKN-01 inhibits non-

canonical β-catenin pathway and is currently being 

investigated in a phase I trial in combination with 

gemcitabine and cisplatin in various cancers including 

HCC (https://clinicaltrials.gov/ct2/show/NCT02375880). 

The efficacy of these therapies for HS2 and HS3 patients 

requires further investigation. HS4 patients may be 

beneficial from therapies targeting the mTOR pathway. It 

has been reported that Everolimus is an mTOR inhibitor 

that can prevent tumor progression and improve survival 

in preclinical HCC models. A phase III study tested the 

efficacy of Everolimus in patients with advanced HCC 

after failure of sorafenib [20]. 

 

HS3 exhibited higher expression level of Akt involving 

in PI3K/mTOR pathway, indicating that HS3 patients 

may be beneficial from Akt inhibitors. As the key 

component of PI3K signaling pathway, Akt is 

considered to be an attractive target for cancer therapy 

[21]. Multiple Akt inhibitors such as ATP-competitive 

inhibitors (GSK690693, GDC0068, and AZD5363) and 

allosteric inhibitors (MK-2206) have been investigated 

in clinical trials against tumors. The results are 

promising [22]. HS4 had higher expression of ATM, a 

core component of the DNA repair system [23]. 

Targeting ATM may be a promising strategy for cancer 

treatment [23]. Currently, ATM inhibitors such as 

AZD0156 and AZD1390 are under investigation in 

phase I clinical trials [23]. HS4 patients may be 

beneficial from ATM inhibitors. HS3 had higher 

expression of CDK1, indicating HS3 patients may be 

beneficial from inhibitors targeting CDK1. BEY1107, 

an anti-cancer agent that selectively acts on CDK1, is in 

phase I/II clinical trial [24]. 

https://clinicaltrials.gov/ct2/show/NCT02675946
https://clinicaltrials.gov/ct2/show/NCT02069145
https://clinicaltrials.gov/ct2/show/NCT02069145
https://clinicaltrials.gov/ct2/show/NCT02375880
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It appears that human cancer mutations and cancer 

genes constantly affect metabolism processes including 

aerobic glycolysis, glutaminolysis and one-carbon 

metabolism that produce amino acids, nucleotides, fatty 

acids and other substances for cell growth and 

proliferation [25]. Metabolic therapies targeting certain 

metabolism process provide alternatives for 

chemoresistant patients. For example, it has been

 

 
 

Figure 6. Class prediction of HCC patients. (A) Flow chart shows the process of prediction model construction. (B) Confusion matrix 
evaluations of prediction model within the training cohort and testing cohort. A perfect prediction model (100% accuracy) have 0 counts for 
all non-diagonal entries (that is, no misclassified samples). (C) ROC curves in training and testing cohort depict trade-offs between true and 
false positive rates as classification stringency varies. AUC values close to 1 indicate that a high true positive rate was achieved with low false 
positive rate, while AUC values close to 0.5 indicate random performance. (D) Overview of the characteristics of 4 HCC subclasses. HCC: 
hepatocellular carcinoma; ROC: Receiver operating characteristic; AUC: Area under the curve. 
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reported that metformin can prevent liver 

carcinogenesis [26] and treatment with metformin is 

associated with favorable prognosis in patients with 

HCC [27]. Determining the responders of metabolic 

therapies has proven to be challenging [28]. This study 

provided insights into predicting potential responders 

towards metabolic therapies. HS3 enriched in 

metabolism signatures including glucose metabolism 

and amino acid metabolism, indicating that HS3 

patients may be beneficial from metabolic therapies like 

metformin. On the other hand, HS4 patients presented 

low enrichment in metabolic processes, suggesting that 

they may be non-responders towards metabolic 

therapies. These assumptions require further 

experimental validation. 

 

In the last decades, immunotherapy has been 

investigated and applied in multiple tumors including 

HCC. Immune checkpoints play an essential role in 

maintaining tolerance and preventing T cell over-

activation [29]. Immune checkpoint expression can lead 

to T cell exhaustion and immune tolerance [29]. PD-1 is 

expressed by activated T cells, B cells, NK cells and 

myeloid cells [29]. In physical conditions, when PD-L1 

is expressed on antigen presenting cells (APC), the 

interaction between PD-L1 and PD-1 will maintain self-

tolerance and prevent the activation of T cells [30]. 

However, tumor cells can also express PD-L1 thus 

inducing immune tolerance [31]. The multiplicity of 

infiltrating PD1+ CD8+ cells and the expression of PD-

L1 in HCC cells have been proven to be associated with 

worse prognosis [32]. Other checkpoint molecules 

including CTLA4, TIM3 and LAG3 are also implicated 

in the suppression of immune response against HCC 

[29]. Immune checkpoint inhibitors (ICIs) can unleash 

cytotoxic T cells against tumors to strengthen immune 

response thus showing anti-tumor efficacy [33]. ICIs 

including CTLA-4 and PD-1/PD-L1 inhibitors have 

been investigated in clinical trials of HCC. Nivolumab 

is a PD-1 immune checkpoint inhibitor. Promising 

results regarding its efficiency have been achieved in a 

clinical trial on advanced HCC patients [34]. 

Pembrolizumab is another PD-1 immune checkpoint 

inhibitor which has been proven to be effective for 

advanced HCC patients who was previously treated 

with sorafenib [35]. In this study, HS4 showed higher 

expression for most of the immune checkpoint genes, 

while HS3 exhibited lower expression for CD276, 

TGFB1, CTLA4, ICOS, PDCD1, TNFRSF4, CD274, 
and LAG3 than other subclasses. Results indicated that 

HS4 patients may be responders towards ICIs while 

HS3 patients were less likely to respond to ICIs. In 

addition, HS4 also exhibited higher enrichment for IFN 

signature than HS1 and HS2. IFNγ is one of the 

cytokines that can induce PD-1 expression in T cells 

[29], which may be associated with the highest 

expression of immune checkpoint genes in HS4. The 

worst prognosis of HS4 was associated with its high 

expression of immune checkpoint molecules.  

 

CIMP is a phenomenon of simultaneous methylation in 

multiple genes [7]. Although the fraction of CIMP is 

smaller in HCC compared with other cancer types, the 

CIMP group still requires special attention because of 

its poor prognosis [7]. Based on the methylation level of 

674 most variable CpGs, HCC patients were clustered 

into 7 groups, which was consistent with a previous 

study [7]. Although no significant outcome was 

identified, consistent with previous results [7], the 

overall survival time of CIMP patients was statistically 

shorter than that of non-CIMP patients. Several drugs 

that modify DNA methylation by targeting DNA 

methyltransferases have been investigated. For 

example, it has been reported that Zebularine (1-(β-(D)-

ribofuranosyl)-1,2-dihydropyrimidin-2-one) inhibits 

DNA methylation and induces apoptosis in HepG2 cell 

line [36]. Another study reported that Zebularine 

inhibits tumor growth in xenograft models. Genes 

involved in apoptosis, cell cycle, and tumor suppression 

were demethylated in liver cancer cell lines [37]. 

 

In conclusion, this classification based on integration of 

DNA methylation and transcriptome profiles revealed 

distinct characteristics of HCC subtypes, which 

provided novel clinical insights into predicting both the 

prognosis of HCC and prospective therapies. Future 

research will accelerate the clinical validation of HCC 

classification and will promote precision diagnostics as 

well as therapeutics for HCC patients. 

 

MATERIALS AND METHODS 
 

Data preparation 
 

Multiplatform genomics data, including mRNA 

expression data (raw counts), gene somatic mutation data 

(MAF files), DNA copy data (segment file) (March 27, 

2019), DNA methylation array data (July 27, 2019), 

RPPA data and corresponding clinical information 

(August 19, 2019) of TCGA-LIHC cohort were retrieved 

from TCGA database (http://cancergenome.nih.gov/).  

 

Transcripts per kilobase million (TPM) values were 

calculated based on raw counts. DNA methylation array 

data was generated from the Illumina Infinium 

HumanMethylation450 BeadChip array. Methylation 

level of each probe was represented by β value (ranging 

from 0 to 1). Probes containing ‘NA’ marked data 

points or located on sex chromosomes were removed. 

Then, probes residing in gene promoter regions 

including the upstream 2.5 kb from TSS, 5’UTR and 

first-exon regions were mapped to their corresponding 

http://cancergenome.nih.gov/
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genes. Methylation level of a certain gene was 

determined as the average methylation level of 

corresponding probes residing in promoter regions. 

 

Identification of methylation driven genes-associated 

classification 

 

First, MDGs were identified based on mRNA 

expression data from tumor samples and methylation 

data from tumor and normal samples by using 

MethylMix package in R [14]. 369 HCC and 50 normal 

non-paired samples were used to explore differentially 

expressed MDGs. The MethylMix algorithm can 

explore different methylation level and calculate the 

correlation between gene expression and gene 

methylation level. We defined MDGs as genes with 

|logFC| > 0, P < 0.05 and |Cor| > 0.3. Subsequently, 

consensus nonnegative matrix factorization (CNMF) 

was applied to conduct consensus clustering based on 

the integrated gene expression and methylation data of 

MDGs by the function “ExecuteCNMF” from the R 

package CancerSubtypes [15]. T-SNE based approach 

was then applied to validate subtype assignments based 

on mRNA expression data of MDGs. Prediction of 

previously published HCC molecular classifications [2–

4, 18] was performed by conducting nearest template 

prediction (NTP) analyses (Gene Pattern modules). 

DEGs among HCC subclasses were identified using 

edgeR package based on raw counts. Genes with an 

absolute log2 fold change (FC) > 1 (adjusted P < 0.01) 

were defined as DEGs [38]. 

 

Identification of CpG island methylator phenotype 
 

To investigate the relationship between methylation 

driven genes associated classification and CpG island 

methylator phenotype, we used previously described 

approach [7] to identify distinct CpG island methylator 

phenotype of HCC. In specific, CpGs in the promoter 

region that have a high standard deviation (SD > 0.2) of 

methylation level in 369 tumor tissues and low 

methylation level (mean β value < 0.05) in 50 normal 

tissues were selected. K-means consensus clustering 

was performed on these CpGs using the 

ConsensusClusterPlus package in R [39]. 

 

Estimation of metabolism and immune-associated 

signatures 

 

GSVA is a gene set enrichment method that can 

estimate the score of certain signatures based on 

transcriptomic data [40]. Metabolism-relevant (glucose 

metabolism, amino acid metabolism, lipid metabolism), 

immune-relevant (antigen presentation MHC class I/II, 

CD8 T effector, cytolytic activity, IFN), and other HCC 

progression (ECM, EMT, TGF-β pathway, mismatch 

repair, DNA damage repair, angiogenesis, cell cycle, 

differentiation, mTOR pathway, stem, and WNT 

activation) signatures were achieved from previously 

published studies [28, 41]. We can quantitatively 

measure these biological processes by GSVA R package. 

Besides, the absolute abundance of 8 immune cell 

populations (T cells, CD8+ T cells, natural killer cells, 

cytotoxic lymphocytes, B cell lineage, monocytic 

lineage cells, myeloid dendritic cells, neutrophils) and 2 

nonimmune stromal cell populations (endothelial cells 

and fibroblasts) was also quantified using MCP-counter 

algorithm [42]. 

 

Mutation signature and copy number analysis 
 

A predefined set of 30 mutational signatures from the 

Wellcome Trust Sanger Institute was obtained [43]. 

Each signature represented a characteristic pattern of 96 

possible nucleotide substitution motifs. Relative 

contribution of each mutational signature for tumor 

samples was quantified using deconstructSigs R 

package [44], and the parameters were set as following: 

‘exome2genome’ trinucleotide-count normalization and 

signature cutoff at 6%. Prognosis associated mutational 

signatures (P < 0.15) were identified using Cox 

regression in survival package. Copy number variation 

(CNV) data was downloaded from GDAC Firehose. 

Then, GISTIC 2.0 (Gene Pattern modules) was used to 

investigate the significant amplification or deletion 

events in the regions of the genome [45]. 

 

Development of classification model 
 

The full TCGA dataset (n=369) was randomly split into 

training and testing cohorts according to the ratio of 4:1, 

corresponding to 295 and 74 samples. Then, two 

machine learning (ML) algorithms were used to develop 

the classification model based on all DEGs. First, RF 

based variable selection method using OOB error was 

applied to preliminarily screen for DEGs, and genes 

accounting for 90% of the cumulative weight were 

reserved. After primary filtration, a LASSO algorithm, 

with penalty parameter tuning conducted by k-folds 

cross-validation (k=20), was used to build the final 

classification model. Subsequently, the LASSO based 

classification model was applied to the testing cohort. 

The predictability of the model was evaluated by 

confusion matrix and receiver operating characteristic 

(ROC) curves. 

 

Statistical analysis 

 

All the computational and statistical analyses were 

performed using R version 3.6.0 software. The 

difference between 2 groups was compared using 

unpaired Student t test (for normally distributed 
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variables) or Mann-Whitney U test (for non-normally 

distributed variables). For comparisons of 3 or more 

groups, one-way analysis and Kruskal-Wallis tests were 

used as parametric and non-parametric methods, 

respectively. Contingency table variables were analyzed 

by Chi-square test or Fisher’s exact tests. Survival 

analysis was carried out using Kaplan Meier methods 

and was compared by the Log-rank test. A two-tailed p 

value less than 0.05 was statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 

 

 

Supplementary Figure 1. Silhouette plot for k = 4 classes. 

 

 

 
 

Supplementary Figure 2. Correlation of the HCC subclasses with methylation clusters. (A) 7 methylation clusters were obtained 
using k-means consensus clustering. These clusters were then divided into 3 groups, namely non-CIMP, CIMP-H and CIMP-L. (B) Kaplan-Meier 
survival curves of 7 methylation clusters. Statistical significance of differences was determined by Log-rank test. (C) Kaplan-Meier survival 
curves of 3 methylation groups. (D) Sankey plot shows that HS3 and HS4 are associated with non-CIMP group. Statistical significance of 
differences was determined by Chi-square test. HCC: hepatocellular carcinoma; CIMP: CpG island methylator phenotype. 
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Supplementary Figure 3. Difference of abundance in metabolism and immune-associated signatures among HCC subclasses. 
(A) Box plots (from 25th percentile to the 75th percentile with a line at the median) show the range of abundance in metabolism associated 
signatures. (B) Box plots show the expression level of immune related genes. (C) Box plots show the abundance of immune and stromal cell 
populations. (D) Box plots show the abundance of immune-relevant signatures. 
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Supplementary Figure 4. Association between HCC classifications and expression level of proteins in 3 pathways. (A) Box plots 
(from 25th percentile to the 75th percentile with a line at the median) show the expression level of proteins in PI3K/mTOR pathway. (B) Box 
plots show the expression level of proteins in P53/Cell cycle pathway. (C) Box plots show the expression level of proteins in TGF-β/Smad 
pathway. HCC: hepatocellular carcinoma. 
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Supplementary Figure 5. Association between HCC classifications and somatic mutation alterations. (A) Oncoprint showing 
mutation status of genes in P53/Cell cycle pathway, Wnt/beta-catenin pathway, hepatic differentiation and DNA methylation (see detailed 
statistical analysis in Supplementary Table 3). (B) Proportion of 6 different single-nucleotide substitutions in HCC classifications are shown. (C) 
Heatmap shows signature weight of 4 prognosis-associated signatures among 4 subclasses. (D) Histograms show the difference of mutation 
number in 4 signatures among HCC subclasses. HCC: hepatocellular carcinoma.  
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Supplementary Figure 6. Association between HCC classifications and DNA copy number alterations. (A) Genome-wide focal 
amplification (red) and deletion (blue) peaks in 4 HCC subclasses identified by GISTIC2.0. (B) Venn diagrams identify the specific/common 
significant amplification and deletion regions in different HCC subclasses. HCC: hepatocellular carcinoma. 
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Supplementary Tables 

 
Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Results of MethylMix analysis. 

 

Supplementary Table 2. Detailed results from statistical analysis of overall survival and recurrence free survival. 

Results of survival analysis (OS) of distinct HCC classification 

 
Median survival time 95%CI p value (vs HS2) p value (vs HS3) p value (vs HS4) 

HS1 2839 1749-3929 0.0609 0.5308 0.0034 

HS2 1622 929-2315 / 0.0786 0.1821 

HS3 1818 1213-2423 / / 0.0048 

HS4 1135 450-1820 / / / 

Results of survival analysis (RFS) of distinct HCC classification 

 
Median survival time 95%CI p value (vs HS2) p value (vs HS3) p value (vs HS4) 

HS1 1453 806-2100 0.0723 0.6013 0.0911 

HS2 828 396-1260 / 0.1228 0.907 

HS3 893 587-1199 / / 0.1196 

HS4 489 198-780 / / / 

 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 3. List of 401 methylation driven genes. 
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Supplementary Table 4. Clinical Characteristics of  
TCGA-LIHC cohort. 

Clinical Characteristics of TCGA cohort 

Variable 
TCGA set 

(n=369) 

Age 
 

>55 241 

 <=55 122 

Gender 
 

female 118 

male 245 

Viral infection 
 

HBV 95 

HCV 49 

HBV and HCV 7 

No infection 102 

Child-Pugh score 
 

A 216 

B/C 22 

Histologic grade 
 

G1 55 

G2 175 

G3 116 

G4 12 

TNM stage 
 

I/II 254 

III/IV 85 

AFP level 
 

Low 181 

High 95 

Vascular invasion 
 

None 205 

Micro 90 

Macro 14 

Family history 
 

No 204 

Yes 110 
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Supplementary Table 5. Detailed results from statistical analysis of mutation characteristics in HCC classifications. 
HCC: hepatocellular carcinoma. 

Mutation characteristics in distinct HCC classification 

 
HS1 

percentage 
(%) 

p-
value 

HS2 
percentage 

(%) 
p-

value 
HS3 

percentage 
(%) 

p-
value 

HS4 
percentage 

(%) 
p-value 

Number of 
patients 

84 100.00  
 

99 100.00  
 

112 100.00  
 

54 100.00  
 

TP53 26 30.95  ns 33 33.33  ns 19 16.96  0.0009 22 40.74  ns 

CTNNB1 13 15.48  0.0402 29 29.29  ns 35 31.25  0.0243 6 11.11  0.0174 

MUC16 16 19.05  ns 17 17.17  ns 10 8.93  0.0201 11 20.37  ns 

ALB 4 4.76  ns 10 10.10  ns 15 13.39  ns 7 12.96  ns 

APOB 5 5.95  ns 11 11.11  ns 12 10.71  ns 1 1.85  ns 

AXIN1 11 13.10  0.0495 13 13.13  0.0271 2 1.79  0.0032 2 3.70  ns 

RB1 8 9.52  ns 3 3.03  ns 4 3.57  ns 4 7.41  ns 

APC 3 3.57  ns 4 4.04  ns 6 5.36  ns 0 0.00  ns 

MACF1 2 2.38  ns 4 4.04  ns 3 2.68  ns 2 3.70  ns 

FGA 3 3.57  ns 3 3.03  ns 3 2.68  ns 3 5.56  ns 

ATM 4 4.76  ns 3 3.03  ns 1 0.89  ns 3 5.56  ns 

USP34 4 4.76  ns 1 1.01  ns 4 3.57  ns 1 1.85  ns 

CDKN2A 2 2.38  ns 2 2.02  ns 5 4.46  ns 1 1.85  ns 

HNF1A 2 2.38  ns 1 1.01  ns 4 3.57  ns 1 1.85  ns 

TET1 2 2.38  ns 1 1.01  ns 2 1.79  ns 2 3.70  ns 

DNMT1 1 1.19  ns 0 0.00  ns 2 1.79  ns 0 0.00  ns 

DNMT3A 0 0.00  ns 2 2.02  ns 0 0.00  ns 0 0.00  ns 

TET2 1 1.19  ns 1 1.01  ns 0 0.00  ns 1 1.85  ns 

TCF7 1 1.19  ns 0 0.00  ns 0 0.00  ns 0 0.00  ns 

TCF7L2 1 1.19  ns 0 0.00  ns 0 0.00  ns 1 1.85  ns 

ZNRF3 1 1.19  ns 1 1.01  ns 0 0.00  ns 0 0.00  ns 

CCND1 0 0.00  ns 1 1.01  ns 0 0.00  ns 0 0.00  ns 

CCNE1 0 0.00  ns 1 1.01  ns 0 0.00  ns 0 0.00  ns 

DNMT3B 0 0.00  ns 0 0.00  ns 1 0.89  ns 0 0.00  ns 

MDM2 0 0.00  ns 0 0.00  ns 1 0.89  ns 0 0.00  ns 
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Supplementary Table 6. Results from cox regression of mutation signature. 

The results of cox regression of mutation signature 

 
HR p value 

Signature.1 1.011480944 0.638463658 

Signature.2 1.002796051 0.947780338 

Signature.3 1.000279303 0.959690395 

Signature.4 1.012134008 0.13054495 

Signature.5 0.993570767 0.225181567 

Signature.6 0.959881321 0.373625593 

Signature.7 0.973549374 0.514468948 

Signature.8 1.002630783 0.734655486 

Signature.9 0.986273393 0.25153733 

Signature.10 0.943404048 0.409932352 

Signature.11 0.975163806 0.524308952 

Signature.12 0.986674705 0.277786476 

Signature.13 1.016710568 0.649605185 

Signature.14 1.034850808 0.471043598 

Signature.15 1.040357259 0.190478444 

Signature.16 1.000884331 0.616969517 

Signature.17 1.052131131 0.228968673 

Signature.18 1.030359459 0.096865864 

Signature.19 0.99322056 0.764671586 

Signature.20 1.03315935 0.279846514 

Signature.21 1.010874489 0.555240576 

Signature.22 1.005884371 0.020551777 

Signature.23 0.986966228 0.754838115 

Signature.24 1.019837628 0.0000821 

Signature.25 0.992860584 0.616339237 

Signature.26 1.002719008 0.810417508 

Signature.27 1.01248891 0.669391861 

Signature.28 0.985549785 0.443335344 

Signature.29 1.004175822 0.825991515 

Signature.30 1.019595427 0.177302858 
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Please browse Full Text version to see the data of Supplementary Tables 7, 8 

 

Supplementary Table 7. Detailed information of specific amplification and deletion regions in HCC classifications. 
HCC: hepatocellular carcinoma. 

Supplementary Table 8. Information of 2835 genes for machine learning. 

 

 

 


