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INTRODUCTION 
 
Healthy aging is associated with a reduction in 
sensorimotor function, such as for example, a higher 
variability of movements [1–3], slower reaction times 
[3–5], impaired coordination skills [6–9], and a 
generally lower performance level [10] in older as 
compared to younger adults. Commonly, manual 
dexterity and force decline simultaneously, potentially 
at the partial expense of independence as most tasks of 
everyday life require an efficient and dexterous 
handling of objects [3, 11]. These functional declines in 
age-related sensorimotor functions are frequently 
paralleled by physiological and anatomical adaptations  

 

of central structures such as the reorganization and 
remodeling of the brain in general and the primary 
motor cortex (M1) in particular [3, 12–14]. In the 
current study, transcranial magnetic stimulation (TMS) 
is applied to identify the impact of aging on the spatial 
reorganization within M1. TMS is a technique that 
allows to non-invasively study several brain function 
parameters. Moreover, single-pulse (SP) TMS can be 
used to identify a muscle’s corticospinal excitability and 
its spatial motor representation, while paired-pulse (PP) 
paradigms are used for investigating gamma-amino-
butyric acid type A (GABAA)-ergic and glutamatergic 
receptor-mediated neurotransmission within M1 [15]. 
By administering a sufficiently strong magnetic pulse to 
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ABSTRACT 
 
Using a cross-sectional design, we aimed to identify the effect of aging on sensorimotor function and cortical 
motor representations of two intrinsic hand muscles, as well as the course and timing of those changes. 
Furthermore, the link between cortical motor representations, sensorimotor function, and intracortical 
inhibition and facilitation was investigated. Seventy-seven participants over the full adult lifespan were 
enrolled. For the first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscle, cortical motor 
representations, GABAA-mediated short-interval intracortical inhibition (SICI), and glutamate-mediated 
intracortical facilitation (ICF) were assessed using transcranial magnetic stimulation over the dominant primary 
motor cortex. Additionally, participants’ dexterity and force were measured. Linear, polynomial, and piecewise 
linear regression analyses were conducted to identify the course and timing of age-related differences. Our 
results demonstrated variation in sensorimotor function over the lifespan, with a marked decline starting 
around the mid-thirties. Furthermore, an age-related reduction in cortical motor representation volume and 
maximal MEP of the FDI, but not for ADM, was observed, occurring mainly until the mid-forties. Area of the 
cortical motor representation did not change with advancing age. Furthermore, cortical motor representations, 
sensorimotor function, and measures of intracortical inhibition and facilitation were not interrelated.  
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M1, an action potential can be evoked, leading to a 
motor evoked potential (MEP) in the muscle(s) 
corresponding to the stimulated brain region [15].  
 
Here, cortical reorganization is investigated using a TMS 
mapping procedure. This approach applies single TMS 
pulses spatially distributed over M1, with the aim to 
identify its spatial organization in combination with the 
corticospinal excitability in this area (for a review see [15, 
16]). Cortical motor representations can be expressed in 
the dimensions of map area, reflecting the size of the 
surface of M1 corresponding to a motor function, map 
volume, defined as the sum of the mean MEP peak-to-
peak amplitudes of all active points [17], and maximal 
MEP, the maximal value of the mean MEPs of all active 
points [18] (for details, see materials and methods). Thus 
far, TMS mapping studies investigating the effect of aging 
on motor representations of intrinsic hand muscles have 
been relatively scarce and it remains unclear how cortical 
reorganization, as assessed by TMS mapping, changes 
over the full lifespan. Previously, Coppi et al. [19] showed 
a decrease in cortical motor representation area of the 
abductor pollicis brevis (APB) in the non-dominant 
hemisphere in older as compared to younger adults, while 
the representation of the abductor digiti minimi (ADM) 
did not change. No alterations were demonstrated for 
muscle representations of the dominant hemisphere. 
Another study [20] reported a spatially more extensive 
motor representation of the first dorsal interosseus (FDI) 
muscle in aged adults irrespective of the investigated 
hemisphere which was interpreted as an indication of M1 
dedifferentiation (i.e. reduced neural distinctiveness of 
cortical representation).  
 
Interestingly, previous research suggested an important 
role of GABAA-related inhibition in the regulation of 
cortical plasticity [21]. Moreover, it was suggested that 
cortical plasticity is associated with reorganization of 
cortical representations [22]. So far, this link remains 
unclear. Consequently, one goal of the current study was 
to investigate the link between cortical motor 
representations and GABAA-ergic receptor-mediated 
neurotransmission of M1, using PP TMS. Additionally, 
the relationship between cortical motor representations 
and glutamatergic receptor-mediated neurotransmission, 
as well as the balance between glutamatergic and 
GABAA-ergic receptor-mediated neurotransmission was 
explored, since it is possible that an increase in 
facilitation [23] or an altered balance between facilitation 
and inhibition is linked with alterations in cortical motor 
representations. GABAA-ergic and glutamatergic 
receptor-mediated neurotransmission of M1 can be 
assessed by respectively short-interval intra-cortical 
inhibition (SICI) [24] and intracortical facilitation (ICF) 
[24, 25]. A meta-analysis reported contradictory evidence 
regarding age-related alterations in SICI and ICF [14] 

and pointed overall towards an absence of changes in ICF 
with age [14]. The same work outlined the results of 11 
studies that investigated age-related SICI changes and 
reported a slight, but non-significant reduction in SICI in 
older as compared to younger adults [14]. However, this 
meta-analysis did not include two studies reporting a 
significant decrease in SICI with age [26, 27].  
 
Evidence from TMS studies suggests that an age-related 
gradual loss of inhibitory modulation is associated with 
a decline in sensorimotor function, such as a reduction 
in movement speed and impaired coordination [5, 26, 
28, 29]. Moreover, associations between the level of 
hand usage and short- and long-term corticospinal 
adaptations were observed. For example, studies 
reported a decrease in corticospinal excitability after a 
period of immobilization [30] or strength training [31]. 
Furthermore, the repeated practice of highly dexterous 
motor tasks over a long period of time, as seen in many 
musicians, has been associated with a reduced area of 
and overlap between different cortical representations of 
hand muscles [32], as well as a reduced SICI and ICF 
[33, 34]. However, these studies did not address the 
direct link between cortical representations of intrinsic 
hand muscles and SICI/ICF. In contrast to the above 
described findings observed in pianists [32], spatially 
more extensive motor representations were identified 
with advancing age and linked to slower reaction times 
[20]. Yet, the relationship between age-related changes 
of sensorimotor function, cortical motor representations, 
and intracortical inhibition/facilitation is still poorly 
understood. Regarding the full adult lifespan, only one 
study [26] addressed SICI and dexterity changes, 
revealing information about the behavioral relevance of 
age-related alteration in GABAA-ergic inhibition and 
the timing of those changes. More specifically, lower 
SICI (i.e. less inhibition) was related to a worse 
alternate finger tapping performance but not to solitary 
finger tapping, and SICI showed a gradual reduction 
with advancing age [26]. Further relations between 
changes in sensorimotor performance, motor 
representations, and SICI and ICF have not yet been 
investigated over the full adult lifespan. 
 
Therefore, the first aim of this cross-sectional TMS study 
was to identify the age-related alterations of the cortical 
motor representations of the dominant FDI and ADM 
muscle, and how these changes are related to sensori-
motor function (dexterity, force) over the full adult 
lifespan. Secondly, we investigated the course and timing 
of those changes. Since the FDI and ADM muscle serve 
different functional purposes in everyday manual tasks 
(respectively contributing to precision grip and power 
grip), the side-to-side investigation of these two muscles 
was deemed relevant as fine motor function might 
decline faster with advancing age as compared to more 



 

www.aging-us.com 4619 AGING 

generic manual functions [10]. Thirdly, the link between 
motor representations, sensorimotor function and 
intracortical inhibition and facilitation was explored as 
inhibition and facilitation potentially contribute to 
lifespan changes in sensorimotor function and changes in 
M1 representation.  
 
We hypothesized (1) an age-related decline in 
sensorimotor function, (2) an overall increase in TMS-
derived cortical motor representations, and (3) age-
related changes in cortical motor representations being 
more pronounced for the FDI than for the ADM muscle. 
Furthermore, we expected a negative relationship 
between sensorimotor function and an age-related 
increase in cortical representation area and volume (4). 
Finally, we expected an age-related decline in 
sensorimotor function (5a) and increased cortical 
representation area and volume (5b) to be linked with 
reduced intracortical inhibition and increased facilitation. 
 
RESULTS 
 
Prior to the main analysis, data was checked for 
covariation. No significant relationships were 
identified between age and resting motor threshold 
(rMT) or age and the score on the Baecke 
Questionnaire of Habitual Physical Activity. 
Moreover, neither did the rMT show an association 
with the cortical motor representation measures area 
(AREA) and volume (VOL) or the maximal MEP 
(MAXMEP) of the FDI and ADM muscles, nor was 
the cortical motor representation area associated with 
the head size of the participant. Furthermore, the level 
of physical activity did not have an effect on measures 
of cortical excitability (rMT and maximal MEP) or 
cortical motor representation area and volume (all 
R²adjusted < 0.04, all p > 0.05). 
 
Prior to MEP analysis, background activity was 
checked. Of all TMS trials, < 1% trials with a high 
background electromyographic (EMG) activity (root 
mean square (RMS) > 20 µV) was discarded from 
further analysis. 
 
Detailed model statistics of all regression models given 
below can be found in Supplementary Table 1. 
 
Effect of aging on sensorimotor performance 
 
Data of all participants (n = 77) were included in the 
analysis. Regression analysis revealed a relationship 
between age and performance on the Purdue Pegboard 
Test. Age-related changes on the unimanual subtest of 
the Purdue Pegboard Test (PPT_1) were best fitted by a 
piecewise linear regression (R²adjusted = 0.2715, p < 
0.0001, Figure 1A) with an increase of performance 

until the age of 38 years and a subsequent performance 
decrease. Changes over the lifespan on the two-handed 
peg placement task (PPT_2) revealed a similar pattern 
and were best fitted by a piecewise linear regression 
(R²adjusted = 0.3834, p < 0.0001, Figure 1B) with a 
breakpoint at 32 years. The age-related decline in 
performance in the assembly task of the Purdue Pegboard 
Test (PPT_A) was best regressed by a quadratic function 
(R²adjusted = 0.5741, p < 0.0001, Figure 1C). 
 
Analyzing the changes in force over the lifespan, grip 
force followed a piecewise linear relationship with an 
increase in grip force until the age of 39 and a 
subsequent decrease in force (R²adjusted = 0.1318, p = 
0.0020, Figure 1D). Pinch force was best modelled by a 
linear regression (R²adjusted = 0.0549, p = 0.0227, Figure 
1E) with a constant decline in pinch force with 
advancing age and a high inter-subject variability.  
 
All models fulfilled the assumptions of homo-
skedasticity and normal distribution of residuals. 
 
Effect of aging on cortical motor representations 
 
Mapping of the cortical motor representation of the 
dominant hemisphere could not be performed in one 
participant as almost no MEPs could be evoked at 80% 
of the maximum stimulator output, being the maximally 
permitted intensity to stimulate as stated in the ethical 
approval. Therefore, 76 observations were included in 
the analysis for the FDI cortical motor representation. In 
another nine participants mapping of the ADM muscle 
at 115% rMT of the FDI elicited no MEPs in the ADM. 
Thus, 67 observations were included in the analysis for 
the ADM cortical motor representation.  
 
Neither AREA for FDI, nor any of the mapping 
parameters for ADM showed a significant relationship 
with age (see Figure 2A.1 and 2B.1–3; all R²adjusted < 
0.0009, all p > 0.3045). Nevertheless, after natural 
logarithmic and cube root data transformation 
respectively and removal of two influential data points 
to fulfill model assumptions, the age-related differences 
of VOL and MAXMEP for the FDI were modeled 
optimally by a piecewise linear regression (Figure 2A.2: 
ln(VOL) with R²adjusted = 0.1793, p = 0.0003; Figure 
2A.3: ³√(MAXMEP) with R²adjusted = 0.1893, p = 
0.0002). Both models show a decrease until the 
breakpoint of 46 years and a subsequent stabilization. 
Detailed information on the process of regression 
modelling can be found in Supplementary Figure 1. 
 
Due to the similar pattern of age-related differences in 
VOL and MAXMEP, a post-hoc correlation analysis 
has been conducted. VOL and MAXMEP of the FDI 
showed a strong positive association (Spearman’s ρ = 
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0.9421, p < 0.0001). All correlations between AREA, 
VOL, and MAXMEP are reported in Table 1. In an 
additional post-hoc analysis, VOL was normalized to 
MAXMEP amplitude and no age-related changes in 
normalized VOL were observed (Figure 3). 
 
Link between sensorimotor performance and 
cortical motor representations 
 
For the same reasons as explained above (see Effect of 
aging on cortical motor representations), 76 and 67 
observations were included in the analysis for FDI and 
ADM, respectively. For the FDI, there were no significant 
relationships between measures of cortical motor 
representations (AREA, VOL) and measures of motor 
performance (PPT_1, Grip Force, Pinch Force) (all p > 
0.05). Likewise, no significant relationships between 
measures of cortical motor representations (AREA, VOL) 
and measures of motor performance (Grip Force) could be 
identified for the ADM (all p > 0.05). 

 

Link between sensorimotor performance, cortical 
motor representations and resting-state intracortical 
inhibition/facilitation 
 
For SICI and ICF, data of one subject’s ADM was 
excluded from further analysis as more than 50% of the 
trials had to be removed for at least one condition (SP, 
PP 3 ms, or PP 10 ms) due to high background EMG 
activity. As described for the motor maps, data of one 
further subject is missing due to difficulties to elicit a 
sufficient number of MEPs in the FDI.  
 
No significant relationships between measures of 
inhibition or facilitation (SICI and ICF respectively) 
and measures of motor performance (PPT_1, Grip 
Force, Pinch Force) could be identified (all p > 0.05). 
Moreover, there were no relationships between 
measures of inhibition or facilitation (SICI and ICF 
respectively) and measures of cortical motor 
representation (AREA, VOL) (all p > 0.05).

 
 

Figure 1. Plots of best fitting regression models for changes in sensorimotor performance over the lifespan. For 
piecewise linear regressions the breakpoint (BP) is indicated. (A) Purdue Pegboard Test unimanual peg placement with the dominant 
hand (PPT_1), (B) Purdue Pegboard Test peg placement with both hands (PPT_2), (C) Purdue Pegboard Test assembly task (PPT_A), (D) 
maximal Grip Force, and (E) maximal Pinch Force. For piecewise linear regressions, data points below and above the breakpoint are 
represented by open and filled points, respectively. Below each plot the best fitting regression model is stated in a rectangle. Ribbons 
depict the 95% confidence interval of the fit. Significant p-values are indicated with asterisks (*** p < 0.001; ** p < 0.01; * p < 0.05) 
and printed in bold. 

Author
Note: to currently decrease the influence of the changes on the further manuscript layout, this figure has been adjusted in size.
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Figure 2. Best regression fits for cortical motor map parameters area (AREA), volume (VOL), and maximal motor evoked 
potential (MAXMEP) of first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscle. Estimates of significant 
regression models are stated in a rectangle below the plot and the regression is indicated in the plot by a solid line. For non-significant 
relationships, the best fit, on which the R²adjusted and p-value are based, is stated; a dashed line represents a non-significant regression. 
Ribbons depict the 95% confidence interval of the fit. Significant p-values are indicated with asterisks (*** p < 0.001; ** p < 0.01; * p < 0.05) 
and printed in bold. 
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Table 1. Spearman’s rank correlations coefficients (ρ) between area (AREA), volume (VOL), and maximal motor 
evoked potential (MAXMEP) for first dorsal interosseus (FDI) muscle (grey cells) and abductor digiti minimi (ADM) 
muscle (black cells).  

        ADM 
Spearman's ρ p-value Spearman's ρ p-value Spearman's ρ p-value 

AREA 0.8087 <0.0001*** 0.5052 <0.0001*** 
0.6300 <0.0001*** VOL 0.8843 <0.0001*** 
0.4298 0.0001*** 0.9421 <0.0001*** MAXMEP 
Spearman's ρ p-value Spearman's ρ p-value Spearman's ρ p-value 

FDI         

Significant p-values are indicated with asterisks (*** p < 0.001; ** p < 0.01; * p < 0.05) and printed in bold. 
 

Furthermore, our data did not reveal any significant 
differences in SICI and ICF over the lifespan (see 
Supplementary Figure 2). 
 
DISCUSSION 
 
The present cross-sectional study provides three main 
findings. Firstly, older adults exhibiting a typical age-
related decline in sensorimotor function showed a 
reduction in cortical motor representation volume and 
maximal MEP amplitude of the FDI muscle as 
compared to younger adults, with changes occurring 
mainly until the mid-forties followed by a subsequent 
stabilization. These alterations with age were not 
present in the ADM muscle. Secondly, the decline in 

sensorimotor function could not be linked to changes in 
cortical motor representations. Finally, measures of 
resting-state intracortical inhibition and facilitation were 
not associated with changes in sensorimotor function 
and cortical motor representations.  
 
Effect of aging on sensorimotor performance 
 
The observed age-related decline in sensorimotor 
function is in line with hypothesis 1, in which we 
predicted a decline in sensorimotor function with 
advancing age. This finding was supported by other 
studies that reported an age-related decline in grip [35–
38] and pinch force [11, 37, 39], as well as Purdue 
Pegboard Test performance [11, 40–44]. 

 

 
 

Figure 3. Normalized volume (VOLnorm = volume (VOL)/maximal motor evoked potential (MAXMEP)) for dominant first 
dorsal interosseus (FDI) (left panel) and abductor digiti minimi (ADM) (right panel) by age. Below each plot the best fitting model 
is stated in a rectangle. Ribbons depict the 95% confidence interval of the fit. Both regressions were non-significant. 

Author
Please note that the color formatting of this table is vital for comprehensibility. 
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Our data revealed that grip force peaked at the age of 39. 
Studies that aimed to identify normative values for grip 
force yielded comparable maximal force [35–38] and a 
curvilinear relationship with a peak at about 40 years of 
age [36–38]. While our data revealed a negative linear 
relationship between pinch force and age, other work that 
analyzed the effect of age on pinch force in clusters of 
five years identified a curvilinear relation between lateral 
pinch force and age, resulting in slightly higher values, 
peaking between the age of 35 and 44 in men and between 
55 and 59 in women [37] and subsequently declining into 
older age [39]. These differences in maximal force and the 
course of its relationship with age (linear vs. curvilinear) 
can partially be explained by differences in hand posture 
during measurement. For example, in the current study the 
palmar pinch has been investigated, while normative 
values related to the lateral pinch [35, 37] (for grasp 
definitions see Feix et al. [45]). Nevertheless, previous 
work applying a pinch force measurement similar to the 
one used in the current study, demonstrated comparable 
results. Specifically, a decline of approximately 20% in 
pinch force between a group of young (mean: 27.7 years) 
and older (mean: 70.5 years) adults and a more 
pronounced decline in grip as compared to pinch force has 
been demonstrated [11].  
 
Dexterity measures for the unimanual subtest and 
assembly subtest of the Purdue Pegboard Test showed a 
rather comparable course with advancing age, whereas 
for the bimanual subtest a slightly different pattern was 
identified. More specifically, for the unimanual and the 
assembly subtest, performance was relatively stable 
until the mid-thirties and subsequently declined into 
older age. For the bimanual task, there was first an 
increase in performance until the age of 32, followed by 
a decline lasting into older age. Possibly the low 
performance of some younger individuals on this task 
resulted in overfitting of the regression model, although 
the model assumptions were met. Nonetheless, our 
results are comparable to normative data clustered into 
five-year divisions, showing peak performance at 26 to 
30 years for the unimanual and at 21 to 25 years for the 
bimanual peg task, while for the assembly task the 
youngest group, aged 15 to 20 years, performed best 
[40]. Further in line with our results, normative data 
shows a relatively constant age-related decline in 
performance across all three tasks for adults aged 40 
years and above, analyzed in age clusters of ten years 
[42, 43].  
 
Overall, our sensorimotor performance results are 
comparable to normative data and therefore provide a 
benchmark for a valid interpretation of the 
neurophysiological data as well as for investigating the 
link between neurophysiology and sensorimotor 
performance.  

Effect of aging on cortical motor representations 
 
The present study revealed a decline in volume and 
maximal MEP value of the dominant hemisphere until 
the age of 46, followed by a stabilization into old age. 
This result was only found for the FDI, whereas no age-
related changes in cortical motor representation were 
identified for the ADM. No alterations in area of motor 
representations were found, neither for the FDI nor for 
the ADM. Hence, these findings are only supporting the 
latter part of our hypotheses, in which we predicted an 
overall increase in TMS-derived cortical motor 
representations (hypothesis 2) and that these age-related 
changes would be more pronounced for the FDI than for 
the ADM (hypothesis 3). The similar pattern of 
reduction in volume and maximal MEP can be 
explained by their high interdependence, since volume 
is defined as the sum of MEP amplitudes of active 
points. Especially the maximal MEP amplitude and 
cortical motor representation volume of the FDI showed 
a strong positive association (see Table 1). 
 
In contrast to our results, which revealed no changes in 
area of the dominant FDI and ADM cortical motor 
representations, other mapping studies identified 
alterations of small hand muscle motor representations 
with advancing age when comparing groups of young and 
older adults. For example, Bernard and Seidler [20] 
reported a spatially more extensive motor representation 
of the FDI muscle in aged adults irrespective of the 
investigated hemisphere. On the contrary, Coppi et al. 
[19] compared the spatial extent of APB and ADM 
cortical motor representations of young and older adults 
and found a decline of the representation area only for the 
non-dominant APB, but not for the dominant APB or both 
ADM muscles. Therefore, our findings reporting no 
changes in cortical motor representation area of the FDI 
and ADM muscle, are only partially in line with previous 
findings [19, 20] that revealed no alterations of the motor 
representation area of the ADM with increasing age, 
while for muscles involved in fine manipulations such as 
the FDI and APB contradictory findings were reported. It 
is likely that differences in findings reported above can be 
explained by various factors, such as: methodological 
differences in the mapping protocol, reliability of the 
TMS measurements (number of pulses, use of a 
neuronavigational system, etc.) and differences in the 
definition/calculation of cortical motor representation.  
 
The volume of the cortical motor representation of the 
FDI decreased with advancing age. Interestingly, when 
normalizing volume to the maximal MEP amplitude 
[46], no age-related changes were observed (see Figure 
3). This result points towards age-related changes in 
excitability rather than cortical reorganization as 
underlying mechanism for the observed decrease in 
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volume. Regarding the maximal MEP amplitude, our 
findings revealed a decrease with advancing age. This 
finding is in line with other studies that reported a 
smaller MEP amplitude in the FDI of a group of older 
as compared to younger adults for the resting FDI at 
120% [47] and 130% rMT [48]. In contrast with our 
findings, other studies using intensities ranging from 
110% to 150% rMT [28, 49–52] reported no age-related 
changes in the mean MEP amplitude between groups of 
young and older adults. 
 
There are several findings that can help to unravel the 
mechanism underlying the observed age-related decrease 
in MEP amplitude. For doing so, we must keep in mind 
that TMS-derived MEPs are a result of cortical, spinal and 
peripheral pathway cooperation. Firstly, there is evidence 
for age-related deterioration at the peripheral level. With 
advancing age, there is a decline of the maximum 
compound muscle action potential (CMAP, also: M-
wave) amplitude [53–55], which is defined as the action 
potential of a skeletal muscle elicited by a supramaximal 
electrical stimulation of its corresponding efferent nerve 
[56]. It is suggested that this age-related decrease in 
CMAP results from increased desynchronization of motor 
unit activation, a decreased proportion of fast-twitch fibers 
and a generally lower contractile speed of the muscle 
fibers [54]. Secondly, other studies report evidence for 
age-related changes in MEP amplitudes at the 
corticospinal level. In this respect, Pitcher et al. [18] 
reported that a group of older as compared to younger 
adults had equal maximal MEP amplitudes when taking 
peripheral changes into account by normalizing the MEP 
to the CMAP. Nevertheless, older adults required higher 
TMS stimulation intensities relative to the maximal 
stimulator output to reach 50% and 100% of their 
maximal MEP [18], which can be interpreted as an age-
related decrease in corticospinal excitability. This finding 
is consistent with the current findings, as submaximal 
stimulation intensities were used to acquire the maximal 
MEP amplitude. Interestingly, the age-related decrease in 
corticospinal excitability in the current study was not 
paralleled with changes in rMT (see Supplementary 
Figure 3). With respect to the effect of aging on rMT, the 
literature shows contradictory results. On the one hand, 
there is evidence for an age-related increase in rMT ([50, 
57, 58], for meta-analysis see Bhandari et al. [14]), while 
on the other hand and in line with the current findings, a 
number of studies reported no changes in rMT when 
comparing groups of young and older adults [18, 28, 48, 
52, 55, 59–62]. 
 
Link between sensorimotor performance and 
cortical motor representations 
 
Although we hypothesized a negative relationship 
between motor performance and metrics of cortical 

motor representations (hypothesis 4), no links between 
sensorimotor performance (dexterity and force) and 
cortical motor representations (area, volume and 
maximal MEP) were identified. This finding is partially 
in line with the literature. Similar to our results, Coppi 
et al. [19] found no correlations between the cortical 
motor representations of APB and ADM (area and 
maximal MEP) in young and older adults and measures 
of dexterity and force (nine-hole peg test, finger-tapping 
and grip force). Sale and Semmler [55] investigated the 
link between measures of corticospinal excitability and 
hand dexterity (Purdue Pegboard Test and 
single/alternate tapping task) and force (index finger 
abduction) in groups of young and older adults. While 
older adults showed a declined performance in all 
functional measurements, only the alternate tapping task 
and force measure were weak but positively associated 
with the MEP, without substantial differences between 
young and older adults. Nevertheless, it should be noted 
that the results and conclusions of these studies were 
based on much smaller sample sizes (respectively n = 
31 and n = 20, grouped into young and older adults [19, 
55]) as compared to the current sample (n = 77, 
continuously distributed over lifespan). 
 
Although links between cortical motor representations 
and sensorimotor performance were absent in the 
current study, several motor learning and training 
studies, however, did demonstrate a link. For example, 
dexterity training [63] and strength training [31] have 
been associated with respectively an increase or 
decrease of corticospinal excitability, while immo-
bilization led to a decrease in excitability [63] and a 
longer immobilization duration correlated with a 
decrease in map area [64]. Interestingly, micro-
stimulation studies in non-human primates identified a 
systematic increase in cortical motor representations, 
associated with repetitive execution of finger 
movements, but only when the task included a motor 
learning component [65]. In contrast, no changes in 
motor maps were reported when executing a simple 
repetitive motor task without a motor learning 
component [66], suggesting a vital role of motor 
learning for the reorganization of cortical motor 
representations. Therefore, a possible explanation for 
the absence of a link between cortical motor 
representations and sensorimotor performance in the 
current study could be the absence of a systematic 
motor learning paradigm in the normal aging process.  
 
Link between sensorimotor performance and 
resting-state intracortical inhibition/facilitation 
 
In contrast with hypothesis 5a, predicting a link 
between declined sensorimotor function and altered 
intracortical inhibition and facilitation, no relationships 
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between sensorimotor performance measures and 
SICI/ICF measurements were identified in the present 
work. In line with the present results, Marneweck et al. 
[67] reported no link between age-related differences in 
SICI and dexterity (Purdue Pegboard Test and force 
matching task) comparing a group of young and older 
adults. Nevertheless, the same study reported an 
association between atypical facilitation during SICI 
measurements (i.e. facilitation instead of the expected 
inhibition) and decreased Purdue Pegboard Test 
performance [67]. Moreover, Heise et al. [26] showed 
that more resting-state SICI (i.e. more inhibition) was 
related to a better alternate finger tapping performance, 
but not to solitary finger tapping. Additionally, SICI at 
rest and task-related SICI modulation were strongly 
correlated and both reduced with advancing age, 
analyzing age as a continuous variable [26].  
 
The absence of a link between sensorimotor per-
formance and measures of inhibition/facilitation in the 
current study was accompanied by the lack of age-
related changes in SICI, ICF, and the ratio between ICF 
and SICI (see Supplementary Figure 2). This finding is 
interesting, as evidence on age-related changes of ICF is 
equivocal. Whereas some studies indicated less 
facilitation in older adults [27, 58], others found no age-
related changes [59–61, 68, 69]. Results for SICI are 
even more contradictory since some studies yielded 
more inhibition [58, 62, 69], less inhibition [26, 27, 67], 
or no SICI changes with advancing age [28, 48, 52, 59–
61, 68, 70, 71]. Likely, small sample sizes and 
differences in TMS protocols account for these 
conflicting results, as well as the fact that only two 
studies [26, 60] investigated age as a continuous 
variable. 
 
Link between cortical motor representations and 
resting-state facilitation/inhibition 
 
The present study also investigated the link between 
cortical motor representations and measures of 
inhibition and facilitation (hypothesis 5b), as previous 
studies suggested a close relationship between cortical 
plasticity and intracortical inhibition [72–75], as well as 
between plasticity and reorganization of cortical 
representations [22]. The importance of disinhibition 
for cortical plasticity and motor learning in humans has 
been suggested by Ziemann et al. [21]. In their work, a 
motor learning task generated stronger cortical and 
sensorimotor performance changes during ischemic 
nerve block-induced disinhibition, while an increase in 
GABAA-ergic receptor-mediated inhibition, induced by 
lorazepam administration, prevented those changes. 
Nevertheless, the present study yielded no relationship 
between cortical motor representations and SICI/ICF 
measurements. To the best of our knowledge, so far, no 

other studies investigated the link between age-related 
changes in cortical motor representations and 
intracortical inhibition/facilitation.   
 
Limitations 
 
Firstly, hotspot and rMT were determined for the FDI 
and then used for the mapping and SICI/ICF 
measurement of FDI and ADM. Consequently, this might 
lead to a suboptimal targeting of the ADM, possibly 
resulting in slightly different outcome measurements as 
compared to the targeting of both muscles separately. 
Nonetheless, this approach is common practice [17, 63, 
76, 77], especially when researchers are interested in 
more than one intrinsic hand muscle at the same time. 
Furthermore, this procedure substantially reduces 
experiment duration and there is evidence that PP TMS is 
relatively insensitive to targeting several muscles 
simultaneously [60, 63].  
 
Secondly, it should be acknowledged that the 
contribution of the ADM in daily activities is less 
specific as compared to the FDI and therefore its 
contribution to hand function is more difficult to 
capture. In the present study grip force, a common 
activity of daily living, has been favored over isolated 
pinky abduction force. The rationale for this approach 
was to link cortical motor representations to daily life 
tasks. Probably, the contribution of the ADM to the grip 
force measurement is relatively limited and therefore, 
the link between grip force and the neurophysiological 
data of the ADM is less straightforward. 
 
Lastly, in the present study, a cross-sectional design has 
been used. While this is a common and highly feasible 
approach, it poses a general limitation as systematic 
generation effects, such as environmental influences, 
cannot be excluded. A longitudinal or accelerated 
longitudinal design would be more appropriate to 
control for these effects. However, most laboratories do 
not have the resources to carry out these challenging 
research designs. Moreover, longitudinal studies are 
also inherent to limitations such as restricted 
generalizability, dealing with missing data, etc. 
 
CONCLUSIONS 
 
We demonstrated an age-related reduction in cortical 
motor representation volume of the FDI, mainly 
occurring until the mid-forties, in the absence of 
changes in cortical motor representation area. 
Moreover, a strong link between cortical motor 
representation volume and maximal MEP amplitude 
was observed, suggesting that volumetric reduction was 
mainly driven by a decline in corticospinal excitability. 
No such changes were observed for the ADM. 
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Furthermore, cortical motor representations, sensori-
motor function, and measures of intracortical inhibition 
and facilitation were not related to each other. We 
observed changes in sensorimotor function over the 
lifespan with a marked decline starting around the mid-
thirties. 
 
MATERIALS AND METHODS 
 
Participants 
 
In this cross-sectional lifespan study 77 healthy 
volunteers over the full adult lifespan (age range 18-81 
years, mean age ± SD: 49.38 ± 18.00, 36 female, 4 left-
handed) were included. At the start of the study, 
participants completed the Edinburgh Handedness 
Inventory [78] (mean absolute lateralization quotient ± 
SD: 91.54 ± 15.55), the Montreal Cognitive Assessment 
(MoCA) [79] (mean score ± SD: 28.23 ± 1.65, range 
24-30), and the Baecke Questionnaire of Habitual 
Physical Activity (self-reported) [80, 81] (mean score ± 
SD: 8.25 ± 1.12; final scores can range from 3 – least 
physically active, to 15 – most physically active). An 
overview of the participant characteristics can be found 
in Table 2. Recruitment took place in Flanders, Belgium 
on community and university level. Prior to inclusion, 
subjects were screened and were excluded from 
participation if they reported any central nervous system 
diseases, psychiatric disorders, medication affecting the 
central nervous system, history of brain surgery or 
injury, or presence of contraindications for TMS [82]. 
Participants gave full written informed consent prior to 
study participation according to the latest amendment of 
the Declaration of Helsinki [83]. The study protocol 
was approved by the local ethics committee (University 
Hospital Leuven; reference S62231). 
 
Electromyographic recordings (EMG) 
 
EMG signals for the FDI and ADM muscle, 
contralateral to the stimulated hemisphere, were 
collected using surface Ag-electrodes (Bagnoli™ DE-
2.1 EMG Sensors, DELSYS Inc, Boston, MA, USA) 
fixed onto the prepared skin (3M™ Red Dot™ Trace 
Prep 2236, 3M Health Care, St. Paul, MN, USA) over 
the belly of each muscle with single-use double-sided 
adhesive skin interfaces (DELSYS Inc, Boston, MA, 
USA). The reference electrode was placed on the bony 
parts of the dorsal wrist. Raw EMG signals were 
collected (Bagnoli-4 EMG System, DELSYS Inc, 
Boston, MA, USA), filtered for 50 Hz noise (HumBug, 
Quest Scientific, North Vancouver, BC, Canada), 
amplified (gain = 1000), bandpass filtered (20-2000 
Hz), digitized at 5000 Hz (CED 1401 micro, CED 
Limited, Cambridge, UK), and stored on a computer for 
offline analysis.  

Transcranial magnetic stimulation (TMS) 
 
TMS was applied using a 70 mm figure-of-eight coil 
(MC-B70, outer coil winding diameter 2 x 97 mm, 150° 
angled) connected to a MagPro X100 stimulator 
(MagVenture A/S, Farum, Denmark) to deliver biphasic 
SP and PP TMS to M1 of the dominant hemisphere. To 
ensure accurate placement and orientation of the coil 
throughout the entire experiment, optically tracked 
neuronavigation was used (Brainsight®2, Rogue 
Research Inc, Montreal, Quebec, Canada). The coil 
handle was pointed backwards, 45° away from the 
midline and the coil center was positioned tangentially 
to the scalp [84, 85]. During TMS, participants were 
seated in a chair with their forearm pronated. EMG 
signals of the FDI and ADM were continuously 
monitored, and participants were encouraged to relax in 
order to keep the RMS of the EMG signal below 5 µV 
in between TMS pulses. 
 
For mapping the cortical representation, a 
standardized procedure was performed (see Figure 4). 
Firstly, head size was measured from right to left pre-
auricular point and from nasion to inion (highest point 
of the external occipital protuberance as palpated); 
then the vertex was determined as the intersection of 
those two lines (according to the EEG 10-20 system 
[86]). Secondly, using the Brainsight® software, a 1 
cm-spaced rectangular 19x19 grid of targets centered 
around the vertex was projected over the full scalp to 
search for the hotspot of the FDI (see Figure 4A), 
defined as the scalp location with the strongest and 
most consistent MEP in the FDI averaged over 5 
consecutive TMS pulses. Thirdly, the rMT at the 
hotspot was defined as the lowest intensity resulting 
in at least 5 out of 10 MEPs larger than 50 µV peak-
to-peak amplitude in the relaxed FDI [87]. Finally, the 
motor representations of the FDI and ADM were 
mapped using an intensity of 115% rMT [19, 76] and 
administering 8 consecutive pulses (inter-trial 
interval: 3 s ± 20%) per target point, starting at the 
hotspot. Subsequently, points located on a 1 cm-
spaced 11x11 grid centered around the hotspot were 
targeted in turn, proceeding spirally clockwise until 
all active points (defined as points with at least 4 out 
of 8 MEPs ≥ 100 µV peak-to-peak amplitude in at 
least one of the target muscles) were surrounded by 
inactive neighbor points (see Figure 4B–4E).  
 
Following TMS mapping, SICI and ICF were assessed 
at the hotspot of the FDI, to measure GABAA-ergic and 
glutamatergic receptor-mediated neurotransmission 
respectively. The conditioning stimulus (CS) was set at 
80% rMT [24] and the test stimulus (TS) was set to an 
intensity that elicited unconditioned MEPs of ≈ 1 mV 
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Table 2. Participant characteristics. 

Category Total 18-30 years 31-40 years 41-50 years 51-60 years 61-70 years 71-81 years 

Participants (%) 77 (100%) 14 (18.2%) 15 (19.5%) 13 (16.9%) 10 (13.0%) 13 (16.9%) 12 (15.6%) 

Age (years) 49.38±18.00 24.43 ± 3.84 35.40 ± 3.09 46.69 ± 2.75 55.50 ± 2.51 66.31 ± 3.01 75.42 ± 2.64 

Female (%) 36 (46.8%) 7 (50.0%) 6 (40.0%) 7 (53.8%) 5 (50.0%) 7 (53.8%) 4 (33.3%) 

Left-handed 4 2 1 1 0 0 0 

|EHI LQ| 91.54 ± 15.55 76.50 ± 19.49 93.13 ± 9.10 96.03 ± 9.97 96.64 ± 7.11 98.60 ± 5.04 90.30 ± 23.22 

MoCA 28.23 ± 1.65 29.14 ± 1.41 28.33 ± 1.50 28.00 ± 1.68 28.20 ± 1.87 28.38 ± 1.50 27.17 ± 1.70 

Baecke 8.33 ± 1.14 8.54 ± 0.89 8.31 ± 1.65 8.67 ± 0.99 8.09 ± 1.05 8.48 ± 1.25 7.80 ± 0.54 

Pooled group data and data for subdivisions of six age groups are reported for illustrative purposes. Data is displayed as total 
number or as mean ± standard deviation. 
Abbreviations: |EHI LQ| = absolute value of the lateralization quotient assessed by Edinburgh Handedness Inventory; MoCA = 
Montreal Cognitive Assessment; Baecke = Baecke Questionnaire of Habitual Physical Activity. 
 

peak-to-peak amplitude. For SICI, the interstimulus 
interval (ISI) was set at 3 ms [24], for ICF at 10 ms [24, 
25]. Forty-five trials (15 SP and 15 PP for each ISI in a 
semi-randomized order) were administered. During the 

TMS mapping and the SICI/ICF measurement all 
participants were blinded from EMG signals and 
watched a slideshow of landscape pictures to promote a 
stable level of excitation. 

 

 
 

Figure 4. Mapping Procedure performed with the Brainsight®2 software (Rogue Research Inc, Montreal, Quebec, Canada). 
(A) Grid used for searching the hotspot of 19x19, 1 cm-spaced predefined target locations and their trajectories around the vertex, visualized 
in black. The target representing the vertex is indicated by a cross, the hotspot by a circle. (B) Standardized mapping grid (11x11, 1 cm-
spaced) around hotspot (circled target). Predefined target locations and trajectories are visualized in white. (C) Stimulated targets and their 
trajectories (in orange) are visualized on top of the mapping grid. Stimulation was performed in a 45° angle. (D) Similar to (C) without the 
mapping grid. (E) Cortical motor representation processed in Matlab with averaged motor evoked potential (MEP) values per point 
normalized to the individual maximal MEP. 
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Sensorimotor performance 
 
Grip force and palmar pinch force were measured using 
respectively a hydraulic hand dynamometer (Model 
SH5001, Saehan Corporation, Masan, Korea) and a 
pinch force sensor (LCM302-200N, Omega 
Engineering Inc, Norwalk, CT, USA). For both force 
measurements, participants were standing upright with 
the upper arm in neutral position, the lower arm in 90° 
elbow flexion and the wrist in mid-position between 
supination and pronation. They were verbally encouraged 
to perform optimally during three consecutive trials and 
the maximally generated force was analyzed. 
 
Manual dexterity was administered with the Purdue 
Pegboard Test (Model 32020, Lafayette Instrument 
Company Inc, IN, USA). The test consists of 4 subtests 
that were each administered once per participant: peg 
placement with the dominant hand, peg placement with 
the non-dominant hand, peg placement with both hands 
simultaneously, and an assembly task, where 
constructions consisted of a peg, two washers and a 
collar. For the unimanual and bimanual peg placement 
subtest, respectively, the number of pegs or pairs placed 
within a 30-second period were recorded. For the 
assembly subtest, the number of completed assemblies 
in 60 seconds was documented. 
 
Data processing 
 
Cortical motor representations were assessed for the FDI 
and ADM and were expressed as map area (AREA) and  
 

map volume (VOL), both computed using MATLAB® 
(R2018b, The MathWorks Inc, Natick, MA, USA). 
AREA was measured by calculating the area of a 
polygon expanding over all active points (i.e. points that 
elicited at least 4 out of 8 MEPs with a peak-to-peak 
amplitude ≥ 100 µV). VOL was defined as the sum of the 
mean MEP peak-to-peak amplitudes of all active points: 

2
1
( ( ) 1 | )j

i
VOL MEP i cm i all active scalp locations

=
= × =∑

serving as an approximation of the three-dimensional 
integration of the map. Furthermore, the maximal mean 
MEP among all active points was obtained (MAXMEP) 
(for visualization see Figure 5). 
 
SICI and ICF were expressed as a ratio of the mean  
PP MEP amplitude over the mean SP MEP amplitude 
(mean MEPPP/mean MEPSP), where values < 1 indicate 
inhibition, while values > 1 indicate disinhibition/ 
facilitation. Furthermore, the ratio between both 
measures (ratio ICF/SICI) was calculated to express  
the balance between facilitation (ICF) and inhibition 
(SICI). 
 
For all TMS procedures, trials with an EMG RMS 
exceeding 20 µV in the period 100-50 ms prior to the 
TMS pulse, or in case of a PP trial to the CS, were 
excluded from analysis.  
 
Head size was approximated by calculating an elliptic 
surface with half the distance nasion-inion as radius r1 
and half the distance right to left preauricular point as 
radius r2: head size = r1 * r2 * π. 

 
 

Figure 5. Visualization of the cortical motor representation parameters: area, volume, and maximal motor evoked potential 
(MAXMEP). Area was measured in cm² by calculating the area of a polygon expanding over all active points. Volume was measured in 
µV*cm² and defined as the sum of the mean motor evoked potential (MEP) peak-to-peak amplitudes of all active points, serving as an 
approximation of the three-dimensional integration of the map. The maximal mean MEP value of all active points was obtained as MAXMEP 
and measured in µV. 
  



 

www.aging-us.com 4629 AGING 

Statistical analysis 
 
Statistical analyses were performed using R (Version 
3.5.1, R Core Team 2018 [88]; locfit package version 
1.5-9.1 [89]; ggplot2 package [90] for visualizations) 
with α set to 0.05.  
 
In a first step, a locally weighted regression method 
(local linear fit, tri-cube weight function, smoothness 
(alpha) = 0.5, as proposed by Cleveland [91]; no 
robustness) was performed for visual inspection of the 
shape of the data. Locations of breakpoints in the fit 
were identified based on the locally weighted regression 
estimates. 
 
In a second step, linear, polynomial (until 4th order), and 
piecewise regression models (based on the identified 
breakpoint; Figure 6) were calculated. Piecewise linear 
regression was performed based on the following 
regression model with a dummy variable D that 
distinguishes between x-values above and below the 
defined breakpoint (XBP): 

 

 
 

In case X ≤ XBP, the parameter β2 exerts no effect on the 
regression, whereas for X > XBP the intercept and the 
slope are influenced by β2, as it can be seen in the 
transformation of the initial equation. Significant 
models were then compared based on the lowest Akaike 
Information Criterion (AIC). Furthermore, significance 
of the parameter estimates for slope and the R²adjusted 
value were investigated. The best fitting regression 
based on all criteria was identified. 
 
In a last step, the model assumptions (homoscedasticity 
and normal distribution of the residuals) were checked 
by visual inspection of the normalized residuals 
histogram, the quantile-quantile (Q-Q) plot of the 
normalized residuals, and the Cook’s distance plot of 
the residuals. In case assumptions were not met, data 
transformation and/or analysis of influential data points, 
as identified by the Cook’s distance plot, was performed. 
 
In order to serve the purpose of identifying the timing 
and course of lifespan changes, this approach using 
linear, polynomial, and piecewise linear regression 
models has been favored over other approaches such 
as the comparison of different age groups or a 
correlation analysis. While these approaches might be 
more commonly used, categorizing continuous data 
leads to a loss of information, compromising its 
statistical power and leading to a higher risk of false 
positive results [92]. 

 

 
 

Figure 6. Exemplary demonstration of locally weighted regression fit for the two-handed Purdue Pegboard Test (PPT_2) 
including the position of the calculated maximal and minimal value of the fit (triangles). The optimal fitting model, here a 
piecewise linear regression with the breakpoint (BP) at 32 years, was chosen based on significance of the model and its parameters, R²adjusted, 
and Akaike Information Criterion (AIC). Ribbons depict the 95% confidence interval of the fit. 
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Abbreviations 
 
ADM: abductor digiti minimi muscle; AIC: Akaike 
Information Criterion; APB: abductor pollicis brevis 
muscle; AREA: area of cortical motor representation; 
CMAP: maximum compound muscle action potential 
(also: M-wave); CS: conditioning stimulus; EMG: 
electromyography ; FDI: first dorsal interosseus muscle; 
GABA: gamma-aminobutyric acid; ICF: intracortical 
facilitation; ISI: interstimulus interval; M1: primary 
motor cortex; MAXMEP: maximal motor evoked 
potential; MEP: motor evoked potential; MoCA: 
Montreal Cognitive Assessment; PP: paired-pulse; PPT: 
Purdue Pegboad Test; RMS: root mean square; rMT: 
resting motor threshold; SD: standard deviation; SICI: 
short-interval intracortical inhibition; SP: single-pulse; 
TMS: transcranial magnetic stimulation; TS: test 
stimulus; VOL: volume of cortical motor representation. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Best fitting regression models for age-related differences in volume (VOL) and maximal motor 
evoked potential (MAXMEP) of the first dorsal interosseus (FDI) cortical motor representation. The age-related differences of 
VOL and MAXMEP for the FDI were modeled best by a piecewise linear regression, both with a decrease until the breakpoint at 46 years, 
followed by a relative stabilization (original model: see A.1 and B.1 for VOL and MAXMEP, respectively). As initially the model assumptions 
were violated (mainly due to heavy tails of the residual distribution), y-variables were transformed to satisfy the assumptions of 
homoskedasticity and normal distribution of the residuals: (A.2) regression of natural logarithmic transformation of VOL by AGE, (B.2) 
regression of cube root transformed MAXMEP by AGE. However, this led to an increased influence of influential data points (as identified by 
Cook’s distance plots; influential data points encircled in panels A.2 and B.2) and therefore a shift of the breakpoint and a substantial decline 
in fit. The influence of influential data points on the model was analyzed by stepwise removing them and remodeling the regression. After 
removal of two influential data points (representing the same participants for VOL and MAXMEP, aged 18 and 19 years old), assumptions of 
homoskedasticity and normal distribution of the residuals were fulfilled, resulting in the final models (VOL: A.3; MAXMEP: B.3). Both final 
models show a decrease until the breakpoint of 46 years and a subsequent stabilization. Model estimates are given in a rectangle below each 
plot. Ribbons depict the 95% confidence interval of the fit. Significant p-values are indicated with asterisks (*** p < 0.001; ** p < 0.01; * p < 
0.05) and printed in bold. 
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Supplementary Figure 2. Relationships of short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) with 
age. Left and right column show for first dorsal interosseus (FDI) and abductor digiti minimi (ADM) respectively (A) SICI by age, (B) ICF by age, 
and (C) ratio ICF/SICI by age. SICI and ICF are depicted as a ratio of the unconditioned stimulus (motor-evoked potential (MEP) of the paired 
pulse (PP) over MEP of the single pulse (SP)), with values > 1 implying facilitation and values < 1 indicating inhibition. A linear relationship 
between age and ICF for the ADM has been found (p = 0.034, R²adjusted = 0.047, right panel row (B) dashed line with ribbon representing the 
95% confidence interval of the fit) that did not fulfill model assumptions. All approaches to comply with those (transformation, removal of 
influential data points) led to non-significant results (all p > 0.05, all R²adjusted < 0.032). No other relationships of ICF, SICI and ratio ICF/SICI 
with age (all p > 0.05, all R²adjusted < 0.015) have been identified. 
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Supplementary Figure 3. Resting motor threshold (rMT) in % of the maximal stimulator output (MSO) by age. Fitting a linear 
regression (dashed line with 95% confidence interval of the fit) resulted in the best model. Nevertheless, no significant relationship of age 
and rMT has been identified. 
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Supplementary Table 
 
 
Supplementary Table 1. Point estimates, standard error (SE) and statistics for regression models with AGE as 
independent variable. 

Dependent variable  
(best fitting regression model) 

Estimate: SE: t-value: 
P 

(>|t|): 
  

R²adjus
ted: 

F-statistic 
(DF NUM; DF 

DEN): 
P(>F): 

PPT_1 ~ AGE Intercept 13.1569 1.5716 8.372 <0.0001 *** 0.2715 F (2;74) = 15.16 <0.0001*** 
(piecewise linear 
regression, 

β1 0.0378 0.0481 0.786 0.4346        

breakpoint: AGE = 38) β2 -0.1301 0.0603 -2.158 0.0342 *      

PPT_2 ~ AGE Intercept 8.1804 1.6040 5.100 <0.0001 *** 0.3834 F (2;74) = 24.63 <0.0001*** 
(piecewise linear 
regression, 

β1 0.1113 0.0554 2.011 0.0480 *      

breakpoint: AGE = 32) β2 -0.1895 0.0619 -3.060 0.0031 **      

PPT_A ~ AGE Intercept 8.5186 1.0547 8.077 <0.0001 *** 0.5741 F (2;74) = 52.22 <0.0001*** 
(quadratic regression) β1 0.0593 0.0462 1.285 0.2029        

  β2 -0.0013 0.0005 -2.862 0.0055 **      

Grip Force ~ AGE Intercept 23.1250 9.1146 2.537 0.0133 * 0.1318 F (2;74) = 6.77 0.0020** 
(piecewise linear 
regression, 

β1 0.5566 0.2754 2.021 0.0469 *      

breakpoint: AGE = 39) β2 -0.9818 0.3539 -2.774 0.0070 **      

Pinch Force ~ AGE Intercept 5.0389 0.4589 10.981 <0.0001 *** 0.0549 F (1;75) = 5.415 0.0227* 
(linear regression) β1 -0.0203 0.0087 -2.327 0.0227 *      

AREAFDI ~ AGE Intercept 16.5760 1.6883 9.818 <0.0001 *** 0.0009 F (1;74) = 1.069 0.3045 
(linear regression) β1 -0.0332 0.0321 -1.034 0.3050     

ln(VOLFDI) ~ AGE Intercept 3.9738 0.5325 7.462 <0.0001 *** 0.1793 F (2;71) = 8.976 0.0003*** 
(piecewise linear 
regression, 

β1 -0.0535 0.0143 -3.742 0.0004 ***      

Breakpoint: AGE = 46 ‡) β2 0.0600 0.0217 2.762 0.0073 **      

3 ~FDIMAXMEP AGE
 Intercept 1.8830 0.1766 10.664 <0.0001 *** 0.1893 F (2;71) = 9.521 0.0002*** 

(piecewise linear 
regression, 

β1 -0.0192 0.0047 -4.056 0.0001 ***       

breakpoint: AGE = 46 ‡) β2 0.0230 0.0072 3.192 0.0021 **       

AREAADM ~ AGE Intercept 11.7541 2.0456 5.746 <0.0001 *** -0.0154 F (1;65) = 0.0001 0.9940 
(linear regression) β1 -0.0003 0.0385 -0.008 0.9940     

VOLADM ~ AGE Intercept 3.4512 1.1072 3.117 0.0027 ** -0.0148 F (1;65) = 0.0407 0.8408 
(linear regression) β1 -0.0042 0.0208 -0.202 0.8408     

MAXMEPADM ~ AGE Intercept 0.9189 0.2718 3.381 0.0012 ** -0.0117 F (1;65) = 0.2360 0.6287 

(linear regression) β1 -0.0025 0.0051 -0.486 0.6287     

The following regression models were used: linear regression β β= +0 1
ˆ ;Y X  quadratic regression β β β= + + 2

0 1 2Ŷ X X ; 

piecewise linear regression β β β
≤

= + + − × =  >
0 1 2

0ˆ (  
1

) BP
BP

BP

for X X
Y X X X D with D

for X X
 (BP = breakpoint). 

(‡ = two influential data points [aged 18 and 19 years] removed in order to fulfill model assumptions; significant p-values are 
indicated with asterisks (*** p < 0.001; ** p < 0.01; * p < 0.05) and printed in bold) 
Abbreviations: ADM = abductor digiti minimi muscle; AREA = area of cortical motor representation; DEN = denominator; DF = 
degrees of freedom; FDI = first dorsal interosseus muscle; MAXMEP = maximal motor evoked potential of cortical motor 
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representation; NUM = numerator; PPT_1/_2/_A = Purdue Pegboard Test unimanual/bimanual/assembly subtest; SE = 
standard error; VOL = volume of cortical motor representation. 


