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ABSTRACT 
 
TET family members (TETs) encode proteins that represent crucial factors in the active DNA demethylation 
pathway. Evidence has proved that TET2 mutation is associated with leukemogenesis, drug response, and 
prognosis in acute myeloid leukemia (AML). However, few studies revealed the TETs expression and its 
clinical significance in AML. We conducted a detailed expression and prognosis analysis of TETs expression 
in human AML cell lines and patients by using public databases. We observed that TETs expression 
especially TET2 and TET3 was closely associated with AML among various human cancers. TET1 expression 
was significantly reduced in AML patients, whereas TET2 and TET3 expression was significantly increased. 
Kaplan-Meier analysis showed that only TET3 expression was associated with overall survival (OS) and 
disease-free survival (DFS) among both total AML as well as non-M3 AML, and was confirmed by another 
independent cohort. Moreover, Cox regression analysis revealed that TET3 expression may act as an 
independent prognostic factor for OS and DFS in total AML. Interestingly, patients that received 
hematopoietic stem cell transplantation (HSCT) did not show significantly longer OS and DFS than those 
who did not receive HSCT in TET3 high-expressed groups; whereas, in TET3 low-expressed groups, patients 
that accepted HSCT showed significantly longer OS and DFS than those who did not accept HSCT. By 
bioinformatics analysis, TET3 expression was found positively correlated with tumor suppressor gene 
including CDKN2B, ZIC2, miR-196a, and negatively correlated with oncogenes such as PAX2 and IL2RA. Our 
study demonstrated that TETs showed significant expression differences in AML, and TET3 expression acted 
as a potential prognostic biomarker in AML, which may guide treatment choice between chemotherapy and 
HSCT. 
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INTRODUCTION 
 
DNA methylation has contributed to the 
understanding of the complexities of genomic 
instability and gene regulation without altering the 
DNA sequence [1]. Aberrations in DNA methylation 
status are closely associated with tumor progression 
and prognosis of patients especially in blood cancers 
including acute myeloid leukemia (AML) [1, 2]. 
During malignant transformation, CpG islands in the 
promoter region of numerous genes become 
hypermethylated, silencing the expression of 
suppressor genes, and leading to a loss in the control 
of cell apoptosis, proliferation, and differentiation [1]. 
Conversely, hypomethylation of oncogenes enhances 
the tumorigenic potential of normal cells [1]. The 
process of DNA methylation controlled by several 
molecules such as DNA methyltransferases (DNMTs) 
has been well characterized [3, 4], but the underlying 
mechanism of demethylation remains to be elucidated. 
In recent years, Ten-eleven translocation (TET) 
proteins have been identified and expand the 
understanding about mechanisms of DNA 
demethylation [5].  
 
The TET protein family includes TET1, TET2 and 
TET3, which can modify 5-methylcytosine (5-mC) by 
oxidation to 5-hydroxymethylcytosine (5-hmC) and 
further 5-formylcytosine (5-fC) and 5-
carboxycytosine (5-caC) [6–8]. TET family members 
(TETs) were dysregulated in multiple malignances, 
and loss-of-function mutations or decreased 
expression of TETs inhibited the DNA demethylation 
pathway, which prevents the removal of 5mC from 
genomic DNA [5]. Functional studies have revealed 
the direct role of TET2 in blood cancers especially in 
AML. Cimmino et al reported that restoration of TET2 
reversed aberrant hematopoietic stem and progenitor 
cell self-renewal in vitro and in vivo, and suppressed 
human leukemic colony formation and leukemia 
progression of primary human leukemia patient-
derived xenografts [9]. Rasmussen et al indicated that 
loss of TET2 in hematopoietic cells lead to DNA 
hypermethylation of active enhancers and induction of 
leukemogenesis [10]. TET2 mutations frequently 
occur in AML, myelodysplastic syndromes (MDS) 
and chronic myelomonocytic leukemia (CMML), 
whereas TET1 and TET3 mutations rarely happen [11, 
12]. Moreover, TET2 mutations were important 
prognostic factors in AML and also predicted 
response to hypomethylating agents in MDS patients 
[13]. However, few studies investigated TETs 
expression and its clinical significance in AML [14, 
15]. Herein, we determined the clinical significance of 
TETs expression in AML among The Cancer Genome 
Atlas (TCGA) databases. 

RESULTS 
 
TETs expression associated with AML among 
human cancer cell lines 
 
By assembling the Cancer Cell Line Encyclopedia 
(CCLE), we found that TETs expression especially 
TET2 and TET3 was highly expressed in AML cell 
lines among 40 types of human cancer cell lines 
(Figure 1A–1C). Moreover, The Human Protein Atlas 
(HPA) also presented that TET2 and TET3 expression 
was also highly associated with myeloid cell lines 
(Figure 1D–1F). The detailed comparison of TETs 
expression in AML cell lines was assessed by using 
the European Bioinformatics Institute (EMBL-EBI) 
website (Figure 1G–1I). In addition, TET1/2/3 
mutations in human cancer cell lines were given in 
Supplementary Table 1. 
 
TETs expression associated with AML patients 
among human cancers 
 
We further evaluated TETs expression in AML 
patients by using the Gene Expression Profiling 
Interactive Analysis (GEPIA) dataset including TCGA 
and the Genotype-Tissue Expression (GTEx) projects. 
Aberrant expression of all TETs members was only 
observed in AML patients among 33 types of human 
cancers (Figure 2A–2C). TET1 expression was 
significantly reduced in AML patients, whereas TET2 
and TET3 expression was significantly increased in 
AML patients (Figure 2D–2F). Moreover, TET1 
expression did not show a significant correlation with 
TET2/TET3 expression in AML patients, whereas 
TET2 expression was positively correlated with TET3 
expression in AML patients (Figure 2G–2I). In 
addition, TET1 and TET3 mutations were identified in 
none of these AML patients, whereas TET2 mutation 
was identified in 8.5% (17/200) of these AML 
patients. 
 
Prognostic value of TETs expression in AML 
 
In order to evaluate the prognostic value of TETs 
expression in AML, we further divided these patients 
into two groups based on median level of TET1/2/3 
transcript respectively (TET1low vs. TET1high; TET2low 
vs. TET2high; TET3low vs. TET3high). Based on  
Kaplan-Meier analysis, we did not observe the 
significant associations of TET1 and TET2 expression 
with overall survival (OS) and disease-free survival 
(DFS) among both total AML and non-M3 AML 
(Figure 3). However, TET3high patients showed 
markedly longer OS and DFS than TET3low patients 
among total AML (Figure 3, P=0.018 and 0.019, 
respectively). Moreover, if French-American-British 
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(FAB)-M3 patients were excluded, patients with high 
expression of TET3 also had significantly longer OS 
and DFS than those with low expression of  
TET3 (Figure 3, P=0.006 and 0.007, respectively). We 
next determined the prognostic effect of TET3 
expression in AML by using Cox regression analysis. 
Both univariate and multivariate analysis showed  
that TET3 expression may act as an independent 
prognostic factor for OS and DFS in total AML 
(Table 1, P=0.011 and 0.026, respectively) and  
non-M3 AML (Table 2, P=0.038 and 0.026, 
respectively).  
 
In addition, the positive impact of high TET3 
expression on OS in cytogenetically normal AML 
(CN-AML) patients was also validated by Gene 
Expression Omnibus (GEO) data (GSE12417) via 
online web tool Genomicscape (Figure 4A–4D). 
 
Association between TET3 expression and 
clinical/molecular characteristics 
 
Due to the significant association of TET3 expression 
with AML prognosis, we next analyzed the clinical 
relevance of TET3 expression with clinical/molecular 
characteristics in AML. As presented in Table 3. 
There were no significant differences between 
TET3high and TET3low groups in sex, age, white blood 
cells (WBC), bone marrow (BM)/peripheral blood 
(PB) blasts, and the distributions of cytogenetics 
(P>0.05). Significant difference was observed 

between two groups in the distribution of FAB 
subtypes (P=0.009). TET3high patients was frequently 
occurred in FAB-M1/M4 (P=0.083 and 0.022, 
respectively), and less frequently occurred in FAB-
M0 (P=0.016). Among common gene mutations, high 
expression of TET3 was associated with FLT3 wild-
type and NRAS mutation (P=0.018 and 0.018, 
respectively). No significant differences were found 
between TET3 expression with other gene  
mutations (P>0.05). Since TET2 mutation is frequent 
molecular event in AML, we further analyzed the 
relationship between TET2 mutation and TET1/2/3 
expression in AML patients. As presented in 
Supplementary Figure 1, no significant differences 
were found between TET2 mutation (TET2mu) and 
TET2 wild-type (TET2WT) regarding TET1/2/3 
expression (P>0.05). 
 
TET3 expression may guide treatment choice 
between chemotherapy and HSCT 
 
Because low expression of TET3 predicted poor 
clinical outcome in AML, we intended to investigate 
whether patients with low expression of TET3 could 
benefit from hematopoietic stem cell transplantation 
(HSCT). We compared OS and DFS between patients 
with and without HSCT among both TET3high and 
TET3low groups. In TET3high groups, although patients 
who received HSCT presented longer OS and DFS 
compared with patients who did not receive HSCT 
among both total AML (Figure 5A and 5B, P=0.052 

 

 
 

Figure 1. The expression of TETs in human cancer cell lines including AML cell lines. (A–C) The expression of TETs in human 
cancer cell lines, analyzing by the Cancer Cell Line Encyclopedia (CCLE) dataset (https://www.broadinstitute.org/ccle). (D–F) The 
expression of TETs in human cancer cell lines, analyzing by The Human Protein Atlas (HPA) dataset (https://www.proteinatlas.org/). 
(G–I) The expression of TETs in leukemia cell lines, analyzed by the European Bioinformatics Institute (EMBL-EBI) dataset 
(https://www.ebi.ac.uk). 

https://www.broadinstitute.org/ccle
https://www.proteinatlas.org/
https://www.ebi.ac.uk/
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Figure 2. The expression of TETs in human cancers including AML patients. (A–C) The expression of TETs in pan-cancer 
analyzed by the Gene Expression Profiling Interactive Analysis (GEPIA) dataset (http://gepia.cancer-pku.cn/). Tumor abbreviations: 
ACC: Adrenocortical carcinoma; BLCA: Bladder Urothelial Carcinoma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell 
carcinoma and endocervical adenocarcinoma; CHOL: Cholangiocarcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid Neoplasm 
Diffuse Large B-cell Lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and Neck squamous cell 
carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: 
Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: 
Lung squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; 
PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma; 
SKCM: Skin Cutaneous Melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: Thyroid carcinoma; 
THYM: Thymoma; UCEC: Uterine Corpus Endometrial Carcinoma; UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma. Tumor 
abbreviations showed in black indicated no TETs over- or under-expression, in red color indicated TETs overexpression, whereas in 
green color indicated TETs underexpression. (D–F) The expression of TETs in AML analyzed by the GEPIA dataset 
(http://gepia.cancer-pku.cn/). (G–I) The correction between TETs in AML analyzed by the GEPIA dataset (http://gepia.cancer-
pku.cn/). 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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and 0.221, respectively) and non-M3-AML (Figure 
5C and 5D, P=0.021 and 0.128, respectively), the P 
did not attach statistical significance especially for 
DFS. However, in TET3low groups, patients who 
accepted HSCT showed significantly longer OS and 
DFS than patients who did not accept HSCT among 
both total AML (Figure 5E and 5F, P=0.003 and 
0.005, respectively) and non-M3-AML (Figure 5G 
and 5H, P<0.001 and 0.001, respectively). 
 
Correlations between TET3 expression and 
molecular signature 
 
To gain insights into the biological function of TET3 
in AML, we first compared the transcriptomes of 

TET3high and TET3low groups. A total of 464 
differentially expressed genes were identified 
(FDR<0.05, |log2 FC|>1.5; Figure 6A and 6B; 
Supplementary Table 2), in which 300 genes were 
positively correlated with TET3 expression, and 164 
were negatively correlated. Positively correlated 
genes such as CDKN2B and ZIC2 were reported to 
have anti-leukemia effects [16, 17]. Among the 
negatively associated genes, several genes including 
PAX2, IL2RA, SOX11, and PAK7 played as oncogenes 
in leukemia [18–21]. Furthermore, the Gene Ontology 
analysis was also showed in Figure 6C. 
 
We next derived microRNA expression signatures 
associated with TET3 expression, and only 5 

 

 
 

Figure 3. The impact of TETs expression on survival of AML patients. Kaplan–Meier survival curves of TETs expression on overall 
survival and disease free survival in both chemotherapy and hematopoietic stem cell transplantation groups.  
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Table 1. Cox regression analyses of variables for OS and DFS in total AML patients. 

Variables 

OS DFS 

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P 

TET3 
expression 

0.644  
(0.445-0.932) 0.020 0.610  

(0.416-0.895) 0.011 0.647  
(0.447-0.936) 0.021 0.647  

(0.441-0.950) 0.026 

Age 1.040  
(1.027-1.054) 0.000 1.023  

(1.007-1.039) 0.005 1.035  
(1.022-1.048) 0.000 1.022  

(1.007-1.038) 0.005 

WBC 1.003  
(0.999-1.006) 0.119 1.008  

(1.004-1.012) 0.000 1.003  
(1.000-1.006) 0.091 1.008  

(1.004-1.012) 0.000 

Karyotype risk 1.854 (1.465-
2.346) 0.000 1.687  

(1.236-2.303) 0.001 1.829  
(1.448-2.311) 0.000 1.853  

(1.398-2.455) 0.000 

Treatment 
regimen 

0.551  
(0.389-0.780) 0.001 0.398  

(0.254-0.623) 0.000 0.615  
(0.434-0.871) 0.006 0.476  

(0.308-0.734) 0.001 

FLT3 
mutations 

1.269  
(0.869-1.852) 0.217   1.254  

(0.859-1.829) 0.241   

NPM1 
mutations 

1.220  
(0.837-1.778) 0.301   1.268 

(0.869-1.848) 0.218   

CEBPA 
mutations 

0.913  
(0.464-1.796) 0.792   1.053 

(0.535-2.073) 0.881   

DNMT3A 
mutations 

1.615  
(1.104-2.362) 0.014 1.433  

(0.919-2.234) 0.113 1.511  
(1.035-2.206) 0.033 1.308  

(0.839-2.040) 0.236 

IDH1 
mutations 

0.843  
(0.466-1.527) 0.574   0.890  

(0.492-1.611) 0.700   

IDH2 
mutations 

1.113  
(0.649-1.910) 0.697   0.987  

(0.576-1.691) 0.963   

TET2 
mutations 

0.953  
(0.514-1.767) 0.879   0.945  

(0.510-1.751) 0.857   

RUNX1 
mutations 

1.853  
(1.077-3.186) 0.026 2.169  

(1.157-4.064) 0.016 1.644  
(0.959-2.817) 0.071 1.742  

(0.937-3.240) 0.079  

TP53 
mutations 

3.687  
(2.144-6.339) 0.000 2.311  

(1.187-4.497) 0.014 3.257  
(1.912-5.549) 0.000 2.174  

(1.128-4.189) 0.020 

OS: overall survival; DFS: disease-free survival; HR: hazard ratio; CI: confidence interval; WBC: white blood cells. Variables in 
multivariate analysis including TET3 expression (Low vs. High), age, WBC, karyotype (favorable vs. intermediate vs. poor), 
treatment regimen (with transplantation vs. without transplantation) and gene mutations (mutant vs. wild-type). 
 

microRNAs were significantly correlated (FDR<0.05, 
|log2 FC|>1.5; Supplementary Table 3). MiR-196a-2 
and miR-1269 were positively correlated with TET3 
expression. Previous studies showed the anti-leukemia 
role of miR-196a as ERG regulators contributed  
to AML biology [22]. Negatively correlated 
microRNAs included miR-1247, miR-205, and miR-
935. Interestingly, of these microRNAs, none of them 

were identified as predicted microRNAs that direct 
target TET3 (Figure 6D,  Supplementary Table 4). 
 
DISCUSSION 
 
Aberrant promoter methylation, an important hallmark 
of cancer cells, is considered as a major mechanism 
underlying the activation/inactivation of tumor-related 
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Table 2. Cox regression analyses of variables for OS and DFS in non-M3 AML patients. 

Variables 

OS DFS 

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P 

TET3 
expression 

0.589  
(0.403-0.862) 0.006 0.644  

(0.425-0.975) 0.038 0.597  
(0.408-0.873) 0.008 0.632  

(0.422-0.945) 0.026 

Age 1.033  
(1.019-1.047) 0.000 1.011  

(0.994-1.027) 0.203 1.027  
(1.014-1.041) 0.000 1.012  

(0.996-1.028) 0.136 

WBC 1.001  
(0.997-1.005) 0.609   1.001  

(0.998-1.005) 0.450   

Karyotype risk 1.698  
(1.308-2.205) 0.000 2.188  

(1.592-3.008) 0.000 1.674  
(1.292-2.169) 0.000 1.822 

(1.356-2.448) 0.000 

Treatment 
regimen 

0.445  
(0.311-0.636) 0.000 

0.297  
(0.195-0.453) 

0.000 0.518  
(0.363-0.740) 0.000 0.371 (0.246-

0.559) 0.000 

FLT3 
mutations 

1.334  
(0.903-1.969) 0.148 1.534  

(0.953-2.469) 0.078 1.330  
(0.902-1.963) 0.150 1.625 (1.032-

2.558) 0.036 

NPM1 
mutations 

1.049  
(0.717-1.535) 0.804   1.099  

(0.751-1.608) 0.628   

CEBPA 
mutations 

0.802  
(0.407-1.581) 0.523   0.940  

(0.477-1.852) 0.857   

DNMT3A 
mutations 

1.414  
(0.964-2.074) 0.077 1.520  

(0.970-2.382) 0.068 1.329  
(0.907-1.947) 0.144 1.362  

(0.868-2.138) 0.179 

IDH1 
mutations 

0.735  
(0.405-1.333) 0.311   0.778  

(0.429-1.410) 0.408   

IDH2 
mutations 

0.972  
(0.566-1.671) 0.918   0.857  

(0.499-1.471) 0.575   

TET2 
mutations 

0.837 (0.451-
1.554) 0.573   0.830  

(0.447-1.542) 0.556   

RUNX1 
mutations 

1.661  
(0.965-2.860) 0.067 2.955  

(1.580-5.678) 0.001 1.466  
(0.854-2.515) 0.165 2.101  

(1.139-3.874) 0.017 

TP53 
mutations 

3.214  
(1.840-5.614) 0.000 2.578  

(1.317-5.045) 0.006 2.818  
(1.629-4.875) 0.000 2.239  

(1.164-4.308) 0.016 

OS: overall survival; DFS: disease-free survival; HR: hazard ratio; CI: confidence interval; WBC: white blood cells. 
Variables in multivariate analysis including TET3 expression (Low vs. High), age, WBC, karyotype (favorable vs. 
intermediate vs. poor), treatment regimen (with transplantation vs. without transplantation) and gene mutations 
(mutant vs. wild-type). 
 

genes [1]. In addition to DNMTs, TET gene family 
encodes proteins that represent crucial factors in the 
active DNA demethylation pathway [3–5]. A loss-of-
function mutation in the TET2 gene is associated with 
leukemogenesis, drug response, and treatment outcome 
[11]. However, few studies investigated TETs 
expression and its clinical significance in AML [14, 15]. 
Herein, we systemically explored the TETs expression 
and its clinical significance in AML, and we hope that 
our findings could provide new insight into AML 

biology, improve treatment designs, and enhance the 
accuracy of prognosis for patients with AML. In this 
study, we showed that TETs expression showed 
differentially expressed in AML, which indicated 
different role of TETs during AML pathogenesis. In 
solid tumors, a number of studies showed the direct role 
of TETs in cancer biology. For example, two studies 
have showed that TET1 was a tumor suppressor gene 
that inhibited colon cancer growth by derepressing 
inhibitors of the WNT pathway [23, 24]. Xu et al 
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Table 3. Correlation of TET3 expression with clinic-pathologic characteristics in AML. 

Patient's parameters 
TET3 expression 

Low (n=87) High (n=86) P 

Sex, male/female 44/43 48/38 0.543 

Median age, years (range) 60 (21-88) 57 (18-82) 0.113 

Median WBC, ×109/L (range) 15.1 (0.5-297.4) 17 (0.4-223.8) 0.678 

Median PB blasts, % (range) 45 (0-98) 29 (0-97) 0.370 

Median BM blasts, % (range) 75 (32-100) 72 (30-100) 0.294 
FAB classifications   0.009 

M0 13 3  
M1 17 27  
M2 21 17  
M3 11 5  
M4 11 23  
M5 9 9  
M6 1 1  
M7 3 0  
No data 1 1  

Cytogenetics   0.637 
normal 39 41  
t(15;17) 10 5  
t(8;21) 3 4  
inv(16) 3 7  
+8 5 3  
del(5) 1 0  
-7/del(7) 3 4  
11q23 1 2  
others 7 7  
complex 12 13  
No data 3 0  

Gene mutation    
FLT3 (+/-) 32/55 17/69 0.018 
NPM1 (+/-) 22/65 25/61 0.611 
DNMT3A (+/-) 24/63 18/68 0.376 
IDH2 (+/-) 6/81 11/75 0.212 
IDH1 (+/-) 7/80 9/77 0.611 
TET2 (+/-) 8/79 7/79 1.000 
RUNX1 (+/-) 7/80 8/78 0.794 
TP53 (+/-) 8/79 6/80 0.782 
NRAS (+/-) 2/85 10/76 0.018 
CEBPA (+/-) 5/82 8/78 0.404 
WT1 (+/-) 4/83 6/80 0.535 
PTPN11 (+/-) 2/85 6/80 0.168 
KIT (+/-) 3/84 4/82 0.720 
U2AF1 (+/-) 2/85 5/81 0.278 
KRAS (+/-) 3/84 4/82 0.720 
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SMC1A (+/-) 4/83 3/83 1.000 
SMC3 (+/-) 3/84 4/82 0.720 
PHF6 (+/-) 2/85 3/83 0.682 
STAG2 (+/-) 2/85 3/83 0.682 
RAD21 (+/-) 2/85 2/84 1.000 

AML, acute myeloid leukemia; WBC, white blood cells; PB, peripheral blood; BM, bone marrow; FAB, French-American-British 
classification. 
 

 
 

Figure 4. The impact of TET3 expression on overall survival of AML patients. (A–D) Two independent cohorts of 162 and 78 
cytogenetically normal AML (CN-AML) patients were obtained from Gene Expression Omnibus (GEO) data 
(http://www.ncbi.nlm.nih.gov/geo/; accession number GSE12417). Survival analysis was performed through the online web tool 
Genomicscape (http://genomicscape.com/microarray/survival.php). (A) probe 214754_at (TET3) in 78 CN-AML patients; (B) probe 
235542_at (TET3) in 78 CN-AML patients; (C) probe 214754_at (TET3) in 162 CN-AML patients; (D) probe 235542_at (TET3) in 162 CN-AML 
patients. 

http://www.ncbi.nlm.nih.gov/geo/
http://genomicscape.com/microarray/survival.php
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disclosed that tumor suppressive role of TET2 promoted 
cancer immunity and immunotherapy efficacy [25]. 
Moreover, TET2 controlled chemoresistant slow-cycling 
cancer cell survival and tumor recurrence [26].  Cui et al 
demonstrated that TET3 as a potential tumor suppressor 
induced by the nuclear receptor TLX to regulate the 
growth and self-renewal in glioblastoma stem cells [27]. 
Moreover, several tumor suppressors, including BTG2, 
TUSC1, BAK1, LATS2, FZD6 and PPP2R1B, were 
regarded as common targets of TET3 [27]. Additionally, 
TET3 expression was decreased in ovarian cancer 
tissues, acted as a suppressor of ovarian cancer by 
demethylating miR-30d precursor gene promoter to 
block TGF-β1-induced epithelial-mesenchymal 
transition [28]. In our study, we showed that TET1 
expression was significantly decreased in AML, whereas 
TET2 and TET3 expression was significantly increased 
in AML. Notably, we did not observe the direct 
association of TET3 with these factors, and found that 
several tumor suppressor genes (CDKN2B, ZIC2, and 
miR-196a) and oncogenes (PAX2, IL2RA, SOX11, and 
PAK7) were associated with TET3 in AML biology [16–
22]. Moreover, these genes were important factors as 
cellular component or involving in many crucial 
biological processes contributing to cancer development. 

Lastly, TET3 was differently expressed among the 
distributions of FAB subtypes in AML. These results 
suggested that the biological network of TETs in cancer 
was dependent on cancer type and stage specific. 
 
Although previous studies showed the significant 
associations of TET1 and TET2 expression with AML 
prognosis [14, 15], herein, we only observed that TET3 
expression acted as an independent prognostic factor in 
AML, and could be overcame by HSCT. It was very 
interesting that TET3 expression was increased in AML, 
and its high expression showed a positive effect in 
AML. Possible reason was that TET3 expression may 
play a different role between cancer occurrence and 
development, and further functional studies are needed 
to explore the underlying mechanism in AML 
development. The expression pattern and clinical 
significance of TET3 have been determined in several 
human cancers. Several studies revealed that high 
expression of TET3 was revealed in renal cell 
carcinoma as well as endometrial cancers, and high 
mRNA levels of TET3 were independent predictors of 
poor outcome in renal cell carcinoma patients [29, 30]; 
whereas, several other investigations reported that TET3 
was low-expressed in diverse human cancers. For 

 

 
 

Figure 5. The effect of hematopoietic stem cell transplantation on survival of AML patients among different TET3 expression 
groups. (A–D) Kaplan–Meier survival curves of overall survival and disease free survival in low TET3 expression group. (E–H) Kaplan–Meier 
survival curves of overall survival and disease free survival in high TET3 expression group. 
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instance, Bronowicka-Kłys et al showed that TET3 
transcript levels were lower in stage III samples of 
cervical cancer [31]. Moreover, TET3 mRNA was 
decreased in chronic lymphocytic leukemia cells 
compared with healthy B cells [32]. In colorectal 
cancer, reduced transcript level of TET3 was observed 
in cancerous tissue compared with their 

histopathologically unchanged counterparts [33]. In 
addition, Misawa et al reported that TET3 methylation 
was highly associated with poor survival in T1 and T2 
tumor stages of oropharyngeal cancer and oral cancer 
patients [34]. All these results further indicated that the 
role of TET3 in diverse human cancers was specific 
among different cancer types. 

 

 
 

Figure 6. Molecular signatures associated with TET3 in AML. (A) Expression heatmap of differentially expressed genes between 
TET3low and TET3high AML patients (FDR<0.05, P<0.05 and |log2 FC|>1.5). (B) Volcano plot of differentially expressed genes between TET3low 
and TET3high AML patients. (C) Gene Ontology analysis of DEGs conducted using online website of STRING (http://string-db.org). (D) Venn 
results of microRNAs which could target TET3 predicted by DIANA (http://diana.imis.athena-innovation.gr/DianaTools/index.php? 
r=microT_CDS/index), miRDB (http://mirdb.org/miRDB/), mirDIP (http://ophid.utoronto.ca/mirDIP/), TargetScan (http://www.targetscan. 
org/vert_72/), and miRWalk (http://mirwalk.umm.uni-heidelberg.de/). 

http://string-db.org/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index
http://mirdb.org/miRDB/
http://ophid.utoronto.ca/mirDIP/
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
http://mirwalk.umm.uni-heidelberg.de/
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In summary, our study demonstrated that TETs showed 
significant expression differences in AML, and TET3 
expression acted as a potential prognostic biomarker in 
AML, which may guide treatment choice between 
chemotherapy and HSCT. 
 
MATERIALS AND METHODS 
 
CCLE, HPA, and EMBL-EBI dataset 
 
Firstly, TETs expression in human cancer cell lines  
is assessed by the CCLE dataset (https://www. 
broadinstitute.org/ccle), which provides public access 
to genomic data, analysis, and visualization for about 
1000 cell lines [35]. Secondly, we also used The HPA 
dataset (https://www.proteinatlas.org/) to verify TETs 
expression in human cancer cell lines [36]. Lastly, 
TETs expression in AML cell lines is verified by the 
EMBL-EBI dataset (https://www.ebi.ac.uk), which 
has provided free and open access to a range of 
bioinformatics applications for sequence analysis 
since 1998 [37]. 
 
GEPIA dataset 
 
TETs expression in AML patients and normal controls 
was analyzed by the GEPIA web (http://gepia.cancer-
pku.cn/), whose data from TCGA and the GTEx 
projects [38].  
 
Patients from TCGA and GEO 
 
A total of 173 AML patients with available TETs 
expression data from TCGA (https://cancergenome 
.nih.gov/  and http://www.cbioportal.org/) were 
identified and included in this study [39]. Clinical and 
molecular characteristics were obtained, including, 
age, sex, WBC counts, PB blasts, BM blasts,  
FAB subtypes, and the frequencies of genetic 
mutations as presented in Table 3. After induction 
chemotherapy, consolidation treatment included 
chemotherapy (100 patients received) and HSCT (73 
patients accepted). 
 
In addition, two cohorts of 162 and 78 CN-AML 
patients from GEO data (GSE12417) were also 
included. The online web tool Genomicscape  
(http://genomicscape.com/microarray/survival.php) was 
applied to validate the prognostic value of TETs 
expression among CN-AML patients. 
 
Bioinformatics analysis 
 
The details for the identification of microRNAs 
targeting TET3 were reported as our previous  
study [40]. 

Statistical analysis 
 
Statistical analysis and figures creation were performed 
on SPSS 22.0 software. Mann-Whitney’s U test was 
used for the comparison of continuous variables, 
whereas Pearson Chi-square analysis or Fisher exact 
test was applied for the comparison of categorical 
variables. The prognostic effect of TETs expression on 
DFS and OS was evaluated analyzed though Kaplan-
Meier analysis and Cox regression analysis. The two-
tailed P value < 0.05 in all statistical analysis was 
defined as statistically significant. 
 
Ethical approval  
 
All procedures performed in studies involving human 
participants were approved by the Ethics Committee of 
the Affiliated People’s Hospital of Jiangsu University 
and the Washington University Human Studies 
Committee and with the 1964 Helsinki declaration and 
its later amendments or comparable ethical standards. 
Informed consent was obtained from all patients 
included in this study. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 

 

 
 

Supplementary Figure 1. The expression of TETs in AML patients with and without TET2 mutation. (A) For TET1 expression; (B) 
For TET2 expression; (C) For TET3 expression. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4 
 

Supplementary Table 1. TETs mutations in human cancer cell lines. The mutation of TETs in human cancer cell lines, analyzing by 
the Cancer Cell Line Encyclopedia (CCLE) dataset (https://www.broadinstitute.org/ccle). 

 

Supplementary Table 2. Different expressed genes of RNA for TET3high and TET3low. 

 

Supplementary Table 3. Different expressed genes of microRNA for TET3high and TET3low. 

 

Supplementary Table 4. Venn results of microRNAs targeting TET3. 

 


