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INTRODUCTION 
 

Cushing’s disease (CD), or pituitary-dependent Cushing's 

syndrome (CS) is a rare clinical syndrome, estimated 

incidence of 2.4 new cases per million inhabitants per 

year, and is characterized by excessive endogenous 

exposure to glucocorticoids (GCs), due to an 

adrenocorticotropic hormone (ACTH) secreting pituitary 

adenoma [1]. Patients with CD are exposed to high GC 

concentrations that stimulate the widely distributed 

mineralocorticoid (MR) and especially glucocorticoid 

(GR) receptors in the brain, causing abnormal alterations 

in brain structure and function. It has been conclusively 

shown that brain atrophy, abnormal changes in 

metabolism and white matter impairments 

 

in CD patients was caused by hypercortisolism [2–4]. 

These structural and functional changes in the brain can 

result in cognitive deficits, including poor visual memory 

and depression, in CD patients [5].  

 

Human brain can be divided into distinct regions with 

different functions that form a whole-brain network 

system. Graph theory, a computational method, is an 

important tool to describe network characteristics. 

Nodes and edges are basic components of every brain 

network, with brain regions defined as nodes and 

connections between regions defined as edges, 

according to graph theory analysis. Graph theory 

analysis can transform networks into nodes, edges, thus 

making quantitative analysis of complex brain networks 
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ABSTRACT 
 

To investigate the whole functional brain networks of active Cushing disease (CD) patients about topological 
parameters (small world and rich club et al.) and compared with healthy control (NC). Nineteen active CD 
patients and twenty-two healthy control subjects, matched in age, gender, and education, underwent resting-
state fMRI. Graph theoretical analysis was used to calculate the functional brain network organizations for all 
participants, and those for active CD patients were compared for and NCs. Active CD patients revealed higher 
global efficiency, shortest path length and reduced cluster efficiency compared with healthy control. 
Additionally, small world organization was present in active CD patients but higher than healthy control. 
Moreover, rich club connections, feeder connections and local connections were significantly decreased in 
active CD patients. Functional network properties appeared to be disrupted in active CD patients compared 
with healthy control. Analyzing the changes that lead to abnormal network metrics will improve our 
understanding of the pathophysiological mechanisms underlying CD. 
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[6, 7]. Several studies have demonstrated that abnormal 

brain network organization compared with heathy 

control of neuropsychological disease and traumatic 

brain injury patients [8–10]. Parameters, such as global 

efficiency and local efficiency, are commonly used to 

reflect the strengths of brain network efficiency. The 

global efficiency of a network can quaintly reflect the 

ease of exchanging information over the whole network. 

Local efficiency is a network attribute that reflect how 

information is exchanged between the direct 

neighborhood of a node [11]. In recent years, small 

world and rich club organizations have been 

investigated in many diseases, and results have shown 

that understanding the brain network organizations may 

improve prognostication abilities and guide the 

development of new treatments in future [12]. In normal 

brain network there are shows more densely local 

connectivity and few long-rang connections, which is 

called small world organization. Brain hubs are regions 

that play vital roles during the integration of functional 

control and information flow throughout the whole 

network [13]. However, the brain connectivity and 

topologic alterations of the whole-brain connectome 

based on functional brain networks in CD patients have 

not yet been characterized. In recent years, advanced 

MRI has been greatly used to detect abnormal brain 

changes in CD patients [14]. For example, diffusion 

tensor imaging (DTI) [15], susceptibility-weighted 

imaging (SWI), especially functional MRI are all viable 

methods to detect abnormal brain connectives among 

brain regions that do not display obvious morphological 

changes [16]. Resting-state fMRI can not only detect 

abnormal functional connectivity but can also reflect the 

brain activity that occurs when a subject is not 

performing any specific task [14, 17, 18]. 

 

In this study, we used graph theory approaches to 

construct functional brain networks and further 

investigated the topological parameters of active CD 

patients compared with heathy control. We hypothesized 

the following: 1) active CD patients would be 

characterized by widespread network disruption; 2) the 

characteristics of small-world characteristic would be 

change in active CD patients based on functional brain 

networks; and 3) rich club organization may be disrupted 

in CD patients.   

 

RESULTS  
 

Demographic and clinical data    

 

A total of 19 active CD patients and 22 healthy control 

(NC) were included for analysis. There were no 

significant differences in age (p=0.131) and gender 

(P=0.499) between active CD and controls (Table 1). 

Additionally, no significant differences were observed 

between the groups in terms of education. The disease 

duration of active CD patients was 1-15years 

(mean=4.76±3.68 years). active CD patients has 

significantly high 24H UFC (659.87±357.29ug/24h) 

and adrenocorticotropin levels (86.10±58.28 pg/ml) 

(Table 1). More detailed clinical information was shown 

in Table 1. 

 

Entire network analysis 

 

In the range of 0.05<sparsity<0.40, global efficiency, 

local efficiency, clustering coefficients, shortest path 

length, small-world and rich club values for participants 

were calculated. Compared with NCs, the patients with 

active CD exhibited significantly increased network 

global efficiency (P = 0.002), shortest-path length  

(P = 0.026) (Figure 1). Compared with healthy control, 

active CD patients revealed significant decreased of 

cluster efficiency (P < 0.001). No significant difference 

in local efficiency was found between patients and NCs 

(P=0.223) (Figure 1).  

 

Small world 

 

To clarify the small-world characteristics of functional 

brain network, we calculated the normalized clustering 

coefficient (γ), and the normalized characteristic path 

length (λ) of the brain network and compared them 

with those for corresponding random networks. In the 

range of 0.05 < sparsity < 0.40, we found that both CD 

patients and healthy control had small world properties 

(σ > 1) in functional brain networks (Figure 2) [false 

discovery rate [FDR]-corrected). However, active CD 

patients exhibited higher Sigma values over nearly the 

entire range of sparsity. The Lambda values of the 

active CD patients were lower than healthy control in 

most threshold ranges (Figure 2) (FDR-corrected). 

Compared with those for NCs, the γ values for active 

CD patients were significantly increased over sparsity 

ranging from 0.05 to 0.4 (Figure 2) (FDR-corrected).   

 

Rich club 

 

In the NC group, multiple rich hubs were identified, 

including, MTG.L (left middle temporal gyrus), FFG.L 

(left fusiform gyrus), FFG.R (right fusiform gyrus), 

ITG.R (right inferior temporal gyrus), LING.L (left 

lingual gyrus), LING.R (right lingual gyrus), MOG.L 

(left middle occipital gyrus), MOG.R(left middle 

occipital gyrus), CUN.R (right cuneus), preCG.L (left 

precentral gyrus), PreCG.R (right precentral gyrus), 

PoCG.L (left postcentral gyrus), and PoCG.R (right  

postcentral gyrus) (Figure 3). In the active CD group, 

rich hubs regions were identified, including ITG.R(right 

inferior temporal gyrus), FFG.L (left fusiform gyrus), 

FFG.R (right fusiform gyrus), LING.R (right lingual 
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Table 1. Demographics and clinical data of participants.  

 Cushing Disease (n=19) Controls (n=22) P Value 

Age (y) 41.00±11.23 47.05±13.51 0.131b 

Sex 4/15 7/15 0.499a 

No. of Men 4 7  

No. of Women 15 15  

Education (y) 13.32±2.14 13.09±3.64 0.814b 

Duration of illness (years) 4.76±3.58 - - 

Plasma Cortisol (0am) (ug/dl) 17.03±9.13 -  

Plasma Cortisol (4pm) (ug/dl) 19.66±9.09 -  

Plasma Cortisol (8am) (ug/dl) 2.43±13.08 -  

UFC_(21-111ug/24h) 659.87±357.29 -  

ACTH_ (7.0-65.0 pg/ml) 86.10±58.28 -  

Data are means and standard deviation unless otherwise noted. All of the scores are raw values. The comparisons of 
demographic between groups were performed with Mann-Whitney U test.  P<0.05 indicated a significant difference. UFC: 
Urinary Free Cortisol; ACTH: adrenocorticotropin. 
aChi-squre test was used for calculated. 
bMann-Whitney U test was used for calculated. 
 

 
 

Figure 1. Group differences between CD patients and healthy controls in the global of functional brain networks. The bar and 

error bars represent the fitted values and standard deviations, respectively. Eglo= global efficiency, Eloc= local efficiency, Cp=cluster 
efficiency, Lp= shortest path length. CD= Cushing's disease, NC= healthy control. 

 

 
 

Figure 2. Change of small world organization network definition parameters as parameters as a function of sparsity. The error 

bars correspond to the standard error of the mean. Black triangle indicates points where the difference between the two groups is significant 
(P< 0.05, FDR corrected). 
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gyrus), MOG.L (left middle occipital gyrus), MOG.R 

(right middle occipital gyrus), SOG.L (left superior 

occipital gyrus), PCUN.L (left precuneus), ITG.L (left, 

inferior temporal gyrus), and ROL.R (right rolandic 

operculum) (Figure 3). 

 

For the further analysis, we calculated the connection 

strengths of rich-club connections, feeder connections 

and local connections of active CD patients and 

compared them with those of NCs. Compared with 

heathy control, rich club connections were significantly 

decreased in active CD patients. Additionally, significant 

reductions in local and feeder connections were found in 

active CD patients compared with NCs (Figure 3).   

 

Correlation analysis 

 

No significant correlations between network parameters 

and disease duration were found (Figure 4). In addition, 

no significant differences were found between ACTH 

levels and the clinical information (Figure 5). 

 

DISCUSSION 
 

In this study, we investigated functional brain networks, 

based on graph theory, and found abnormal changes of 

topological characteristics in active CD patients 

compared with NCs. To our knowledge, this is the first 

study to examine the alterations in global functional 

organization and connectivity in active CD patients 

based on fMRI. First, compared with heathy control, 

functional brain networks of active CD patients showed 

a significant increase in global efficiency. In addition, 

significant decreases in shortest path length and cluster 

efficiency in were found in active CD patients 

compared with NCs. Second, both active CD patients 

and healthy controls displayed small world topology in 

functional brain network, but active CD patients 

revealed significantly increased of small world 

organization than healthy control. Finally, we found 

significant reductions in rich club, feeder and local 

connections in active CD patients than NCs. Therefore, 

our results may provide new insights into understanding 

how hypercortisolism affects functional brain networks 

in active CD patients.  

 

Functional MRI is an indirect measure of neural 

activity, by detecting the blood oxygen level and can be 

used to analyze activity of specific brain regions [19]. 

Functional MRI has been wildly used as a non-invasive 

brain imaging technique in the field of neuroscience 

[20]. Classic fMRI studies of task-related brain 

activation, which analyzes brain activity under specific 

experimental task conditions. In recent years, 

researchers have found that activation of brain during 

resting state play an important role in disease diagnosis.

 

 
 

Figure 3. Rich Club regions distributions in CD patients and NC. (A) The hub nodes are shown with the node sizes indicating their 

nodal connection strength and rich club regions including the MTG.L, FFG.L, FFG.R, ITG.R, LING.L, LING.R, MOG.L, MOG.R, CUN.R, preCG.L, 
PreCG.R, PoCG.L, PoCG.R, SOG.L, PCUN.L, ITG.L, ROL.R. (B) The bar chart shows group differences in the rich-club, feeder, and local 
connection strengths. The bars and error bars represent the fitted values and the standard deviations, respectively. 
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In this study, resting functional networks were used to 

investigate the correlations between time series in 

different brain regions, based on the effect of blood 

oxygen level. The correlation of different nodes (brain 

regions) can be analyzed with the help of graph theory, 

further the whole brain functional connections at in 

resting state were analyzed [21]. For active CD 

patients, it's quite different from other diseases that 

can cause brain atrophy, the functional brain networks 

were more interconnected than healthy control, which 

included increased global efficiency, decreased path 

length and decreased clustering coefficient. This 

phenomenon of increased interconnectivity has also 

been reported in other studies of traumatic brain injury 

and brain tumors [22, 23]. Karen et al. has put forth 

research findings traumatic brain injury show the 

increased local efficiency and connectivity degree 

compared with healthy controls, and suggested that 

these changes may reflect functional compensation 

[22]. Castellanos et al. reported that higher densely 

interconnectivity may be the result of higher cost 

consumption [24]. Changes in brain network 

connectivity can be influenced by the changes in 

hormone levels, and hormones can have complex 

influence on brain networks [25, 26]. Sripada et al. 

reported that dehydroepiandrosterone can shift the 

balance between default mode network and salience 

network [27]. Cushing’s disease provides a unique and 

naturalist model for studying the influence of 

hypercortisolism on brain function and structure [28]. 

Jiang et al. reported that active CD patients exhibited 

significantly altered diffuse parameters in the gray 

matter and white matter of the left medial temporal 

lobe and might explain some part of the memory and 

cognition impairments in active CD patients [4]. 

Additionally, the abnormal alterations in the amplitude 

of low-frequency fluctuation (ALFF) / regional 

homogeneity (ReHo) values in the posterior cingulate 

 

 
 

Figure 4. Correlation analysis of disease duration and parameters of brain network. No correlations were found in disease 

duration and global efficiency (r=0.007, p=0.977), local efficiency (r=-0.054, p=0.826), Lp (r=0.225, p=0.354), Cp (r=-0.098, p=0.690), λ 
(r=0.270, p=0.264), λ (r=-0.023, p=0.926), rich-club (r=0.138, p=0.571), feeder (r=0.353, p=0.886), local (r=-0.204, p=0.403). Elocal= local 
efficiency Cp=cluster efficiency, Lp= shortest path length. 
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cortex (PCC) / precuneus (PCu) showed a significant 

correlation with cortisol levels based on functional MRI 

[29]. van der Werf et al. found abnormal increases in 

resting-state functional connectivity of long-term 

remission of active CD patients based on functional 

MRI [30]. The abnormal functional connectivity 

observed during our study of active CD patients may be 

due to hypercortisolism; however, the underlying 

mechanisms require further study. 

 

Both Sporns et al. and Achard et al. confirmed that 

human brain has the small world properties and is 

characterized by high local clustering of connections 

between neighboring regions but with short path 

lengths between any pair of nodes [31, 32]. It plays an 

important role in achieving functional segregation and 

integration for complex brain networks [33]. The 

features of functional brain networks identified in our 

study for both active CD patients and healthy controls 

are consistent with small world network organization. 

However, changes between active CD patients and 

healthy controls were observed in this study. The 

normalized path lengths (λ) were low and showed 

significant differences between active CD and healthy 

control, which suggesting that it's conducive to rapid 

information exchange between spatially separated 

brain regions. This finding parallels results obtained 

with measures of shortest path length. The normalized 

cluster efficiency (γ) was increased and significant 

differences between active CD and healthy control, 

suggesting the ability of processing local information 

was enforced. Additionally, values for Sigma, was 

significantly higher in active CD compare with control 

group. These findings are in line with the 

Korenkevych et al's hypothesis that needs better brain 

network system to carry out normal everyday life for 

active CD patients [34]. These findings are consistent 

with other studies in different disease. Supekar at al. 

found abnormal changes of low normalized path 

lengths in small world organization for Alzheimer’s 

disease based on functional MRI [35]. Anand et al. 

indicated that abnormal small world organization may 

be associated with the cognitive impairments observed 

during traumatic brain injury [36]. 

 

 
 

Figure 5. Correlation analysis of ACTH and parameters of brain network. No correlations were found in disease duration and global 

efficiency (r=0.084, p=0.732), local efficiency (r=-0.215, p=0.375), Lp (r=0.123, p=0.616), Cp (r=-0.243, p=0.315), λ (r=0.166, p=0.498), λ (r=-
0.066, p=0.787), rich-club (r=-0.209, p=0.391), feeder (r=-0.241, p=0.320), local (r=-0.110, p=0.654). Elocal= local efficiency Cp=cluster 
efficiency, Lp= shortest path length. 
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In this study, we found rich club organization is 

presented in active CD patients but decreased compared 

with healthy control for the first time. Rich club 

organization is an important feature of brain network 

and abnormal changes has been found in other 

neurologic disease [37, 38]. The hub distributions of 

active CD patients were consistent with healthy control 

and other studies reported, but there is still some 

difference. One possible explanation for this is the 

differential distribution of glucocorticoids in brain. 

Despite rich club paly a high role in information 

exchange between different regions, it's vulnerable to 

attack [39, 40]. Previous studies revealed that the 

impact of alterations of rich club connection can be 

compensated by increasing local connections. However, 

we found that connections of rich club, feeder and local 

regions were decreased in active CD patients. It means 

that widespread disruption of gray matter connectivity. 

One possible reason for this is that glucocorticoid 

receptors are widely distributed in our brain [41]. This 

was corroborated by numerous studies that volume of 

grey matter in active CD patients was reduced for 

hypercortisolism [42–44]. Abnormal changes of rich 

club organization have also been found in other 

neuropsychiatric diseases. In patients with subjective 

cognitive decline, both hub and local region connections 

showed lower strength compared with healthy control 

and have relationships with auditory verbal learning test 

[45]. In schizophrenia patients, the reduced rich club 

connection was associated with cognitive decline [46].  

 

We performed a correlation analysis between clinical 

information and network parameters and found no 

correlations between disease duration, ACTH levels, 

and brain network parameters. The lack of correlations 

may be due to the small sample size used in this study, 

which may have introduced bias. Therefore, whether 

ACTH and disease duration can effectively reflect the 

severity of CD remains controversial.  

 

Our study has some limitations. First, the sample size is 

relatively small, but consistent with similar studies 

investigating topological parameters [47–49]. It's hard 

to recruit large samples of active CD patients for it is a 

rare disease [1]. Second, we did not investigate the 

correlation between CD patients and topological 

organizations and it needs further investigation.  

 

In summary, we showed that functional brain networks 

were abnormal changed in active CD patients by 

applying topological analysis based on resting fMRI. 

Our study revealed the abnormal changes of small 

world and rich club organization of active CD patients. 

Although we didn’t find significant correlation between 

the severity of CD and the changes of the parameters, 

we will continue relevant research in the future study. 

Graph theoretical analysis provide us new insight into 

understanding the effect of active CD on our brain.  

 

MATERIALS AND METHODS 
 

Participants 

 

Nineteen active CD patients and twenty-two age and 

education matched healthy controls (NC) were included 

in our study. Disease duration was recorded from first 

symptom onset as previously reported [50]. Nineteen 

active CD patients were performed transsphenoidal 

surgery. Eligibility criteria for the study were (a) 18~60 

years of age, (b) positive pituitary lesions in imaging 

examination. Exclusion criteria included a history of 

drug or alcohol abuse, history of traumatic brain injury, 

neurological problems, contraindications for undergoing 

a magnetic resonance imaging scan and left-

handedness. 

 

Following the 2008 Endocrine Society guidelines, 

Cushing’s disease and its etiology were confirmed by 

clinical features (e.g., truncal obesity, skin and muscle 

atrophy, and moon face), elevated 24-hour urinary free 

GC (UFC), absence of blunted circadian rhythm of GC 

secretion, elevated ACTH levels, lack of suppression 

after low dose dexamethasone (2 mg) administration, 

50% suppression after high dose dexamethasone (8 mg) 

administration, a central to peripheral (C/P) ACTH ratio 

≥2 for bilateral petrosal sinus sampling (BIPSS) and 

pathology after surgery [51]. All aCD patients were 

treated with transsphenoidal surgery by same doctor and 

without radiotherapy or other surgery treatment as we 

have been previously reported [29]. All active patients 

were confirmed in our hospital by surgical pathological 

findings. They did not receive any other systematic 

therapy in other hospitals. The direct chemiluminescence 

immunoassays were used to determine the level of 

ACTH, serum cortisol, and 24UFC. 

 

Biometric measurements of all the active CD patients 

were collected, including 24-hour urinary free GC 

(UFC) levels and adrenocorticotropin (ACTH) levels 

from a peripheral vein. The medical history and 

medication use of all the study subjects were recorded 

according to a standardized questionnaire. 

 

Image acquisition 

 

All the subjects were scanned using a 3.0T MRI scanner 

(GE Signa Excite HD; GE Medical Systems, 

Milwaukee, WI, USA) with a birdcage head coil. MRI 

protocol include T1-weighted sequence images were 

acquired: TR = 5.576 ms; TE = 1.752 ms; slices = 196; 

thickness = 1 mm; gap = 0 mm; FA = 908; acquisition 

matrix = 256×256; and FOV = 250 mm×250 mm. For 
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resting-state imaging: petition time (TR) = 2000 ms; 

echo time (TE) = 30 ms; slices = 35; thickness = 4 mm; 

gap = 0 mm; field of view (FOV) = 240 mm×240 mm; 

acquisition matrix = 64×64; and flip angle (FA) = 90°. 

Participants were instructed to close their eyes and relax 

during rest but stay awake while avoiding any 

structured thinking. No specific cognitive task was 

given. Imaging data for all patients were completed 

within three days before surgery. 

 

Image processing 

 

Images were processed with Statistical Parametric 

Mapping software (SPM12 Wellcome Department, 

University College London, London, England) 

implemented in MATLAB (version R2014b; 

MathWorks, Natick, MA). The first 10 volumes were 

discarded for magnetization, leaving 200 images 

available for analysis. Slice-timing and realignment 

were performed to correct for head motion and two 

subjects (1 CD patient and 1 NC) were excluded for the 

excessive head motion (> 3mm and 3°). The images 

were then normalized to Montreal Neurological Institute 

(MNI) EPI template and resampled to a 3-mm cubic 

voxel. Images were further smoothing with an 4mm 

full-width at half maximum (FWHM) isotropic 

Gaussian kernel. Finally, linear drift and temporal band-

pass filtering (0.01<f<0.08) were removed to reduce the 

effects of low-frequency drift and high-frequency noise 

(Figure 6). The results were visually checked for each 

participant by an experienced neuroscientist. 

 

Network construction 

 

Brain network includes nodes and edges. In this study, 

we use automated anatomic labeling template 90 (AAL 

90) to define network nodes [52]. The Pearson 

correlation coefficients between any two areas of 90 

nodes were defined to network edges. Finally, the 

binary 90*90 functional connectivity matrix was 

constructed for each participant. A series of threshold of 

sparsity were set to assess the effects of thresholds 

ranging from 0.05 to 0.4 at interval of 0.01 [53], which 

removed spurious edges as much as possible (Figure 6). 

 

Graph metrics 

 

Graph metrics were analyzed by using Gretna and 

viewed by BrainNet Viewer software [54]. In this study, 

we calculated the global efficiency (Eglo), local 

efficiency (Eloc), clustering coefficients (Cp), shortest 

path length (Lp), small-world parameters, and rich-club 

parameters. Global efficiency reflected the efficiency of 

the parallel information in the whole network. Local 

efficiency reveals how much the efficient between the 

first neighbors of each node, it reflects ability to resist 

external attacks of brain network. Shortest path length 

of a network indicated the ability for information to 

 

 
 

Figure 6. Flow chart of date processing for resting functional MRI. (A) individual fMRI images were used for parceling the 

distinct brain regions. (B) time series were collected after the pretreatment based on bold oxygenation level dependent. (C) functional 
connectivity matrix between node i and j was constructed. (D) individual brain network was collected. (E) simple model diagram for 
graph theory analysis. 
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propagate in parallel. Cluster coefficient means the 

possibility of whether the neighborhoods were linked 

with each other and indicates the local interconnectivity 

in the in the whole network. (More information can be 

seen in the Supplementary Material). 

 

Small world  

 

In this study, we computed the small-world organization 

of the binary network of all participants. The small-

world network reals that it has higher local 

interconnectivity approximately equivalent shortest path 

length compared with random network [55, 56]. The 

construction of small-world networks is the best balance 

between simultaneous specialization and integration of 

function [57]. (More information can be seen in the 

Supplementary Material). 

 

Rich club 

 

According to the graph theory, node can be organized into 

rich-club and peripheral nodes. Hubs regions were defined 

as the highly connected and central brain regions (nodes), 

its more densely interconnected, which called rich club 

pheromone, than random networks [56, 58, 59]. It plays a 

high role in guiding function controlling integration and 

information flow in the brain network [60]. Local region 

was defined as regions other than hubs. In this study, the 

degree centrality, was used to exam the nodal 

characteristics of each brain region in functional brain 

network. The hub regions were defined with a degree 

centrality at least 1 standard deviation above the mean 

degree centrality across all regions [8, 61]. Furthermore, 

we calculated the rich club connections, feeder 

connections and local connections of each group 

respectively. (More information can be seen in the 

Supplementary Material). 

 

Statistical analysis 

 

Statistical analysis was performed in SPSS software 

(version 22.0; Inc., Chicago, IL). Differences in 

gender distribution between two groups were 

determined using a chi-square test. Differences in age 

and education level between two groups were 

determined by between-group t-tests for means. 

Network matrices (network efficiency, cluster 

efficiency and path length) between two groups were 

compared by using two-sample t-test. A value of p < 

0.05 was considered to be significant. We calculated 

spearman correlations between network parameters 

and clinical parameters, including ACTH and disease 

duration. We used permutation test (100 permutations) 

to calculate the group difference about rich club 

connection strength between CD patients and healthy 

control. We selected false discovery rate (FDR) to 1% 

to protect against type I errors when performing 

multiple comparisons.  
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SUPPLEMENTARY MATERIALS 
 

 

The basic approach to analyze complex system 

(information connection between brain regions) named 

as graph theoretical [1]. The basic elements of network 

are nodes (brain regions) and edges (connectivity 

between nodes). Functional brain networks can be 

quantitatively described with help of graph theory by 

calculating a variety of organizations [2]. In this study, 

wo focus on whole brain network which reflect the 

brain activity and function connectivity by calculating 

network organization [3].  

 

Definitions of network organization  

 

In this study, we calculated the global efficiency (Eglob), 

local efficiency (Eloc), shortest path length (Lp), cluster 

efficiency (Cp). All network organizations were 

quantified using the GRETNA software (http://www. 

nitrc.org/projects/gretna/) and viewed by using the 

BrainNet Viewer software (http://www.nitrc.org/ 

projects/bnv/).  

 

Global efficiency (Eglob) 

 
Global efficiency  

Global efficiency reflects the ability of information 

transmission in a network [4].  

 

For a network G, the equitation is defined as: 
 

 
1 1

( 1
Eglob G

)
i j G

N N Lij
 


   

 

Where the Lij is the shortest path length between node i 

and node j in G. 
 

Local efficiency 
 

The local efficiency of G measures the how much of the 

network is fault tolerant and reveals how efficient the 

communication is among the first neighbors of the node 

i when it is removed [5]. For a network G, the 

equitation is defined as: 
 

iEloc(G) Eglob(G
1

)i GN
   

 

Where the Gi is the subnetwork composed of the nearest 

neighbors of node i. 
 

Shortest path length 

 

The shortest path length  

The shortest path length is defined as the shortest edge 

between node i and node j.  

The average of all shortest lengths between each pair of 

nodes in the network is global defined as global shortest 

path length. For a network G, the equitation is defined as: 
 

1
ij

(N 1
Lp(G) =

)
L

i j GN
  

 

 

Where Lij is the shortest path length between node i and 

node j. N=90. 

 

Cluster efficiency 

 
The cluster efficiency of node i is defined as the 

likelihood of neighbor to neighbor connection. The 

global cluster efficiency is the average of the cluster 

efficiency overall nodes and reveled the larger extent of 

the local interconnectivity of a network. For a network 

G, the equitation is defined as: 

 

 
1

3

, 

1 2Cp ( )( 1)i i ij jk kii G j k
i

k k
kN

  


   
    

   
    

 

Where Ki the degree of node i and ωij is the weight 

between node i and node j. N = 90. 

 

Small world 

 

In this study, we calculated the small world properties of 

the binary functional brain networks. Small world 

organization include normalized global shortest path 

length, normalized global clustering and small-world 

ness. 100 random networks were generated before 

calculated small world organization, which have the same 

numbers of nodes and edges as the real network [6]. The 

normalized global shortest path length 

(Lambda)=Lpreal/Lprand, global normalized global 

clustering (Gamma)=Cpreal/Cprand, small worldness 

(Sigma)= Lambda/Gamma. Where Lprand and Cprand are 

the means of 100 random network global clustering 

coefficients and the global shortest path length, 

respectively. If the Sigam>1 or Lambda>1 and 

Gamma=1, we can say the network existence of small 

world orgnazation [7]. 

 

Rich club 

 

The phenomenon of rich club means that the hubs were 

densely connect to each other regions in brain network 

[8]. It plays a vital role in exchanging information in the 

brain network. However, rich club organization may be 

vulnerable to brain stress, such as traumatic brain injury 

and AD, for high connectivity density and metabolic 

demand [9]. In this study, we constructed the functional 

http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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brain network and identified the brain hubs. In this 

study, the degree centrality, was used to exam the nodal 

characteristics of each brain region in functional brain 

network. The hub regions were defined with a degree 

centrality at least 1 standard deviation above the mean 

degree centrality across all regions [10]. Local region 

was defined as regions other than hubs. 
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