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INTRODUCTION 
 

Alzheimer’s disease (AD) is the most common 

neurodegenerative disease (ND) and dementia, accounting 

for 60-80% of dementia cases. AD is characterized 

pathologically by accumulation of extracellular amyloid-

β1 (Aβ) and deposits of intracellular tau neurofibrillary 

tangles [1]. In the US, the number of people living with 

AD is projected to increase from 5.5 million in 2018 to 

13.8 million by 2050 [2]. Gradual progressive memory 

loss is the most common clinical symptom of AD, which 

eventually affects other cognitive functions such as 

communication and movement. There are currently many 

promising advances in the understanding of AD, 

including discovery of novel biomarkers [3, 4] and 

analysis of underlying biological mechanisms [5]. 
 

Parkinson’s disease (PD) is the second most prevalent ND 

affecting approximately 145,000 people in the UK [6], and 

PD patient numbers are predicted to increase by 87.6% 

between 2015 and 2065 [6]. In the US, the number of PD  

 

cases are predicted to increase from 680,000 to 1,238,000 

by 2030 [7]. The accumulation of α-synuclein in neurons 

in the form of Lewy bodies is the main neuropathologic 

hallmark of PD [8]. Primarily, PD affects the motor 

systems of the central nervous system (CNS) as a result of 

the death of dopamine generating cells in the midbrain 

substantia nigra (SN) [8]. 

 

There is growing evidence that AD and PD share many 

common characteristics [9]. Around 80% of PD patients 

will develop dementia, with an average time of onset 10 

years from PD diagnosis [10]. We have recently shown 

that PD and AD share significant common differentially 

expressed genes (DEGs), disturbed pathways including 

the sirtuin signaling pathway, and identified REST as an 

important upstream regulator in both diseases [11]. AD 

and PD are both age-related diseases that have hallmarks 

of protein aggregation. In fact over 60% of AD cases are 

accompanied by the formation of Lewy bodies and α-

synuclein is found as a non-amyloid component within 

AD amyloid plaques [12]. In addition, there are certain 
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ABSTRACT 
 

Parkinson’s disease (PD) and Alzheimer’s disease (AD) are the most common neurodegenerative diseases and there 
is increasing evidence that they share common physiological and pathological links. Here we have conducted the 
largest network analysis of PD and AD based on their gene expressions in blood to date. We identified modules that 
were not preserved between disease and healthy control (HC) networks, and important hub genes and transcription 
factors (TFs) in these modules. We highlighted that the PD module not preserved in HCs was associated with insulin 
resistance, and HDAC6 was identified as a hub gene in this module which may have the role of influencing tau 
phosphorylation and autophagic flux in neurodegenerative disease. The AD module associated with regulation of 
lipolysis in adipocytes and neuroactive ligand-receptor interaction was not preserved in healthy and mild cognitive 
impairment networks and the key hubs TRPC5 and BRAP identified as potential targets for therapeutic treatments of 
AD. Our study demonstrated that PD and AD share common disrupted genetics and identified novel pathways, hub 
genes and TFs that may be new areas for mechanistic study and important targets in both diseases. 
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genetic variants that increase the risk of both AD and PD, 

for example the strong risk factor for AD, APOE4, has 

been shown to be related to cognitive decline in PD [13].  

 

Gene co-expression relationships contain a wealth of 

information that univariate methods like differential 

expression analysis cannot detect [14]. Weighted gene 

co-expression network analysis (WGCNA) is a 

popular tool used in systems biology to construct co-

expression gene networks which can detect gene 

modules as well as identify key genes and hubs within 

these modules [15]. WGCNA has been used to find 

strong evidence for mitochondrial dysfunction and 

chronic low grade innate immune response in AD 

[16]. In addition, Chatterjee et al. [17] identified 11 

hub genes by using WGCNA in frontal cortex and SN 

brain samples of PD patients. 

 

To date there have been no studies investigating PD and 

AD using gene expression network simultaneously to

 reveal potential shared biological process and pathology.  

In this study we analyzed gene co-expression networks 

based on PD and AD blood microarray data and identified 

common genetic networks between both diseases. See our 

analysis workflow illustrated in Figure 1. Compared to 

brain tissues, blood tissue is easier to access from patients 

with ND, and publicly available AD and PD blood 

datasets have a large enough sample size to construct 

reliable and robust networks. Our network analysis 

expands on standard WGCNA and hub detection 

approach which can robustly find key processes and genes 

that are associated with both PD and AD. 

 

RESULTS 
 

Gene co-expression network construction 

 

After quality control, we obtained 19176 genes in the 

PD dataset which included 204 PD and 230 healthy 

control (HC) samples, meanwhile 13661 genes were 

 

 
 

Figure 1. Workflow of our analysis. Filtered and normalized microarray data were separated into five datasets: AD disease (ADAD), 

healthy control (ADHC) and MCI (ADMCI) data from the AD dataset, and the PD disease (PDPD) and healthy control (PDHC) data from the PD 
dataset. On each dataset gene co-expression networks analysis was performed using the WGCNA R package [15]. An additional k-means 
correction step to reduce number of misplaced genes [70] was then performed and module preservation between cohorts within AD and PD 
was found using NetRep (v.1.2.1) [18]. The pathways associated with non-preserved modules were then found using the Enrichr web tool [19, 
20] and hub genes and transcription factors in these non-preserved modules identified. The SCAN (single nucleotide polymorphism (SNP) and 
Copy number ANnotation) database) database [25] was used to find SNPs associated with the genes in each non-preserved module and these 
SNPs used to search the MiRSNP database to find the SNPs at 3’ UTR of disease associated miRNAs. 
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obtained in the AD dataset which included 245 AD, 142 

mild cognitive impairment (MCI) and 182 HC samples. 

We applied WGCNA [15] to build our networks and 

selected the soft threshold power to define the 

adjacency matrix of each dataset based on approximate 

scale-free topology R2 of 0.85 (Figure 2). In this 

method, highly correlated nodes are placed into a single 

module or cluster which are thought to be regulated by 

similar transcription factors (TFs) and represent certain 

biological processes. These networks were constructed 

for the AD disease (ADAD), healthy control (ADHC) 

and MCI (ADMCI) data from the AD dataset, and the 

PD disease (PDPD) and healthy control (PDHC) data 

from the PD dataset separately. We discovered 27, 54, 

29, 32 and 58 modules in PDPD, PDHC, ADAD, 

ADMCI, ADHC networks respectively. 

 

PD blood and brain DEG overlap 

 

We identified 360 DEGs in the PD blood dataset 

(nominal Pvalue < 0.01, see Supplementary Table 2) 

and compared these DEGs to the DEGs identified in our 

recent meta-analysis study about PD in substantia nigra 

region [11]. An overlap of 21 genes were found 

including LRRN3, BASP1 and TPM3. However, a Fisher 

Exact test was not significant for the overlap showing 

that this was likely by chance (OR = 1.08, 95% CI 

0.65~1.72, Pvalue = 0.72, Fisher Exact test). 

 

 
 

Figure 2. Scale free network topology (signed R2) for different soft-thresholding powers of data. A soft thresholding power that 

achieved a scale-free topology of R2 of 0.85 was chosen to define approximate scale-free topology. We found that the (A) ADHC data 
achieved approximate scale-free topology at a soft thresholding power of 6 and the (B) ADMCI and (C) ADAD data at a soft thresholding 
power of 4. The (D) PDHC data reached approximate scale-free topology at a soft thresholding power of 10 and (E) PDPD data at a soft 
thresholding power of 13. 
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Identification of non-preserved modules 

 

In our network analysis, if the relationships and 

correlation structure between nodes composing each 

module were not replicated, then they were considered 

non-preserved. In the case of healthy and disease 

networks, non-preserved modules suggested the 

expression pattern and regulation of the genes in these 

modules vary between disease and healthy conditions. 

On the other hand, modules preserved between disease 

and healthy networks represented processes that are not 

affected by disease status. Here we focused on non-

preserved modules which may help to reveal the disease 

mechanism. The R package NetRep (v1.2.1) was used 

to identify these non-preserved modules [18]. 

 

Table 1 shows the non-preserved modules between PDHC 

and PDPD networks and the biological processes 

associated with these modules. Three of the 54 modules in 

the PDPD network were not preserved in PDHC network, 

and one of those 27 PDHC modules was not preserved in 

the PDPD network. The Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) terms that 

were significantly enriched within non-preserved modules 

(Pvalue < 0.01) were found using the Enrichr web tool 

[19, 20]. The PDPD salmon module was found to be 

associated with insulin signaling (KEGG pathway, Pvalue 

= 0.0030, 7/108 overlap). The PDPD darkseagreen4 

module was found to be associated with antigen 

processing and presentation (KEGG pathway, Pvalue = 

5.38E-16, overlap = 14/77) and natural killer cell 

mediated cytotoxicity (KEGG pathway, Pvalue = 2.94E-

15, overlap = 10/41). 

 

Table 2 shows the non-preserved modules between the 

ADHC, ADMCI and ADAD networks. Of the 29 

ADAD modules, one was not preserved in both ADHC 

and ADMCI networks. In addition, one of the 32 

ADMCI modules was not preserved in ADAD and 

ADHC networks. Moreover, three of the 58 ADHC 

modules were not preserved in both ADAD and 

ADMCI networks and one non-preserved in ADMCI 

networks. The ADAD blue module was not preserved in 

ADHC and ADMCI networks and was associated with 

regulation of lipolysis in adipocytes (KEGG pathway, 

Pvalue = 6.24E-4, overlap = 10/55) and neuroactive 

ligand-receptor interaction (KEGG pathway, Pvalue = 

0.005070, overlap = 30/338). The ADHC 

darkolivegreen module was associated with sensory 

perception (GO biological process, Pvalue = 1.83E-4, 

overlap = 8/55). 

 

Identifying hub genes 

 

Hubs are genes that are highly interconnected or 

important within a module and likely have functional 

significance [21]. Hubs have a role in maintaining the 

structure of the gene network of the module and the 

biological processes associated with the module. In our 

study, hub genes were identified using five approaches: 

Betweenness centrality (BC), PageRank, module 

membership (MM), closeness centrality and Kleinberg’s 

centrality. Any gene with a Pvalue < 0.01 in any hub 

detection method was considered as a significant hub 

gene. Using multiple methods for identifying hubs 

allowed for hub identification that may otherwise have 

been missed by use of just one method. To demonstrate 

hub score distribution, Supplementary Figure 2A shows 

an example of betweenness hub score distribution 

across all genes in the PDPD darkseagreen4 module 

which was non-preserved in PDHC network and the 

(Supplementary Figure 2B) distribution of the 

significant GINS2 (Pvalue = 0.005) BC scores across 

the 1000 iterations of the hub permutation test. 

 

We identified 34 hubs in modules not preserved 

between the PDPD and PDHC networks 

(Supplementary Table 3) and 92 hubs in the non-

preserved modules between ADAD, ADMCI and 

ADHC networks (Supplementary Table 4). It was 

expected that larger modules may have more hubs than 

smaller ones, for example the PDHC purple module 

contained 606 genes, of which 17 were found to be hubs 

(e.g. FAM110C, PAK4, NEB), and the smaller salmon 

PDPD module contained 351 genes, of which only 10 

were hubs (e.g. HDAC6, TYSND1). The PD salmon 

module was associated with insulin resistance and was 

not preserved in PDHC network shown in Figure 3A, 

where hub genes are highlighted. Interestingly, it 

includes HDAC6 which has been shown to influence tau 

phosphorylation and autophagic flux in AD [22]. The 

blue AD module which was associated with regulation 

of lipolysis in adipocytes and neuroactive ligand-

receptor interaction and was not preserved in ADMCI 

and ADHC networks (Figure 3B) which included 

TRPC5 and BRAP as hub genes. Networks were 

visualized in Gephi [23]. 

 

Identifying transcription factors (TFs)  

 

Genes that are clustered together by WGNCA likely are 

regulated in a similar way, thus we intended to identify 

which TFs potentially regulate the gene expression of 

each module. The TFs that potentially regulate each 

non-preserved module (Pvalue <0.01) were identified 

by using Encyclopedia of DNA Elements (ENCODE) 

and chromatin immunoprecipitation (ChIP) Enrichment 

Analysis (ChEA) consensus TFs from ChIP-X by using 

the Enrichr web tool [19, 20]. We found a total of four 

TFs that regulated at least one of the three PDPD 

modules, including FOXM1 which regulated 6 genes in 

the salmon modules (Pvalue = 0.0066) and 9 in the 
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Table 1. List of non-preserved modules found between PD and healthy controls (HC). 

Module colour Pvalue of NetRep Processes associated with module found using Enrichr 
No. genes in 

module 

PD modules not preserved in HC 

Darkseagreen4 9.99E-5 

Antigen processing and presentation, Natural killer cell 

mediated cytotoxicity, cellular defense response, regulation of 

immune response 

150 

Navajowhite2 9.99E-5 cellular response to misfolded protein 150 

Salmon 9.99E-5 Insulin resistance, regulation of protein homooligomerization 351 

HC modules not preserved in PD 

Purple 9.99E-5 
Antigen processing and presentation, VEGF signaling 

pathway, regulation of intracellular transport 
606 

 

Table 2. List of non-preserved modules found between AD, MCI and healthy controls (HC). 

Module colour Pvalue of NetRep Processes associated with module found using Enrichr 
No. genes in 

module 

AD modules not preserved in HC 

Blue 9.99E-5 

Regulation of lipolysis in adipocytes, Neuroactive ligand-

receptor interaction, detection of chemical stimulus involved 

in sensory perception of smell, extracellular matrix 

organization 

1076 

AD modules not preserved in MCI 

Blue 9.99E-5 

Regulation of lipolysis in adipocytes, Neuroactive ligand-

receptor interaction, detection of chemical stimulus involved 

in sensory perception of smell, extracellular matrix 

organization 

1076 

MCI modules not preserved in AD 

Sienna3 8.59E-3 
Regulation of lipolysis in adipocytes, axonal fasciculation, 

hippo signaling 
770 

MCI modules not preserved in HC 

Sienna3 9.99E-5 
Regulation of lipolysis in adipocytes, axonal fasciculation, 

hippo signaling 
770 

HC modules not preserved in AD 

Darkolivegreen 9.99E-5 
sensory perception, regulation of potassium ion 

transmembrane transport 
584 

Darkorange2 0.011 Peroxisome, amide transport 248 

Skyblue 0.015 establishment of epithelial cell polarity 187 

HC modules not preserved in MCI 

Darkolivegreen 9.99E-5 
sensory perception, regulation of potassium ion 

transmembrane transport 
584 

Red 9.99E-5 
Regulation of lipolysis in adipocytes, bicellular tight junction 

assembly 
704 

Darkorange2 2.99E-4 Peroxisome, amide transport 248 

Skyblue 0.022 establishment of epithelial cell polarity 187 

 

darkseagreen4 module (Pvalue = 4.00E-08). Within one 

PDHC module, there were a total of six TFs, including 

CREB1 which regulated 64 genes in the purple module 

(Pvalue = 0.001402). Supplementary Table 5 shows the 

significant TFs found in modules that were not 

preserved between PD and HC networks.  

We found two TFs (SUZ12, EZH2) regulating non-

preserved ADAD modules, and one TF (SUZ12) 

regulating 115 genes in the ADMCI sienna3 module 

(Pvalue = 8.24E-10). We also identified 18 TFs that 

regulated at least one of four non-preserved ADHC 

modules. This included REST which regulated 20 genes 
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in the darkolivegreen (Pvalue = 0.0092) and SUZ12 

which regulated 68 genes in the darkolivegreen (Pvalue 

= 0.0039) and 107 genes in the red module (Pvalue = 

1.21E-09). In addition, CREB1 regulated 29 genes in 

the ADHC darkorange2 module (Pvalue = 0.007005). 

Supplementary Table 6 shows the same for modules 

that were not preserved between ADAD, ADMCI and 

ADHC. 

 

Single nucleotide polymorphism (SNP) analysis of 

significant WGCNA modules 

 

As non-preserved modules contain genes which play a 

role in processes that were associated with AD or PD, 

they may have been more likely to contain disease 

associated variants than preserved modules. We 

searched each non-preserved PD module for known 

Genome Wide Association Studies (GWAS) genes 

associated with PD [24]. There are 69 known GWAS 

genes, of which four (TMEM163, TLR9, ITIH4, 

TUBG2) were in the salmon module and two 

(TMEM175, STAB1) were in the navajowhite2 module. 

We observed a significant enrichment of GWAS genes 

within modules that were not preserved compared to 

preserved networks (OR = 2.96, 95% CI 1.04~6.88, 

Pvalue = 0.02, Fisher Exact test). Furthermore, the non-

preserved PDHC purple network contained five GWAS 

gene (KAT8, BIN3, TLR9, ITIH4, TUBG2), however the 

non-preserved HC modules were not more likely to 

contain GWAS genes (OR = 2.61, 95% CI 0.08 ~ 6.47, 

Pvalue = 0.052, Fisher Exact test). We did the same 

analysis for the non-preserved AD modules, however, 

no AD associated GWAS genes were found within any 

non-preserved modules. 

 

In addition to searching for known GWAS genes in 

non-preserved modules, we used the SCAN (SNP and 

Copy number ANnotation) database (http://www. 

scandb.org/) [25] to identify SNPs corresponding to the 

genes in each non-preserved module. These SNPs were 

used to search the MirSNP [26] database to identify 

SNPs associated with known PD or AD microRNAs 

(miRNAs) dependent on the dataset of the module. We 

identified 29 SNPs associated with 9 PD related 

miRNAs across all non-preserved modules in the PD 

dataset (Supplementary Table 7), and 27 SNPs 

associated with 8 AD related miRNAs across all non-

preserved modules in the AD dataset (Supplementary 

Table 8). 

 

Comparison of AD and PD results 

 

There is increasing evidence that PD and AD share 

several common characteristics [9], thus we 

investigated the shared processes associated with non-

preserved modules in both the AD and PD dataset to see 

which were important in both diseases. The biological 

processes found to be associated with significant 

modules in AD and PD were compared to see which 

were important in both diseases. Unfortunately, we did

 

 
 

Figure 3. Network visualization of PD and AD modules. (A) Visualization of WGCNA network connections of the PDPD salmon network 

module found to be associated with insulin resistance and not preserved in the PDHC network. It shows network connections whose 
adjacency is above 0.2, including all 351 nodes and 595 of 61776 edges. (B) Visualization of WGCNA network connections of the ADAD blue 
module found to be associated with regulation of lipolysis in adipocytes and neuroactive ligand-receptor interaction and not preserved in 
ADHC and ADMCI networks. It shows network connections whose adjacency is above 0.55, including all 1076 nodes and 1458 of 1157776 
edges. Hub genes are in the center of the network and are labelled with names. Networks visualized in Gephi [23]. 

http://www.scandb.org/
http://www.scandb.org/
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not find any significant modules that were common 

between these two. However, we identified some 

similarities between AD and PD. The PDHC purple 

module and the ADHC darkorange2 module had four 

significant TFs which regulate both modules (SIX5, 

CREB1, NFYB, PBX3). Of those 29 PD SNPs and 27 

AD SNPs we have identified, 12 were common between 

the two. The genes associated with these SNPs were: 

EPB41L5, CYP26B1, IQCB1, DCP1A, CLGN, TDRD6, 

PSORS1C1, PARP12, WISP1, PIK3C2A, CLMN, 

DHX33 which are highlighted in Supplementary Tables 

7 and 8. 

 

Data accession 

 

The hub scores for each gene in PD modules not 

preserved in HC networks can be accessed and 

downloaded from https://jack-kelly.shinyapps.io/pdpd_ 

hubs/. The same information for HC modules not 

preserved in PD networks can be found at https://jack-

kelly.shinyapps.io/pdhc_hubs/.  

 

The hub scores for each gene in the AD modules not 

preserved in HC or MCI networks can be found at 

https://jack-kelly.shinyapps.io/adad_hubs/. The same 

for MCI modules not preserved in HC or AD networks 

can be found at https://jack-kelly.shinyapps.io/admci_ 

hubs/ and for HC modules not preserved in MCI or AD 

networks at https://jack-kelly.shinyapps.io/adhc_hubs/. 

 

DISCUSSION 
 

In this study, by using gene co-expression network 

analysis we identified many important biological 

processes and key genes in PD and AD blood samples, 

and the common results between them. To our 

knowledge this is the largest network analysis of AD 

and PD blood to date. We found insulin resistance to be 

associated with PD and HDAC6 may play an important 

role in this process. We highlight the overlap in disease 

miRNA associated SNPs that are shared between PD 

and AD, suggesting similarities in genetic risk factors 

between the diseases. Our approach used blood data as 

the available blood datasets have a large enough sample 

size to construct robust and reliable networks and blood 

samples are easily accessible in neurodegenerative 

disease patients. We previously found that DEGs in AD 

blood were more likely to be DEGs in AD brain tissue 

[27]. However, in this study, we found that DEGs in 

blood were not more likely to be DEGs in brain tissue 

for PD, nevertheless it has been shown that changes in 

blood gene expression did reflect changes in PD [28].  

 

The PD network module associated with insulin 

resistance is not preserved in HCs. Insulin resistance is 

increasingly being shown to be important in PD as a 

potential therapeutic target [29] and has a high 

prevalence in non-diabetic PD patients [30], 

additionally insulin receptor signaling pathways are 

disturbed in PD [11]. Within this module we identified 

HDAC6 as a hub gene which promotes the formation of 

inclusions from α-synuclein toxic oligomers [31]. 

HDAC6 can promote insulin resistance by deacetylating 

phosphatase and tensin homolog (PTEN) in ovarian 

OVCAR-3 cells [32], and PTEN has in turn been shown 

to be involved in the pathophysiology of PD [33]. 

HDAC6 has a role in influencing tau phosphorylation 

and autophagic flux in neurodegenerative disease [22]. 

In addition, insulin signaling promotes the DNA-

binding activity of FOXM1, identified as a significant 

TF in the insulin resistance module, which regulates 

pathways to promote adaptive pancreatic β cell 

proliferation [34], but its role in ND is not clear. 

 

The PD module associated with cellular response to 

misfolded proteins was also not preserved in HC 

networks. PD is characterized by accumulation of 

misfolded α-synuclein and a failure of the proteasome to 

degrade these and other large protein aggregates [35]. 

The hub gene SNRNP70 has been shown to be 

differentially expressed in PD blood previously [36]. 

Additionally, SNRNP70 encodes the small nuclear 

ribonucleoprotein snRNP70 which co-localizes with tau 

in AD [37], and as tau aggregation is shown in ~50% of 

PD cases snRNP70 may colocalize in PD cases [38]. 

We also identified MIR142, which encodes miRNA-

142, as a hub. miRNA-142 has been identified as an 

important miRNA in PD, regulating GNAQ, TMTC2, 

BEND2, and KYNU [39]. 

 

The AD module associated with regulation of lipolysis 

in adipocytes and neuroactive ligand-receptor inter-

action was not preserved in both MCI and HC networks. 

Aβ, a key molecule in AD brain pathology, can induce 

lipolysis within human adipose tissue [40]. In addition, 

lipolysis is promoted by insulin resistance and in turn 

lipolysis generates ceramides further impairing insulin 

signaling, which is becoming increasingly more 

important in AD [41]. We identified TRPC5 as a hub in 

this module, which along with other transient receptor 

potential canonical (TRPC) proteins assembles to form 

non-selective Ca2+-permeable channels. Another hub, 

BRAP, has a polymorphism associated with obesity and 

other metabolic traits, which can play a role in effecting 

insulin signaling and aging [42]. Interestingly, a module 

in the HC network that was not preserved in AD and 

MCI networks was also associated with regulation of 

lipolysis in adipocytes. This suggests that these 

processes are occurring in both healthy and AD 

conditions, however the enrichment pathways are 

different between the two. As no hubs are shared 

between the regulation of lipolysis in adipocytes 

https://jack-kelly.shinyapps.io/pdhc_hubs/
https://jack-kelly.shinyapps.io/pdhc_hubs/
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modules in healthy and AD networks they are likely 

regulated differently.  

 

The module associated with sensory perception in the 

HC network was not preserved in AD and MCI 

networks. Sensory dysfunction may precede the 

cognitive symptoms of AD [43], particularly olfactory 

impairment [44]. OR5AS1 was identified as a hub gene 

within the module which encodes a member of the 

olfactory receptor family and plays a role in triggering 

response to smells [45]. The TF REST was identified as 

a regulator of the module and has been shown to 

regulate olfactory systems [46]. We have identified 

REST to be an important upstream TF for DEGs 

identified in both AD and PD previously, and as an 

important potential therapeutic target [11]. Future work 

to validate our identified hubs and TFs in both AD and 

PD disease models would further elucidate their 

potential as targets for disease treatment.  

 

Although we did not identify any common non-

preserved modules in the AD and PD cohorts, there 

were other similarities shared in the results. Four TFs 

were shared between the PDHC purple and the ADHC 

darkorange2 module (CREB1, NFYB, PBX3, SIX5). 

These two modules were associated with different 

transport pathways in HCs which were not preserved in 

the disease networks, suggesting that the roles of these 

TFs are dysregulated in both AD and PD. In addition to 

this, we identified 12 SNPs that were shared between 

the 29 PD miRNAs associated SNPs and 27 AD 

miRNAs associated SNPs. This number of shared SNPs 

is highly significant, which suggests that there are 

potential risk factors that underlie both diseases. 

 

Several studies have applied WGCNA in ND studies for 

gene expression and proteomics analysis. For example, 

Seyfried and colleagues studied proteomic data of cortical 

tissue of asymptomatic and symptomatic AD [47]. They 

found that there was a modest overlap between networks 

at RNA and protein level. If a larger dataset becomes 

available, expanding our methods to proteomic data could 

give further understanding into the mechanisms of AD 

and PD and enable the investigation into the link between 

genomics and proteomics. Chatterjee et al. [17] have 

performed network analysis of PD brain tissue, however 

they only performed WGCNA on DEGs found in the 

data, which built very limited networks that removed 

potentially important gene interactions and disease 

regulators and introduced a bias of modules and hubs 

towards these DEGs. In addition, they used tissue from 

multiple brain regions which would all be affected 

differently by the disease [48]. 

 

A limitation of this study is that, although it has been 

shown that AD blood DEGs are more likely to be 

DEGs in the brain [27], our results suggest this is not 

the case for PD. Because of this, our results may not 

reflect major changes that take place in the brain. 

However, our network analysis approach emphasizes 

the interactions of genes which univariate methods 

like differential expression does not. Similarly to AD, 

there is disruption that happens in the blood brain 

barrier (BBB) of PD patients [49]. Hence, it is likely 

that changes that take place in the brain could be 

reflected in the blood and vice versa. Additionally, a 

lot of the biological processes and genes we found in 

our PD network has been implicated in the PD brain 

previously [11]. Tau and Aβ are hallmarks of both AD 

and PD in the brain and have potential as blood 

biomarkers in both diseases [50, 51], suggesting that 

changes in the brain are reflected in blood. 

Leukocytes have been shown to impact progression of 

neurodegenerative diseases. An interaction between 

brain and systemic inflammation has been implicated 

in PD progression by an association between 

leukocyte apoptosis and central dopamine neuron loss 

[55]. Increased mitochondrial respiratory activity in 

leukocytes has been shown in PD patients, potentially 

impacting progression of neurodegeneration [56] and 

elevated leukocytes in cerebrospinal fluid are 

significantly associated with shorter survival of 

patients [57]. Peripheral leukocytes have been 

discussed as potential biomarkers for AD previously 

[52], and gene expression changes in leukocytes have 

been shown to be closely associated with AD 

progression [53]. In AD animal models circulating 

leukocytes have been shown to cross a dysfunctional 

blood brain barrier and impact brain integrity [54]. 

 

Recently limbic-predominant age-related TDP-43 

encephalopathy (LATE) has been reported to be under-

recognized and often misdiagnosed as AD as they share 

common pathogenetic mechanisms and present 

similarly in patients [58]. There is the potential that 

patients in our AD cohort may have been misdiagnosed 

and actually have LATE, however as LATE is seen with 

increasing frequency over the age of 85, and less than 

6% of our AD samples were over the age of 85 this 

likely had little effect on our results. 

 

The greatest risk factor for both AD and PD is age. 

Adjusting AD data by age before WGCNA ensured any 

changes we found were reflective of disease state. The 

PD data, however, did not include samples’ age 

information when we downloaded, thus the effect of age 

could not be removed technically. As a result of this, the 

PD results may have been biased towards changes as a 

result of aging if there was a significant difference in 

age between PD and HC cohorts. However, the samples 

were age matched in the original design which should 

reduce such biases [59]. 
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From the PD dataset we removed patient samples with 

known PD mutations. Although the biological pathways 

underlying familial and sporadic forms of PD are likely 

to be shared, known PD mutations may impact 

pathways to disease or regulators of disease [60]. 

Removal of samples with known PD mutations 

prevented these mutations from having an impact on 

results, however had little impact on sample size due to 

the low number of samples with mutations. AD samples 

were not screened for known mutations, which could 

have had an impact on our results. For example, nearly 

19% of the familial late onset AD population carry 2 

APOE ε4 alleles which only occurs in about 1% of 

normal Caucasian controls [61]. This and other known 

mutations may impact the progression and regulators of 

AD, and knowing which samples had these mutations 

could have improved our findings. 

 

In conclusion, our network analysis is the largest study 

using AD and PD blood data to date. We highlight the 

non-preserved module in PD associated with insulin 

resistance, and the hub HDAC6 identified in this 

module. Our results reveal that a large proportion of 

disease miRNA associated SNPs are shared between PD 

and AD, suggesting similarities in genetic risk factors 

between the diseases. The hub genes that we have 

identified have the possibility to be further investigated 

as potential biomarkers for disease. These insights 

suggest several new areas for mechanistic studies in PD 

and AD research fields. 

 

MATERIALS AND METHODS 
 

Data preparation for PD and AD blood datasets 

 

The publicly available peripheral venous whole blood 

dataset comprising 205 PD and 233 control samples was 

downloaded from the GEO (Gene Expression Omnibus) 

database (http://www.ncbi.nlm.nih.gov/geo/) with 

accession identifier GSE99039. This dataset is the 

largest of its type and has a sample size enough to run 

WGCNA and reliably find hub genes [62]. Samples 

with known PD mutation genes (Parkin, DJ-1 and 

PINK1, ATP13A2, LRRK2, SNCA) were removed to 

reduce biases introduced by these genes (see 

discussion), and outlier samples were detected and 

removed based on box and density plots of probe 

intensities. This removed a total of one PD and three 

HC samples, leaving 204 PD and 230 HC samples. Data 

was then Robust Multiarray Average (RMA) 

normalized using the affy R package [63]. Samples 

missing gender information (35 samples) were assigned 

sex by using the massiR R package [64] which uses the 

information from microarray probes that represent 

genes in Y chromosome to perform k-medoids 

clustering to classify the samples into male and female 

groups. We selected a probe-variation threshold of 4 by 

inspecting a probe-variation plot (Supplementary Figure 

1) to select the Y chromosome probes to be used in the 

sex classification process. 

 

The ComBat function in the sva R package [65] was 

used to control the effect of gender and running batch of 

the samples. After this, control probes and those without 

Entrez gene annotation were removed. For any genes 

that mapped to multiple probes, the probe with the 

highest median absolute deviation (MAD) was kept. 

MAD was used as, similarly to inter-quartile range, the 

probe with the highest MAD has the greatest variability 

and so likely has more information [66]. Finally, the 

bottom 5% probes by average expression values across 

all samples were removed.  

 

For AD, the two independent peripheral venous whole 

blood datasets GSE63060 and GSE63061, from the 

AddNeuroMed Cohort [67], were used to construct the 

blood gene expression networks. As these two datasets 

were from the same cohort study and sample collection 

and analysis was carried out using the same metho-

dologies, except using different biological samples and 

microarray platforms, they can be merged to produce a 

larger dataset that can improve the power of our study. 

The two normalized datasets (generated by different 

Illumina platforms) were merged using the 

inSilicoMerging R package [68], which removes the 

batch effects between these two, as we have done 

previously [27].  

 

Patients of Western European and Caucasian ethnicity 

were extracted from the merged dataset leaving a total 

of 245 AD, 142 MCI and 182 HC to reduce any 

potential genetic impact that ethnicity may have on 

AD. The effect of the age and gender were controlled 

for using the ComBat function in the sva R package 

[65]. As with the PD data, control probes and those 

without Entrez gene annotation were removed and for 

any genes that mapped to multiple probes, the probe 

with the highest MAD was kept. Finally, the bottom 

5% probes by average expression values across 

samples were removed. Information on number of 

samples, gender and age of samples is shown in 

Supplementary Table 1. 

 

PD blood and brain DEG overlap 

 

To see if there was a significant overlap between PD 

gene expression in blood and brain as has been shown 

previously in AD [27], our data was compared to DEGs 

previously identified in PD substantia nigra [11]. Using 

the normalized and filtered PD data, DEGs were 

identified by applying limma with gender and running 

batch adjusted. Slightly stringent nominal Pvalue <0.01 

http://www.ncbi.nlm.nih.gov/geo/
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was used for significance as only one DEG could pass 

multiple testing (FDR corrected Pvalue <0.05). 

 

Gene co-expression network construction 

 

The R package WGCNA [15] was applied to perform 

gene co-expression network analysis as follows: A 

matrix of pairwise correlations between all pairs of 

genes across each sample group (e.g. case and control 

groups separately), was created and each raised to a 

soft-thresholding power to achieve a scale-free topology 

R2 of 0.85. From this, a topological overlap matrix 

(TOM) was calculated, which takes correlation between 

genes expression as well as connections the genes share 

into consideration. This TOM was then converted to 

topological overlap dissimilarities to be used with 

hierarchical clustering. Then, a dynamic tree-cutting 

algorithm was used to determine initial module 

assignments of genes (cutreeHybrid, using default 

parameters except deepSplit of 3, minModuleSize of 10 

and mergeCutHeight of 0.05) [69]. An additional k-

means clustering step was applied to improve the results 

of the hierarchical clustering in WGCNA as proposed 

by Botía et al [70] which has been reported to be able to 

reduce the number of misplaced genes and improve the 

enrichment of GO pathway terms. All analysis was 

conducted in R3.5.2 [71]. 

 

Calculation of module preservation 

 

In order to identify modules that are not preserved 

between conditions within datasets, we applied NetRep 

(v1.2.1) [18] which uses a permutation test procedure on 

seven module preservation statistics. We permuted 10,000 

times. The “alternative” parameter is set to “less” to test 

whether each module preservation statistic is smaller than 

expected by chance in order to identify these non-

preserved modules which are extremely different in the 

two networks. If all seven module preservation statistics 

had a Pvalue < 0.05 then that module was significantly 

non-preserved between conditions. 

 

Pathway enrichment analysis 

 

To identify the biological pathways that the modules 

represent we performed GO and KEGG pathway 

enrichment analysis (KEGG 2019) using the Enrichr 

web tool [19, 20]. Pathways and GO terms with a 

Pvalue < 0.05 were considered significant. 

 

Hub gene identification 

 

Generally, detecting hub genes in co-expression 

networks has been done using MM, which is the 

correlation of a gene to its eigengene (the first principle 

component calculated using the expression data of 

genes in each module) [72]. BC of a gene is the number 

of shortest paths connecting all gene pairs that pass 

through that gene [73], and genes with high BC were 

considered as “high traffic”.  

 

Here we have expanded hub detection to include multiple 

other hub detection methods frequently used in network 

analysis. In addition to MM and BC, we used closeness 

centrality [74], Kleinberg's hub centrality score [75] and 

the PageRank algorithm [76] which would reduce the 

chance of missing any important hub genes that regulate 

the network that may be missed by applying individual 

methods. Genes with high closeness centrality scores have 

the shortest path to all other genes in the module and are 

placed to influence the entire network quickly [74]. 

PageRank emphasizes nodes that are connected to other 

nodes with high Pagerank scores [76]. Kleinberg's hub 

centrality score [75] is similar to the PageRank algorithm, 

however, the small differences between the two widens 

the net for identifying important hubs. 

 

A novel hub detection permutation test was developed 

to obtain Pvalues for each hub detection store and 

determine if they are statistically significant. Briefly, 

the gene ID labels on the adjacency matrix were 

randomly re-labelled and hub score recalculated 1000 

times to obtain a statistical distribution. The Pvalue was 

calculated by dividing the number of recalculated 

permutation hub scores that are higher than the 

observed hub score in the original network by the 

number of permutations. Genes were considered 

significant hubs if any hub scores had a Pvalue < 0.01. 

This was performed for all modules not preserved 

between PD and HCs in the PD dataset, and the 

modules not preserved between any of the AD, MCI 

and HCs networks in the AD dataset. BC, closeness 

centrality, PageRank and Kleinberg's hub centrality 

scores were calculated using the igraph R package with 

default settings without normalization [77]. The R code 

used for the novel hub detection test is available at 

http://dx.doi.org/10.5281/zenodo.3686007. 

 

Identifying transcription factors  

 

To identify TFs that potentially regulate each module, 

we used ENCODE and ChEA Consensus TFs from 

ChIP-X found using the Enrichr web tool [19, 20]. TFs 

with a Pvalue < 0.01 were considered significant. If a 

TF was found significant in both ENCODE and ChEA 

then the lower Pvalue was assigned to the TF. 

 

SNP and microRNA analysis of significant WGCNA 

modules 

 

A two-tailed Fisher’s exact test was used to test our 

hypothesis that non-preserved modules were more 

http://dx.doi.org/10.5281/zenodo.3686007
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likely to contain GWAS identified genes than preserved 

modules. The risk loci for PD and AD were from recent 

GWAS, between which only one GWAS gene was 

shared (KAT8) [24, 78]. 

 

We gained further insight into SNPs associated with 

non-preserved modules, using a similar methodology to 

Chatterjee et al. [17]. The SCAN database [25] was 

used to find all SNPs that have been shown to predict 

the expression of each gene within non-preserved 

modules. For each non-preserved module, only SNPs 

that predicted gene expression with Pvalues < 1.0e-4 

and frequency > 0.10 within the CEU human samples of 

European descent were selected. 

 

Previous studies have revealed that differential 

expression of miRNAs were associated with PD [79] and 

AD [80]. In addition, SNPs have been identified as 

disease prognostic markers by association to miRNAs 

[81]. SNPs we found to be associated with genes from 

the PD related modules were used to search the MirSNP 

[26] database in order to find which SNPs were 

associated with the 83 experimentally confirmed PD 

related miRNAs in the HMDD v3.0 database [82]. The 

same process was done for genes within the AD related 

modules and the 57 experimentally confirmed AD related 

miRNAs in the HMDD v3.0 database. The MirSNP 

database identified the SNPs that are present at the 3' 

untranslated region of miRNA target sites, and so 

narrowed down the selection of SNPs to those that likely 

effect known miRNAs associated with the disease.  

 

Comparison of PD and AD results 

 

The processes associated with non-preserved modules 

in AD and PD were compared to see if any processes 

were similar between diseases. Hub genes and TFs 

identified in non-preserved modules were also 

compared between AD and PD to see if any were 

shared. In addition, we test our hypothesis that AD and 

PD share SNPs we identified in non-preserved modules 

associated with disease related miRNAs in AD and PD 

respectively. 

 

Abbreviations 
 

PD: Parkinson’s disease; AD: Alzheimer’s disease; HC: 

Healthy control; TFs: Transcription factors; ND: 

Neurodegenerative disease; Aβ: amyloid-β1; CNS: 

Central nervous system; SN: Substantia nigra; DEGs: 

Differentially expressed genes; WGCNA: Weighted gene 

co-expression network analysis; MCI: Mild cognitive 

impairment; ADAD: AD samples from Alzheimer’s 

dataset; ADHC: HC samples from Alzheimer’s dataset; 

ADMCI: MCI samples from Alzheimer’s dataset; PDPD: 

PD samples from Parkinson’s dataset; PDHC: HC 

samples from Parkinson’s dataset; GO: Gene Ontology; 

KEGG: Kyoto Encyclopedia of Genes and Genomes; BC: 

Betweenness centrality; MM: Module membership; 

ENCODE: Encyclopedia of DNA Elements; ChIP: 

Chromatin immunoprecipitation; ChEA: ChIP enrichment 

analysis; SNP: Single nucleotide polymorphism; GWAS: 

Genome Wide Association Studies; SCAN: SNP and 

Copy number Annotation; miRNA: microRNA; PTEN: 

Phosphatase and tensin homolog; TRPC: Transient 

receptor potential canonical; BBB: Blood brain barrier; 

LATE: Limbic-predominant age-related TDP-43 

encephalopathy; GEO: Gene Expression Omnibus; RMA: 

Robust Multiarray Average; MAD: Median absolute 

deviation; TOM: Topological overlap matrix. 

 

AUTHOR CONTRIBUTIONS 
 

XL conceived of the presented idea. JK performed the 

experiments and data analysis. X.L., JK, CC, RM and 

SL. analyzed the data and interpreted results. All 

authors reviewed the manuscript, and all authors read 

and approved the final manuscript. 

 

ACKNOWLEDGMENTS 
 

The authors thank Birbal Prasad for valuable comments. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

FUNDING 
 

JK is supported by a PhD studentship from the 

Plymouth University Faculty of Health: Medicine, 

Dentistry and Human Sciences. XL and CC are 

supported by H2020 MSCA-ITN BBDiag project 

under the Marie Skłodowska-Curie grant agreement 

721281. 

 

REFERENCES 
 
1. Cacace R, Sleegers K, Van Broeckhoven C. Molecular 

genetics of early-onset Alzheimer's disease revisited. 
Alzheimers Dement. 2016; 12:733–48. 

 https://doi.org/10.1016/j.jalz.2016.01.012 
 PMID:27016693 

2. Alzheimer’s Association. 2018 Alzheimer’s Disease 
Facts and Figures. 2018.  

 https://www.alz.org/ 

3. Shi L, Baird AL, Westwood S, Hye A, Dobson R, 
Thambisetty M, Lovestone S. A Decade of Blood 
Biomarkers for Alzheimer’s Disease Research: An 
Evolving sField, Improving Study Designs, and the 

https://doi.org/10.1016/j.jalz.2016.01.012
https://www.ncbi.nlm.nih.gov/pubmed/27016693
https://www.alz.org/


 

www.aging-us.com 5232 AGING 

Challenge of Replication. J Alzheimers Dis. 2018; 
62:1181–98. 

 https://doi.org/10.3233/JAD-170531 
 PMID:29562526 

4. Long J, Pan G, Ifeachor E, Belshaw R, Li X. Discovery of 
Novel Biomarkers for Alzheimer’s Disease from Blood. 
Dis Markers. 2016; 2016:4250480. 

 https://doi.org/10.1155/2016/4250480 
 PMID:27418712 

5. Li X, Long J, He T, Belshaw R, Scott J. Integrated 
genomic approaches identify major pathways and 
upstream regulators in late onset Alzheimer’s disease. 
Sci Rep. 2015; 5:12393. 

 https://doi.org/10.1038/srep12393 
 PMID:26202100 

6. Parkinson’s UK. The prevalence and incidence of 
Parkinson’s in the UK. London; 2017. 

7. Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross 
GW, Abbott RD, Savica R, Van Den Eeden SK, Willis AW, 
Tanner CM; Parkinson’s Foundation P4 Group. 
Prevalence of Parkinson's disease across North 
America. NPJ Parkinsons Dis. 2018; 4:21. 

 https://doi.org/10.1038/s41531-018-0058-0 
 PMID:30003140 

8. Kalinderi K, Bostantjopoulou S, Fidani L. The genetic 
background of Parkinson’s disease: current progress 
and future prospects. Acta Neurol Scand. 2016; 
134:314–26. 

 https://doi.org/10.1111/ane.12563 
 PMID:26869347 

9. Xie A, Gao J, Xu L, Meng D. Shared mechanisms of 
neurodegeneration in Alzheimer's disease and 
Parkinson's disease. Biomed Res Int. 2014; 
2014:648740. 

 https://doi.org/10.1155/2014/648740 
 PMID:24900975 

10. Anang JB, Nomura T, Romenets SR, Nakashima K, 
Gagnon JF, Postuma RB. Dementia Predictors in 
Parkinson Disease: A Validation Study. J Parkinsons Dis. 
2017; 7:159–62. 

 https://doi.org/10.3233/JPD-160925 
 PMID:27911340 

11. Kelly J, Moyeed R, Carroll C, Albani D, Li X. Gene 
expression meta-analysis of Parkinson’s disease and its 
relationship with Alzheimer’s disease. Mol Brain. 2019; 
12:16. 

 https://doi.org/10.1186/s13041-019-0436-5 
 PMID:30819229 

12. Kaźmierczak A, Czapski GA, Adamczyk A, Gajkowska B, 
Strosznajder JB. A novel mechanism of non-Aβ 
component of Alzheimer’s disease amyloid (NAC) 
neurotoxicity. Interplay between p53 protein and 

cyclin-dependent kinase 5 (Cdk5). Neurochem Int. 
2011; 58:206–14. 

 https://doi.org/10.1016/j.neuint.2010.11.018 
 PMID:21130128 

13. Kwon OD. Is There Any Relationship between 
Apolipoprotein E Polymorphism and Idiopathic 
Parkinson’s Disease? J Alzheimer’s Dis Park. 2017; 
7:292. 

 https://doi.org/10.4172/2161-0460.1000296 

14. Miller JA, Oldham MC, Geschwind DH. A systems level 
analysis of transcriptional changes in Alzheimer’s disease 
and normal aging. J Neurosci. 2008; 28:1410–20. 

 https://doi.org/10.1523/JNEUROSCI.4098-07.2008 
 PMID:18256261 

15. Langfelder P, Horvath S. WGCNA: an R package for 
weighted correlation network analysis. BMC 
Bioinformatics. 2008; 9:559. 

 https://doi.org/10.1186/1471-2105-9-559 
 PMID:19114008 

16. Lunnon K, Ibrahim Z, Proitsi P, Lourdusamy A, 
Newhouse S, Sattlecker M, Furney S, Saleem M, 
Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas 
B, et al, and AddNeuroMed Consortium. Mitochondrial 
dysfunction and immune activation are detectable in 
early Alzheimer’s disease blood. J Alzheimers Dis. 
2012; 30:685–710. 

 https://doi.org/10.3233/JAD-2012-111592 
 PMID:22466004 

17. Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay 
S. Biological networks in Parkinson’s disease: an insight 
into the epigenetic mechanisms associated with this 
disease. BMC Genomics. 2017; 18:721. 

 https://doi.org/10.1186/s12864-017-4098-3 
 PMID:28899360 

18. Ritchie SC, Watts S, Fearnley LG, Holt KE, Abraham G, 
Inouye M. A Scalable Permutation Approach Reveals 
Replication and Preservation Patterns of Network 
Modules in Large Datasets. Cell Syst. 2016; 3:71–82. 

 https://doi.org/10.1016/j.cels.2016.06.012 
 PMID:27467248 

19. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles 
GV, Clark NR, Ma’ayan A. Enrichr: interactive and 
collaborative HTML5 gene list enrichment analysis tool. 
BMC Bioinformatics. 2013; 14:128. 

 https://doi.org/10.1186/1471-2105-14-128 
 PMID:23586463 

20. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, 
Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, 
Lachmann A, McDermott MG, Monteiro CD, 
Gundersen GW, Ma’ayan A. Enrichr: a comprehensive 
gene set enrichment analysis web server 2016 update. 
Nucleic Acids Res. 2016; 44:W90–7. 

https://doi.org/10.3233/JAD-170531
https://www.ncbi.nlm.nih.gov/pubmed/29562526
https://doi.org/10.1155/2016/4250480
https://www.ncbi.nlm.nih.gov/pubmed/27418712
https://doi.org/10.1038/srep12393
https://www.ncbi.nlm.nih.gov/pubmed/26202100
https://doi.org/10.1038/s41531-018-0058-0
https://www.ncbi.nlm.nih.gov/pubmed/30003140
https://doi.org/10.1111/ane.12563
https://www.ncbi.nlm.nih.gov/pubmed/26869347
https://doi.org/10.1155/2014/648740
https://www.ncbi.nlm.nih.gov/pubmed/24900975
https://doi.org/10.3233/JPD-160925
https://www.ncbi.nlm.nih.gov/pubmed/27911340
https://doi.org/10.1186/s13041-019-0436-5
https://www.ncbi.nlm.nih.gov/pubmed/30819229
https://doi.org/10.1016/j.neuint.2010.11.018
https://www.ncbi.nlm.nih.gov/pubmed/21130128
https://doi.org/10.4172/2161-0460.1000296
https://doi.org/10.1523/JNEUROSCI.4098-07.2008
https://www.ncbi.nlm.nih.gov/pubmed/18256261
https://doi.org/10.1186/1471-2105-9-559
https://www.ncbi.nlm.nih.gov/pubmed/19114008
https://doi.org/10.3233/JAD-2012-111592
https://www.ncbi.nlm.nih.gov/pubmed/22466004
https://doi.org/10.1186/s12864-017-4098-3
https://www.ncbi.nlm.nih.gov/pubmed/28899360
https://doi.org/10.1016/j.cels.2016.06.012
https://www.ncbi.nlm.nih.gov/pubmed/27467248
https://doi.org/10.1186/1471-2105-14-128
https://www.ncbi.nlm.nih.gov/pubmed/23586463


 

www.aging-us.com 5233 AGING 

 https://doi.org/10.1093/nar/gkw377 
 PMID:27141961 

21. Albert R. Scale-free networks in cell biology. J Cell Sci. 
2005; 118:4947–57. 

 https://doi.org/10.1242/jcs.02714 
 PMID:16254242 

22. Richter-Landsberg C, Leyk J. Inclusion body formation, 
macroautophagy, and the role of HDAC6 in 
neurodegeneration. Acta Neuropathol. 2013; 
126:793–807. 

 https://doi.org/10.1007/s00401-013-1158-x 
 PMID:23912309 

23. Bastian M, Heymann S, Jacomy M. Gephi: An open 
source software for exploring and manipulating 
networks. International AAAI Conference on Weblogs 
and Social Media. 2009. 

24. Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, 
van der Brug M, Cai F, Kerchner GA, Ayalon G, Bingol 
B, Sheng M, Hinds D, Behrens TW, Singleton AB, et al, 
and International Parkinson’s Disease Genomics 
Consortium, and 23andMe Research Team. A meta-
analysis of genome-wide association studies identifies 
17 new Parkinson’s disease risk loci. Nat Genet. 2017; 
49:1511–16. 

 https://doi.org/10.1038/ng.3955 
 PMID:28892059 

25. Gamazon ER, Zhang W, Konkashbaev A, Duan S, Kistner 
EO, Nicolae DL, Dolan ME, Cox NJ. SCAN: SNP and copy 
number annotation. Bioinformatics. 2010; 26:259–62. 

 https://doi.org/10.1093/bioinformatics/btp644 
 PMID:19933162 

26. Liu C, Zhang F, Li T, Lu M, Wang L, Yue W, Zhang D. 
MirSNP, a database of polymorphisms altering 
miRNA target sites, identifies miRNA-related SNPs in 
GWAS SNPs and eQTLs. BMC Genomics. 2012; 
13:661. 

 https://doi.org/10.1186/1471-2164-13-661 
 PMID:23173617 

27. Li X, Wang H, Long J, Pan G, He T, Anichtchik O, 
Belshaw R, Albani D, Edison P, Green EK, Scott J. 
Systematic Analysis and Biomarker Study for 
Alzheimer's Disease. Sci Rep. 2018; 8:17394. 

 https://doi.org/10.1038/s41598-018-35789-3 
 PMID:30478411 

28. Pinho R, Guedes LC, Soreq L, Lobo PP, Mestre T, Coelho 
M, Rosa MM, Gonçalves N, Wales P, Mendes T, 
Gerhardt E, Fahlbusch C, Bonifati V, et al. Gene 
expression differences in peripheral blood of 
Parkinson’s disease patients with distinct progression 
profiles. PLoS One. 2016; 11:e0157852. 

 https://doi.org/10.1371/journal.pone.0157852 
 PMID:27322389 

29. Vidal-Martinez G, Yang B, Vargas-Medrano J, Perez RG. 
Could α-synuclein modulation of insulin and dopamine 
identify a novel link between parkinson’s disease and 
diabetes as well as potential therapies? Front Mol 
Neurosci. 2018; 11:465. 

 https://doi.org/10.3389/fnmol.2018.00465 
 PMID:30622456 

30. Hogg E, Athreya K, Basile C, Tan EE, Kaminski J, Tagliati 
M. High prevalence of undiagnosed insulin resistance 
in non-diabetic subjects with Parkinson’s disease. J 
Parkinsons Dis. 2018; 8:259–65. 

 https://doi.org/10.3233/JPD-181305 
 PMID:29614702 

31. Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt 
PA, Cuendet M. HDAC6 as a target for 
neurodegenerative diseases: what makes it different 
from the other HDACs? Mol Neurodegener. 2013; 8:7. 

 https://doi.org/10.1186/1750-1326-8-7 
 PMID:23356410 

32. Qu X, Huang C, Qu H, Jia B, Cui Q, Sun C, Chu Y. Histone 
deacetylase 6 promotes insulin resistance via 
deacetylating phosphatase and tensin homolog (PTEN) 
in ovarian OVCAR-3 cells. Int J Clin Exp Pathol. 2016; 
9:7105–13. 

33. Sekar S, Taghibiglou C. Elevated nuclear phosphatase 
and tensin homolog (PTEN) and altered insulin 
signaling in substantia nigral region of patients with 
Parkinson’s disease. Neurosci Lett. 2018; 666:139–43. 

 https://doi.org/10.1016/j.neulet.2017.12.049 
 PMID:29288045 

34. Shirakawa J, Fernandez M, Takatani T, El Ouaamari A, 
Jungtrakoon P, Okawa ER, Zhang W, Yi P, Doria A, 
Kulkarni RN. Insulin signaling regulates the 
FoxM1/PLK1/CENP-A pathway to promote adaptive 
pancreatic β-cell proliferation. Cell Metab. 2017; 
25:868–882.e5. 

 https://doi.org/10.1016/j.cmet.2017.02.004 
 PMID:28286049 

35. Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins 
G, Koistinaho J. Dysfunction of cellular proteostasis in 
Parkinson’s disease. Front Neurosci. 2019; 13:457. 

 https://doi.org/10.3389/fnins.2019.00457 
 PMID:31133790 

36. Santiago JA, Potashkin JA. Blood transcriptomic meta-
analysis identifies dysregulation of hemoglobin and 
iron metabolism in Parkinson’ disease. Front Aging 
Neurosci. 2017; 9:73. 

 https://doi.org/10.3389/fnagi.2017.00073 
 PMID:28424608 

37. Diner I, Hales CM, Bishof I, Rabenold L, Duong DM, Yi 
H, Laur O, Gearing M, Troncoso J, Thambisetty M, Lah 
JJ, Levey AI, Seyfried NT. Aggregation properties of the 

https://doi.org/10.1093/nar/gkw377
https://www.ncbi.nlm.nih.gov/pubmed/27141961
https://doi.org/10.1242/jcs.02714
https://www.ncbi.nlm.nih.gov/pubmed/16254242
https://doi.org/10.1007/s00401-013-1158-x
https://www.ncbi.nlm.nih.gov/pubmed/23912309
https://doi.org/10.1038/ng.3955
https://www.ncbi.nlm.nih.gov/pubmed/28892059
https://doi.org/10.1093/bioinformatics/btp644
https://www.ncbi.nlm.nih.gov/pubmed/19933162
https://doi.org/10.1186/1471-2164-13-661
https://www.ncbi.nlm.nih.gov/pubmed/23173617
https://doi.org/10.1038/s41598-018-35789-3
https://www.ncbi.nlm.nih.gov/pubmed/30478411
https://doi.org/10.1371/journal.pone.0157852
https://www.ncbi.nlm.nih.gov/pubmed/27322389
https://doi.org/10.3389/fnmol.2018.00465
https://www.ncbi.nlm.nih.gov/pubmed/30622456
https://doi.org/10.3233/JPD-181305
https://www.ncbi.nlm.nih.gov/pubmed/29614702
https://doi.org/10.1186/1750-1326-8-7
https://www.ncbi.nlm.nih.gov/pubmed/23356410
https://doi.org/10.1016/j.neulet.2017.12.049
https://www.ncbi.nlm.nih.gov/pubmed/29288045
https://doi.org/10.1016/j.cmet.2017.02.004
https://www.ncbi.nlm.nih.gov/pubmed/28286049
https://doi.org/10.3389/fnins.2019.00457
https://www.ncbi.nlm.nih.gov/pubmed/31133790
https://doi.org/10.3389/fnagi.2017.00073
https://www.ncbi.nlm.nih.gov/pubmed/28424608


 

www.aging-us.com 5234 AGING 

small nuclear ribonucleoprotein U1-70K in Alzheimer 
disease. J Biol Chem. 2014; 289:35296–313. 

 https://doi.org/10.1074/jbc.M114.562959 
 PMID:25355317 

38. Zhang X, Gao F, Wang D, Li C, Fu Y, He W, Zhang J. Tau 
pathology in Parkinson’s disease. Front Neurol. 2018; 
9:809. 

 https://doi.org/10.3389/fneur.2018.00809 
 PMID:30333786 

39. Liu X, Chen J, Guan T, Yao H, Zhang W, Guan Z, Wang Y. 
miRNAs and target genes in the blood as biomarkers 
for the early diagnosis of Parkinson’s disease. BMC Syst 
Biol. 2019; 13:10. 

 https://doi.org/10.1186/s12918-019-0680-4 
 PMID:30665415 

40. Wan Z, Mah D, Simtchouk S, Kluftinger A, Little JP. Role 
of amyloid β in the induction of lipolysis and secretion 
of adipokines from human adipose tissue. Adipocyte. 
2014; 4:212–16. 

 https://doi.org/10.4161/21623945.2014.985020 
 PMID:26257989 

41. Ferreira LS, Fernandes CS, Vieira MN, De Felice FG. 
Insulin Resistance in Alzheimer’s Disease. Front 
Neurosci. 2018; 12:830. 

 https://doi.org/10.3389/fnins.2018.00830 
 PMID:30542257 

42. Imaizumi T, Ando M, Nakatochi M, Yasuda Y, Honda H, 
Kuwatsuka Y, Kato S, Kondo T, Iwata M, Nakashima T, 
Yasui H, Takamatsu H, Okajima H, et al. Effect of 
dietary energy and polymorphisms in BRAP and GHRL 
on obesity and metabolic traits. Obes Res Clin Pract. 
2018 (Suppl 2); 12:39–48. 

 https://doi.org/10.1016/j.orcp.2016.05.004 
 PMID:27245511 

43. Albers MW, Gilmore GC, Kaye J, Murphy C, Wingfield 
A, Bennett DA, Boxer AL, Buchman AS, Cruickshanks 
KJ, Devanand DP, Duffy CJ, Gall CM, Gates GA, et al. 
At the interface of sensory and motor dysfunctions 
and Alzheimer’s disease. Alzheimers Dement. 2015; 
11:70–98. 

 https://doi.org/10.1016/j.jalz.2014.04.514 
 PMID:25022540 

44. Murphy C. Olfactory and other sensory impairments in 
Alzheimer disease. Nat Rev Neurol. 2019; 15:11–24. 

 https://doi.org/10.1038/s41582-018-0097-5 
 PMID:30532084 

45. Malnic B, Godfrey PA, Buck LB. The human olfactory 
receptor gene family. Proc Natl Acad Sci USA. 2004; 
101:2584–89. 

 https://doi.org/10.1073/pnas.0307882100 
 PMID:14983052 

46. Casadei E, Tacchi L, Lickwar CR, Espenschied ST, 

Davison JM, Muñoz P, Rawls JF, Salinas I. Commensal 
Bacteria Regulate Gene Expression and Differentiation 
in Vertebrate Olfactory Systems Through Transcription 
Factor REST. Chem Senses. 2019; 44:615–30. 

 https://doi.org/10.1093/chemse/bjz050 
 PMID:31403159 

47. Seyfried NT, Dammer EB, Swarup V, Nandakumar D, 
Duong DM, Yin L, Deng Q, Nguyen T, Hales CM, Wingo 
T, Glass J, Gearing M, Thambisetty M, et al. A Multi-
network Approach Identifies Protein-Specific Co-
expression in Asymptomatic and Symptomatic 
Alzheimer’s Disease. Cell Syst. 2017; 4:60–72.e4. 

 https://doi.org/10.1016/j.cels.2016.11.006 
 PMID:27989508 

48. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, 
Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat 
Rev Dis Primers. 2017; 3:17013. 

 https://doi.org/10.1038/nrdp.2017.13 
 PMID:28332488 

49. Gray MT, Woulfe JM. Striatal blood-brain barrier 
permeability in Parkinson’s disease. J Cereb Blood Flow 
Metab. 2015; 35:747–50. 

 https://doi.org/10.1038/jcbfm.2015.32 
 PMID:25757748 

50. Lue LF, Guerra A, Walker DG. Amyloid Beta and Tau 
as Alzheimer’s Disease Blood Biomarkers: Promise 
From New Technologies. Neurol Ther. 2017 (Suppl 1); 
6:25–36. 

 https://doi.org/10.1007/s40120-017-0074-8 
 PMID:28733956 

51. Chojdak-Łukasiewicz J, Małodobra-Mazur M, Zimny A, 
Noga L, Paradowski B. Plasma tau protein and Aβ42 
level as markers of cognitive impairment in patients with 
Parkinson’s disease. Adv Clin Exp Med. 2020; 29:115–21. 

 https://doi.org/10.17219/acem/112058 
 PMID:31990459 

52. Rezai-Zadeh K, Gate D, Szekely CA, Town T. Can 
peripheral leukocytes be used as Alzheimer’s disease 
biomarkers? Expert Rev Neurother. 2009; 9:1623–33. 

 https://doi.org/10.1586/ern.09.118 
 PMID:19903022 

53. Li H, Hong G, Lin M, Shi Y, Wang L, Jiang F, Zhang F, 
Wang Y, Guo Z. Identification of molecular alterations 
in leukocytes from gene expression profiles of 
peripheral whole blood of Alzheimer’s disease. Sci Rep. 
2017; 7:14027. 

 https://doi.org/10.1038/s41598-017-13700-w 
 PMID:29070791 

54. Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q. Role of 
Blood-Brain Barrier in Alzheimer’s Disease. J 
Alzheimers Dis. 2018; 63:1223–34. 

 https://doi.org/10.3233/JAD-180098 

https://doi.org/10.1074/jbc.M114.562959
https://www.ncbi.nlm.nih.gov/pubmed/25355317
https://doi.org/10.3389/fneur.2018.00809
https://www.ncbi.nlm.nih.gov/pubmed/30333786
https://doi.org/10.1186/s12918-019-0680-4
https://www.ncbi.nlm.nih.gov/pubmed/30665415
https://doi.org/10.4161/21623945.2014.985020
https://www.ncbi.nlm.nih.gov/pubmed/26257989
https://doi.org/10.3389/fnins.2018.00830
https://www.ncbi.nlm.nih.gov/pubmed/30542257
https://doi.org/10.1016/j.orcp.2016.05.004
https://www.ncbi.nlm.nih.gov/pubmed/27245511
https://doi.org/10.1016/j.jalz.2014.04.514
https://www.ncbi.nlm.nih.gov/pubmed/25022540
https://doi.org/10.1038/s41582-018-0097-5
https://www.ncbi.nlm.nih.gov/pubmed/30532084
https://doi.org/10.1073/pnas.0307882100
https://www.ncbi.nlm.nih.gov/pubmed/14983052
https://doi.org/10.1093/chemse/bjz050
https://www.ncbi.nlm.nih.gov/pubmed/31403159
https://doi.org/10.1016/j.cels.2016.11.006
https://www.ncbi.nlm.nih.gov/pubmed/27989508
https://doi.org/10.1038/nrdp.2017.13
https://www.ncbi.nlm.nih.gov/pubmed/28332488
https://doi.org/10.1038/jcbfm.2015.32
https://www.ncbi.nlm.nih.gov/pubmed/25757748
https://doi.org/10.1007/s40120-017-0074-8
https://www.ncbi.nlm.nih.gov/pubmed/28733956
https://doi.org/10.17219/acem/112058
https://www.ncbi.nlm.nih.gov/pubmed/31990459
https://doi.org/10.1586/ern.09.118
https://www.ncbi.nlm.nih.gov/pubmed/19903022
https://doi.org/10.1038/s41598-017-13700-w
https://www.ncbi.nlm.nih.gov/pubmed/29070791
https://doi.org/10.3233/JAD-180098


 

www.aging-us.com 5235 AGING 

 PMID:29782323 

55. Lin WC, Tsai NW, Huang YC, Cheng KY, Chen HL, Li SH, 
Kung CT, Su YJ, Lin WM, Chen MH, Chiu TM, Yang IH, Lu 
CH. Peripheral leukocyte apoptosis in patients with 
Parkinsonism: correlation with clinical characteristics 
and neuroimaging findings. Biomed Res Int. 2014; 
2014:635923. 

 https://doi.org/10.1155/2014/635923 
 PMID:24795890 

56. Annesley SJ, Lay ST, De Piazza SW, Sanislav O, 
Hammersley E, Allan CY, Francione LM, Bui MQ, Chen 
ZP, Ngoei KR, Tassone F, Kemp BE, Storey E, et al. 
Immortalized Parkinson’s disease lymphocytes have 
enhanced mitochondrial respiratory activity. Dis Model 
Mech. 2016; 9:1295–305. 

 https://doi.org/10.1242/dmm.025684 
 PMID:27638668 

57. Bäckström D, Granåsen G, Domellöf ME, Linder J, 
Jakobson Mo S, Riklund K, Zetterberg H, Blennow K, 
Forsgren L. Early predictors of mortality in 
parkinsonism and Parkinson disease: A population-
based study. Neurology. 2018; 91:e2045–56. 

 https://doi.org/10.1212/WNL.0000000000006576 
 PMID:30381367 

58. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle 
PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, 
Brayne C, Coyle-Gilchrist IT, Chui HC, Fardo DW, et al. 
Limbic-predominant age-related TDP-43 
encephalopathy (LATE): consensus working group 
report. Brain. 2019; 142:1503–27. 

 https://doi.org/10.1093/brain/awz099 
 PMID:31039256 

59. Shamir R, Klein C, Amar D, Vollstedt EJ, Bonin M, 
Usenovic M, Wong YC, Maver A, Poths S, Safer H, 
Corvol JC, Lesage S, Lavi O, et al. Analysis of blood-
based gene expression in idiopathic Parkinson disease. 
Neurology. 2017; 89:1676–83. 

 https://doi.org/10.1212/WNL.0000000000004516 
 PMID:28916538 

60. Chai C, Lim KL. Genetic insights into sporadic 
Parkinson’s disease pathogenesis. Curr Genomics. 
2013; 14:486–501. 

 https://doi.org/10.2174/1389202914666131210195808 
 PMID:24532982 

61. Bekris LM, Yu CE, Bird TD, Tsuang DW. Genetics of 
Alzheimer disease. J Geriatr Psychiatry Neurol. 2010; 
23:213–27. 

 https://doi.org/10.1177/0891988710383571 
 PMID:21045163 

62. Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing 
statistical methods for constructing large scale gene 
networks. PLoS One. 2012; 7:e29348. 

 https://doi.org/10.1371/journal.pone.0029348 
 PMID:22272232 

63. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—
analysis of Affymetrix GeneChip data at the probe 
level. Bioinformatics. 2004; 20:307–15. 

 https://doi.org/10.1093/bioinformatics/btg405 
 PMID:14960456 

64. Buckberry S, Bent SJ, Bianco-Miotto T, Roberts CT, 
Massi R. massiR: a method for predicting the sex of 
samples in gene expression microarray datasets. 
Bioinformatics. 2014; 30:2084–85. 

 https://doi.org/10.1093/bioinformatics/btu161 
 PMID:24659105 

65. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD, 
Zhang Y. sva: Surrogate Variable Analysis. 2019. 

66. Wang X, Lin Y, Song C, Sibille E, Tseng GC. Detecting 
disease-associated genes with confounding variable 
adjustment and the impact on genomic meta-analysis: 
with application to major depressive disorder. BMC 
Bioinformatics. 2012; 13:52. 

 https://doi.org/10.1186/1471-2105-13-52 
 PMID:22458711 

67. Sood S, Gallagher IJ, Lunnon K, Rullman E, Keohane A, 
Crossland H, Phillips BE, Cederholm T, Jensen T, van 
Loon LJ, Lannfelt L, Kraus WE, Atherton PJ, et al. A 
novel multi-tissue RNA diagnostic of healthy ageing 
relates to cognitive health status. Genome Biol. 2015; 
16:185. 

 https://doi.org/10.1186/s13059-015-0750-x 
 PMID:26343147 

68. Taminau J, Meganck S, Lazar C, Steenhoff D, Coletta A, 
Molter C, Duque R, de Schaetzen V, Weiss Solís DY, 
Bersini H, Nowé A. Unlocking the potential of publicly 
available microarray data using inSilicoDb and 
inSilicoMerging R/Bioconductor packages. BMC 
Bioinformatics. 2012; 13:335. 

 https://doi.org/10.1186/1471-2105-13-335 
 PMID:23259851 

69. Langfelder P, Zhang B, Horvath S. Defining clusters 
from a hierarchical cluster tree: the Dynamic Tree Cut 
package for R. Bioinformatics. 2008; 24:719–20. 

 https://doi.org/10.1093/bioinformatics/btm563 
 PMID:18024473 

70. Botía JA, Vandrovcova J, Forabosco P, Guelfi S, D’Sa K, 
Hardy J, Lewis CM, Ryten M, Weale ME, and United 
Kingdom Brain Expression Consortium. An additional k-
means clustering step improves the biological features 
of WGCNA gene co-expression networks. BMC Syst 
Biol. 2017; 11:47. 

 https://doi.org/10.1186/s12918-017-0420-6 
 PMID:28403906 

71. R Core Team. R: A language and environment for 

https://www.ncbi.nlm.nih.gov/pubmed/29782323
https://doi.org/10.1155/2014/635923
https://www.ncbi.nlm.nih.gov/pubmed/24795890
https://doi.org/10.1242/dmm.025684
https://www.ncbi.nlm.nih.gov/pubmed/27638668
https://doi.org/10.1212/WNL.0000000000006576
https://www.ncbi.nlm.nih.gov/pubmed/30381367
https://doi.org/10.1093/brain/awz099
https://www.ncbi.nlm.nih.gov/pubmed/31039256
https://doi.org/10.1212/WNL.0000000000004516
https://www.ncbi.nlm.nih.gov/pubmed/28916538
https://doi.org/10.2174/1389202914666131210195808
https://www.ncbi.nlm.nih.gov/pubmed/24532982
https://doi.org/10.1177/0891988710383571
https://www.ncbi.nlm.nih.gov/pubmed/21045163
https://doi.org/10.1371/journal.pone.0029348
https://www.ncbi.nlm.nih.gov/pubmed/22272232
https://doi.org/10.1093/bioinformatics/btg405
https://www.ncbi.nlm.nih.gov/pubmed/14960456
https://doi.org/10.1093/bioinformatics/btu161
https://www.ncbi.nlm.nih.gov/pubmed/24659105
https://doi.org/10.1186/1471-2105-13-52
https://www.ncbi.nlm.nih.gov/pubmed/22458711
https://doi.org/10.1186/s13059-015-0750-x
https://www.ncbi.nlm.nih.gov/pubmed/26343147
https://doi.org/10.1186/1471-2105-13-335
https://www.ncbi.nlm.nih.gov/pubmed/23259851
https://doi.org/10.1093/bioinformatics/btm563
https://www.ncbi.nlm.nih.gov/pubmed/18024473
https://doi.org/10.1186/s12918-017-0420-6
https://www.ncbi.nlm.nih.gov/pubmed/28403906


 

www.aging-us.com 5236 AGING 

statistical computing. Vienna, Austria: R Foundation for 
Statistical Computing; 2017. 

72. Yuan L, Chen L, Qian K, Qian G, Wu CL, Wang X, Xiao Y. 
Co-expression network analysis identified six hub 
genes in association with progression and prognosis in 
human clear cell renal cell carcinoma (ccRCC). Genom 
Data. 2017; 14:132–140. 

 https://doi.org/10.1016/j.gdata.2017.10.006 
 PMID:29159069 

73. Brandes U. A faster algorithm for betweenness 
centrality. J Math Sociol. 2001; 25:163–77. 

 https://doi.org/10.1080/0022250X.2001.9990249 

74. Newman MJ. A measure of betweenness centrality 
based on random walks. Soc Networks. 2005; 27:39–54. 

 https://doi.org/10.1016/j.socnet.2004.11.009 

75. Kleinberg JM. Authoritative sources in a hyperlinked 
environment. J Assoc Comput Mach. 1999; 46:604–32. 

 https://doi.org/10.1145/324133.324140 

76. Brin S, Page L. The anatomy of a large-scale 
hypertextual Web search engine. Comput Netw ISDN 
Syst. 1998; 30:107–17. 

 https://doi.org/10.1016/S0169-7552(98)00110-X 

77. Csardi G, Nepusz T. The igraph software package for 
complex network research. Inter Journal. 2006; 
Complex Sy: 1695. 

78. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams 
DM, Steinberg S, Sealock J, Karlsson IK, Hägg S, 
Athanasiu L, Voyle N, Proitsi P, Witoelar A, et al. 
Genome-wide meta-analysis identifies new loci and 
functional pathways influencing Alzheimer’s disease 
risk. Nat Genet. 2019; 51:404–13. 

 https://doi.org/10.1038/s41588-018-0311-9 
 PMID:30617256 

79. Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, 
Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, 
Vance JM, Outeiro TF, Wang L, et al. Convergence of 
miRNA expression profiling, α-synuclein interacton and 
GWAS in Parkinson’s disease. PLoS One. 2011; 
6:e25443. 

 https://doi.org/10.1371/journal.pone.0025443 
 PMID:22003392 

80. Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling 
RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, 
Falkai P, Bahari-Javan S, Burkhardt S, Sananbenesi F, 
Fischer A. microRNA-34c is a novel target to treat 
dementias. EMBO J. 2011; 30:4299–308. 

 https://doi.org/10.1038/emboj.2011.327 
 PMID:21946562 

81. Guo Z, Wang H, Li Y, Li B, Li C, Ding C. A microRNA-
related single nucleotide polymorphism of the XPO5 
gene is associated with survival of small cell lung 
cancer patients. Biomed Rep. 2013; 1:545–48. 

 https://doi.org/10.3892/br.2013.92 
 PMID:24648983 

82. Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q. 
HMDD v3.0: a database for experimentally supported 
human microRNA-disease associations. Nucleic Acids 
Res. 2019; 47:D1013–D1017. 

 https://doi.org/10.1093/nar/gky1010 
 PMID:30364956 

 

  

https://doi.org/10.1016/j.gdata.2017.10.006
https://www.ncbi.nlm.nih.gov/pubmed/29159069
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1016/j.socnet.2004.11.009
https://doi.org/10.1145/324133.324140
https://doi.org/10.1016/S0169-7552%2898%2900110-X
https://doi.org/10.1038/s41588-018-0311-9
https://www.ncbi.nlm.nih.gov/pubmed/30617256
https://doi.org/10.1371/journal.pone.0025443
https://www.ncbi.nlm.nih.gov/pubmed/22003392
https://doi.org/10.1038/emboj.2011.327
https://www.ncbi.nlm.nih.gov/pubmed/21946562
https://doi.org/10.3892/br.2013.92
https://www.ncbi.nlm.nih.gov/pubmed/24648983
https://doi.org/10.1093/nar/gky1010
https://www.ncbi.nlm.nih.gov/pubmed/30364956


 

www.aging-us.com 5237 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 
 

Supplementary Figure 1. The probe variation plot used to determine which genes to use in massiR R package [53]. A threshold 

of 4 was selected as it encompassed the genes with the highest variation and ignores genes with low variation that may be useful in 
classifying samples. 
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Supplementary Figure 2. (A) The distribution of betweenness scores for each gene in the darkseagreen4 module. Many genes have a 

betweenness score of 0 indicating they do not act as hubs in regard to betweenness in this module. After the hub permutation test, one gene 
was found to be significant (GINS2, Pvalue = 0.005). (B) The distribution of betweenness scores for GINS2 over the 1000 iterations of the hub 
permutation test. The betweenness score of GINS2 in the original darkseagreen4 module network is highlighted. 
  



 

www.aging-us.com 5239 AGING 

Supplementary Tables 
 

Supplementary Table 1. Information on number of samples, sex and age of samples in datasets. 

GEO Dataset  No. sample Sex (male/female) Mean Age (±SD) 

GSE99039 PD 204 97/107 NA 

HC 230 150/80 NA 

All 434 247/187 NA 

GSE63060 + 

GSE63061 

AD 245 166/79 76.5 (± 6.6) 

MCI 142 79/66 74.9(± 6.3) 

HC 182 110/72 73.6 (± 6.3) 

All 569 352/217 75.2 (±6.5) 

 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 2. Excel table of differentially expressed genes found in the PD dataset. 

 

Supplementary Table 3. Excel table of significant hubs found in non-preserved modules between PD and healthy 
controls. 

Module Gene 
Hub detection 

method 
Score P-value 

PD modules not preserved in HC 

Darkseagreen4 

GINS2 Betweenness  3826 0.005 

S1PR5 

Kleinberg’s 

centrality; 

PageRank; MM 

0.30751; 0.02637; 0.90234 
0.006; 0.006; 

0.007 

AGBL2 Closeness 10.00256 0.007 

NKG7 PageRank 0.02512 0.007 

Navajowhite2 

SNRNP70 

PageRank; 

Kleinberg’s 

centrality 

0.02359; 0.27933 0.003; 0.007 

POPDC2 Closeness 18.03573 0.008 

CHKB 
Kleinberg’s 

centrality 
0.28034 0.009 

MIR142 MM 0.85297 0.009 

Salmon 

TYSND1  

PageRank; MM; 

Kleinberg’s 

centrality 

0.00978;  0.84787; 0.17499 
0.002; 0.002; 

0.008 

C17orf97 Closeness 4.4882 0.002 

HDAC6 

Kleinberg’s 

centrality; MM;  

PageRank 

0.17867; 0.83636; 0.00958 
0.003; 0.006; 

0.007 

FAM114A1 Betweenness 12901 0.004 

ZNF804A 
Betweenness; 

Closeness 
12956; 4.27567 0.005; 0.007 

ABCD1 PageRank; MM 0.00904;  0.83955 0.006; 0.006 

ZNF526 PageRank 0.00908 0.006 

TMEM147-AS1 Betweenness 12566 0.008 

RENBP PageRank 0.00823 0.009 

HC modules not preserved in PD 

Purple FAM110C Closeness; 0.72585; 33683 0.000; 0.002 
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Betweenness 

TXLNGY Betweenness 40661 0 

PAK4 

Kleinberg’s 

centrality; 

Pagerank; MM 

0.12262; 0.00467; 0.83401 
0.001; 0.002; 

0.003 

GIGYF1 

Kleinberg’s 

centrality; 

PageRank; MM 

0.12332;  0.00473; 0.85428 
0.002; 0.002; 

0.002 

WDTC1 

Kleinberg’s 

centrality; MM; 

PageRank 

0.11337; 0.82836; 0.00441 
0.002; 0.004; 

0.008 

NEB  
Closeness; 

Betweenness 
0.70015; 21395 0.003; 0.004 

SH3BGR 
Closeness; 

Betweenness 
0.63727; 19636 0.004; 0.005 

FCGBP Betweenness 16988 0.005 

INO80B 

PageRank; 

Kleinberg’s 

centrality; MM 

0.00417; 0.10391; 0.82766 
0.005; 0.007; 

0.007 

ZNF582-AS1 
Closeness; 

Betweenness 
0.59408; 0.06978 0.006; 0.008 

PLA2G4C Betweenness 20491 0.007 

TBC1D25 PageRank; MM 0.00401; 0.81547 0.007; 0.007 

MFSD12 

Kleinberg’s 

centrality; 

PageRank; MM 

0.10808; 0.00411; 0.80996 
0.007; 0.009; 

0.009 

MCM2 Closeness 0.57973 0.008 

SPATA6 Closeness 0.65087 0.009 

RPS6KA4 MM 0.80597 0.009 

FIZ1 MM 0.81009 0.009 

 

Please browse Full Text version to see the data of Supplementary Table 4. 

 

Supplementary Table 4. Excel table of significant hubs found in non-preserved modules between AD, MCI and 
healthy controls. 
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Supplementary Table 5. Excel file containing the significant TFs (Pvalue < 0.01) associated with each non-
preserved module between PD and healthy control networks found using Enrichr (ENCODE and ChEA Consensus 
TFs from ChIP-X). 

Module colour Significant TFs P-value Gene overlap 

PD modules not preserved in HC 

Darkseagreen4 
FOXM1 4.004E-08 9/95 

E2F4 8.131E-08 21/710 

Navajowhite2 RUNX1 0.008305 18/1294 

Salmon FOXM1 0.006578 6/95 

HC modules not preserved in PD 

Purple 

SIX5 0.0001626 55/1094 

ZBTB7A 0.0002814 94/2184 

SRF 0.0008434 20/299 

CREB1 0.001402 64/1444 

NFYB 0.004818 138/3715 

PBX3 0.007364 54/1269 

 

Supplementary Table 6. Excel file containing the significant TFs (Pvalue < 0.01) associated with each non-preserved 
module between AD, MCI and healthy control networks found using Enrichr (ENCODE and ChEA Consensus TFs from 
ChIP-X). 

Module colour Significant TFs P-value Gene overlap 

AD modules not preserved in HC and MCI 

Blue 
SUZ12 3.36E-10 150/1684 

EZH2 0.0004579 26/237 

MCI modules not preserved in AD and HC 

Sienna3 SUZ12 8.24E-10 115/1684 

HC modules not preserved in AD and MCI 

Darkolivegreen 
SUZ12 0.00392 68/1684 

REST 0.009205 20/383 

Darkorange2 

IRF3 0.000002884 24/663 

SP2 0.000006359 30/994 

NFYB 0.0000105 74/3715 

GABPA 0.00001689 48/2082 

BRCA1 0.0003388 61/3218 

CTCF 0.0003775 39/1790 

NFYA 0.0004409 46/2250 

PBX3 0.0005193 30/1269 

SIX5 0.00115 26/1094 

SMC3 0.003293 26/1181 

NR2C2 0.004466 11/350 

FOS 0.006121 16/637 

CREB1 0.007005 29/1444 

Skyblue RCOR1 0.002542 15/702 

 
BCLAF1 0.006338 16/851 

HC modules not preserved in MCI 

Red 
SUZ12 1.21E-09 107/1684 

EZH2 0.0001041 21/237 
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Supplementary Table 7. Excel file containing the SNPs associated with PD SNPs in bold are shared between PD 
and AD.  

Chromosome  SNPs 
Associated PD related 

miRNAs 
Modules with SNP associated gene Genes 

1 rs12140193 hsa-miR-495 PD darkseagreen4 METTL13 

2 

rs1138729 hsa-miR-495 PD salmon RRM2 

rs12603 hsa-miR-543 HC purple EPB41L5 

rs2058703 hsa-miR-1283 HC purple; PD salmon BCL11A 

rs4852735 hsa-miR-4271 PD navajowhite2 TEX261 

rs707718 hsa-miR-543 HC purple CYP26B1 

3 
rs1135750 hsa-miR-147a PD navajowhite2 IQCB1 

rs11551405 hsa-miR-203 HC purple DCP1A 

4 rs3805317 hsa-miR-203 HC purple CLGN 

5 rs2561659 hsa-miR-543 HC purple AHRR 

6 
rs12528857 hsa-miR-203 

HC purple; PD darkseagreen4; PD salmon; PD 

navajowhite2 
TDRD6 

rs1966 hsa-miR-543 HC purple; PD darkseagreen4 PSORS1C1 

7 rs1044718 hsa-miR-147a HC purple; PD darkseagreen4; PD salmon PARP12 

8 rs2929969 hsa-miR-133b; hsa-miR-203 PD darkseagreen4 WISP1 

9 
rs7047770 hsa-miR-133b HC purple; PD navajowhite2 C9orf139 

rs818055 hsa-miR-147a HC purple; PD navajowhite2 LAMC3 

10 rs1042192 hsa-miR-376b HC purple CYP2C18 

11 

rs10832733 hsa-miR-543 HC purple PIK3C2A 

rs2512676 hsa-miR-147a PD darkseagreen4; PD salmon DLG2 

rs7126647 hsa-miR-543 PD navajowhite2 MRGPRX2 

rs9444 hsa-miR-495 HC purple RNF169 

14 rs1054195 hsa-miR-543 PD navajowhite2 CLMN 

16 rs1568391 hsa-miR-495 PD darkseagreen4 IRF8 

17 rs3744711 hsa-miR-203 HC purple; PD salmon DHX33 

18 
rs1790974 hsa-miR-203 HC purple DOK6 

rs3745067 hsa-miR-4271 HC purple; PD darkseagreen4; PD salmon ONECUT2 

19 rs36621 hsa-miR-376b PD navajowhite2 TSEN34 

20 rs1060347 hsa-miR-134 HC purple PCMTD2 

22 rs712979 hsa-miR-203 HC purple C22orf39 
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Supplementary Table 8. Excel file containing the SNPs associated with AD SNPs in bold are shared between AD 
and PD. 

Chromosome  SNPs 
Associated PD related 

miRNAs 
Modules with SNP associated gene Genes 

1 rs6660019 hsa-miR-433 AD blue; HC darkolivegreen; MCI sienna3 SASS6 

2 
rs12603 hsa-miR-543 HC darkorange2 EPB41L5 

rs707718 hsa-miR-543 
AD blue; HC darkolivegreen; HC red; MCI 

sienna3 
CYP26B1 

3 

rs1135750 hsa-miR-147a HC skyblue IQCB1 

rs11551405 hsa-miR-203 AD blue; HC darkorange2; HC red DCP1A 

rs340833 hsa-miR-433 HC skyblue IL5RA 

rs6792607 hsa-miR-153 HC skyblue EIF5A2 

4 
rs3805317 hsa-miR-203 AD blue; HC red; MCI sienna3 CLGN 

rs8336 hsa-miR-203 AD blue SMARCAD1 

6 

rs10864 hsa-miR-433 AD blue; HC red; MCI sienna3 BCKDHB 

rs12528857 hsa-miR-203 
AD blue; HC darkorange2; HC red; MCI 

sienna3 
TDRD6 

rs1966 hsa-miR-543 AD blue; HC red; MCI sienna3 PSORS1C1 

rs4709266 hsa-miR-433 AD blue; HC red; MCI sienna3 TAGAP 

7 rs1044718 hsa-miR-147a HC red PARP12 

8 

rs1042992 hsa-miR-495 HC darkorange2 BNIP3L 

rs2929969 hsa-miR-133b; hsa-miR-203 AD blue WISP1 

rs732338 hsa-miR-134 AD blue; HC red; MCI sienna3 LZTS1 

10 rs7071789 hsa-miR-495 HC darkolivegreen TRUB1 

11 rs10832733 hsa-miR-543 HC darkorange2 PIK3C2A 

14 rs1054195 hsa-miR-543 AD blue; MCI sienna3 CLMN 

16 rs7294 hsa-miR-147a HC darkolivegreen VKORC1 

17 rs3744711 hsa-miR-203 HC darkorange2; HC skyblue DHX33 

18 
rs1046699 hsa-miR-433 AD blue; HC red; MCI sienna3 C18orf54 

rs608823 hsa-miR-433 AD blue; HC red; MCI sienna3 ONECUT2 

21 rs243609 hsa-miR-543 AD blue; HC red; MCI sienna3 C21orf91 

22 
rs137124 hsa-miR-134 AD blue CYB5R3 

rs17032 hsa-miR-495 HC darkolivegreen SUN2 

 


