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INTRODUCTION 
 

Herpes simplex virus 1 (HSV-1), a large nuclear 

duplicating DNA virus, is an epidemic human microbe 

that can provoke a lytic infection in the mucosal 

epithelial cells but a life-long latent infection in 

neurons. As one of the fundamental structure proteins of 

HSV-1, UL6 has obtained remarkable concern by virtue 

of its association with numerous viral propagation 

processes, including establishing the portal for DNA 

entry into the HSV capsid, cleavage, processing and 

packaging of replicated viral DNA, assembling of a 

minor constituent of virions and capsids, and locating 

on the external surface of the viral capsid [1–6].  

 

Besides, recent studies also showed that the tryptophan 

residues or putative leucine zipper of UL6 is crucial for 

its association with scaffold proteins, UL15 and UL28 

proteins, as well as the incorporation of the portal into 

capsids [7–10]. However, the definite function of UL6 is 

still poorly understood.  

 

As it is known to all, investigating the precise subcellular 

localization of a specific protein is a meaningful way to 

initially discern its detailed roles. UL6 has been 

previously demonstrated to target to the nuclei in 

chemical fixed cells [1, 4, 11, 12]. By employing the 

extensively used fluorescent microscopy technique  

[13–24], here we established that UL6 was principally 
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ABSTRACT 
 

As an indispensable structure protein, the herpes simplex virus 1 (HSV-1) UL6 has been described to exert 
numerous roles in viral proliferation. However, its exact subcellular localization and subcellular transport 
mechanism is not well known. In the present study, by utilizing confocal fluorescent microscopy, UL6 was shown to 
mainly locate in the nucleus in enhanced yellow fluorescent protein or Flag tag fused expression plasmid-
transfected cells or HSV-1-infected cells, whereas its predicted nuclear localization signal was nonfunctional. In 
addition, by exploiting dominant negative mutant and inhibitor of different nuclear import receptors, as well as co-
immunoprecipitation and RNA interference assays, UL6 was established to interact with importin α1, importin α7 
and transportin-1 to mediate its nuclear translocation under the help of Ran-mediated GTP hydrolysis. Accordingly, 
these results will advance the knowledge of UL6-mediated biological significances in HSV-1 infection cycle. 
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localized to the nuclei in both transient transfected live 

and chemical fixed cells, as well as in HSV-1-infected 

cells. Furthermore, UL6 was demonstrated to be 

transported to the nucleus through a Ran-, importin α1-, 

importin α7- and transportin-1-dependent nuclear import 

mechanism, which was predominantly mediated by 

importin α7 and transportin-1. 

 

RESULTS AND DISCUSSION 
 

Subcellular localization of UL6 in the plasmid 

transfected and virus infected cells 
 

Protein is the executor of life activity, which need to be 

transported into certain cell compartments for its 

execution of specific biological function. UL6 was 

previously demonstrated to localize in the nucleus in 

chemical fixed cells [1, 4, 11, 12]. To further detect the 

subcellular distribution of UL6 in plasmid transfected 

live cells, enhanced yellow fluorescent protein (EYFP)-

tagged UL6 and confocal fluorescence microscopy were 

adapted. Subsequently, plasmid encoding UL6 fused to 

the C-terminus of EYFP was constructed and 

transfected into COS-7 cells to test the subcellular 

localization of UL6, without the presence of other HSV-

1 constituents. Although EYFP-UL6 could show 

cytoplasmic or pan-cellular localization, it largely 

exhibited nuclear localization (Figure 1A and Table 1). 

On the contrary, the fluorescence of vector control 

EYFP was homogeneously dispersed throughout the 

cytoplasm and the nucleus in cells transfected with 

pEYFP-C1 (Figure 1B and Table 1).  

 

Since EYFP is a relatively considerable tag (~27 kDa), it 

may alter the nuclear localization of UL6. To avoid this 

hypothesis, plasmid encoding Flag-tagged UL6 (pCMV-

Flag-UL6) was constructed and immunofluorescence 

assay (IFA) was performed to examine the subcellular 

localization of the UL6. As shown in Figure 1C and 

Table 1, Flag-tagged UL6 also localized in the nucleus 

following formaldehyde-based fixation method.  

 

It is well known that viral protein may show distinct 

subcellular localization fashions in plasmid transfected 

and virus infected cells. Therefore, the subcellular 

localization of UL6 was investigated in HSV-1 infected 

cells. For this sake, Vero cells were infected with HSV-

1 and then IFA was carried out. As a result, UL6 also 

displayed dominantly nuclear localization when cells 

were infected at an MOI of 1 at 8 h post-infection 

(Figure 1D and Table 1). 

 

Accordingly, the above data showed that UL6 localized 

in the nucleus regardless in live cells or chemical fixed 

cells, as well as in plasmid transfected cells or HSV-1 

infected cells. UL6 is shown to exert certain roles that 

are generally associated with the nucleus, such as 

constituting the portal for the access of DNA into the 

HSV capsid, installing of a minor constituent of virions 

and capsids, and cleavage, disposal and encasement of 

duplicated viral DNA [1–9, 25]. Thus, it is no wonder 

that UL6 presents primarily nuclear localization. 

 

Identification of the nuclear localization signal of UL6 
 

Nuclear localization signal (NLS), predominantly 

possessed of basic residues, is vital for the nuclear 

accumulation of specific protein [26]. Bioinformatics 

analysis using PSORT II predicted that UL6 contains a 

potential NLS in the basic residue rich region, namely 

PILRKRQ at aa171-177 (pat7). However, the potential 

nuclear export signal of UL6 was not predicted. In order 

to identify the functional NLS, UL6 was firstly divided 

into two segments (amino acids (aa) 1-296 and aa297-

676) and fused to the C-terminus of EYFP to construct 

aa1-296-EYFP and aa297-676-EYFP (Figure 2A). 

Then, these two plasmids were analyzed in COS-7 cells. 

As shown in Figure 2B and Table 2, the fluorescence of 

aa1-296-EYFP showed cytoplasmic localization, 

whereas aa297-676-EYFP showed pan-cellular 

distribution, suggesting these two regions may not 

contain functional NLS. To further explore the 

functional NLS, plasmids encoding EYFP fused to two 

diverse segments aa1–177 and aa171–296, which 

encompass the predicted NLS aa171-177, were 

constructed (Figure 2A) and assessed in COS-7 cells. 

As shown in Figure 2B and Table 2, both of the 

fluorescence of aa1–177-EYFP and aa171–296-EYFP 

were similar to that of aa1-296-EYFP, indicating the 

predicted NLS was non-functional, and the functional 

NLS of UL6 may be generated by spatial conformation.  

 

Characterization of the nuclear import mechanism 

of UL6 

 

To date, Ran GTPase is reported to be indispensable for 

the nuclear transport process of most nuclear target 

protein [27]. To probe the nuclear import mechanism of 

UL6, the dominant negative (DN) mutant of RanGTP, 

with deficiency in GTP hydrolysis (Ran-Q69L) [28], 

was utilized to inspect whether Ran participates in the 

nuclear translocation of UL6. Plasmids expressing Ran-

Q69L-mCherry and FLAG-UL6 were co-transfected 

into COS-7 cells, then their subcellular distributions 

were analysed by IFA. As a result, co-transfection of 

Ran-Q69L significantly abolished the nuclear 

accumulation of UL6 (Figure 3A and Table 3). 

Considering the evolutionary conserved nuclear pore 

complex (NPC) only endorses the dispersion of small 

proteins with approximate molecular masses of 40~60 

kDa [29, 30], and FLAG-UL6 has a molecular mass of 

about 76 kDa, it cannot be proposed to export the 
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nucleus by simple dispersion. Consequently, UL6 is a 

Ran-associated protein and is transported into the 

nucleus from the cytoplasm through a canonical nuclear 

transport pathway mediated by GTP hydrolysis. 

 

About the nuclear translocation, the NLS of cargo is 

bound by different members of the importin family. In 

heterodimer importin α/β, importin α binds the NLS of a 

specific cargo, while importin β is responsible for the 

conformational alteration of importin α, to reinforce the 

interaction of importin α-NLS [31]. Then, the importin 

α/β-cargo complex traffics into the nucleus and is 

detached by the combination of importin β1 (karyopherin 

β1, kβ1) with Ran-GTP [32]. In mammals, the 

subcellular transport involves at least six cellular 

transporters [33, 34], namely importin α1 (karyopherin 

α2, kα2), importin α3 (karyopherin α4, kα4), importin α4 

(karyopherin α3, kα3), importin α5 (karyopherin α1, 

kα1), importin α6 (karyopherin α5, kα5) and importin α7 

(karyopherin α6, kα6). Besides, the NLS-containing 

cargo also can be directly bound by diverse importin β 

members [35, 36]. To identify the cellular transporter for 

the nuclear targeting of UL6, the expression plasmids of 

importin α1, α3, α6 and α7 nuclear transport inhibitor 

Bimax2 [37], transportin-1 (importin β2) nuclear import 

inhibitor M9M [38], importin β association deficient 

mutant of importin α5 (DN kα1) [39] and Ran binding 

deficient mutant of importin β1 (DN kβ1) were co-

transfected with FLAG-UL6 expression plasmid, 

respectively. As results (Figure 3B and Table 3), 

 

 
 

Figure 1. Subcellular distribution of UL6 in plasmid-transfected and HSV-1-infected cells. Subcellular distribution of EYFP-UL6 
(A), EYFP (B) and FLAG-UL6 (C) in related plasmid transfected COS-7 cells. (D) Subcellular distribution of UL6 in HSV-1 infected Vero cells. 
Vero cells were infected with HSV-1 (F strain) at an MOI of 1. 8 h post-infection, Vero cells were fixed with 4% paraformaldehyde, 
permeabilized with 0.5% Triton X-100, and incubated with the anti-UL6 pAb. Then, cells were incubated with FITC-conjugated goat anti-
rabbit IgG (green) and stained with DAPI (blue) to visualize the nuclei. EYFP fusion proteins were shown in pseudocolor green. The image 
shown represents a great proportion of the cells with homogeneous subcellular distribution. All scale bars indicate 10 um. Statistical 
analysis of the fluorescence was shown in Table 1. 



 

www.aging-us.com 5754 AGING 

Table 1. Subcellular localization of HSV-1 UL6. 

Transfection or infection 
Detected 

protein 

Total number of cells 

transfected with plasmid 

or infected with virus 

Number of cells 

with predominant 

nuclear localization 

Percentage of cells 

with predominant 

nuclear localization 

Transfected with EYFP-UL6 UL6 30 21 70 

Transfected with EYFP vector EYFP 30 0 0 

Transfected with Flag-UL6 UL6 30 29 96.67 

Infected with HSV-1 UL6 30 30 100 

COS-7 cells were transfected with plasmid expressing EYFP-UL6 or EYFP for 24 h, then cells were examined by confocal 
fluorescence microscopy. In addition, COS-7 cells were transfected with plasmid expressing Flag-UL6 for 24 h, and Vero cells 
were infected with HSV-1 (F strain) at an MOI of 1 for 8 h, then cells were subjected to IFA analysis using anti-Flag mAb or 
anti-UL6 pAb.  
 

 

 

Figure 2. Subcellular distribution of the UL6 deletion mutants. (A) Schematic representation of wild-type UL6 protein and its N- and 
C-terminus deletion mutants fused with the C-terminus of EYFP. (B) Subcellular distribution of these UL6 deletion mutants shown in (A). Cells 
were stained with DAPI to visualize the nuclei. All scale bars indicate 10 um. Statistical analysis of the fluorescence was shown in Table 2. 
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Table 2. Subcellular localization of HSV-1 UL6 deletion mutants. 

Transfection of UL6 

deletion mutant 

fused with EYFP 

Total number of 

cells transfected 

with plasmid 

Subcellular 

localization pattern of 

transfected plasmid 

Number of cells with 

similar subcellular 

localization pattern 

Percentage of cells with 

similar subcellular 

localization pattern 

1-296 30 Pan-cytoplasmic 28 93.33 

1–177 30 Pan-cytoplasmic 27 90 

171–296 30 Pan-cytoplasmic 28 93.33 

297-676 30 Pan-cellular 26 86.67 

COS-7 cells were transfected with plasmid expressing UL6 deletion mutants 1-296, 297-676, 1–177 and 171–296 fused to the 
C-terminus of EYFP. 24 h post-transfection, cells were examined by confocal fluorescence microscopy.  
 

 

 

Figure 3. Nuclear import mechanism of UL6. (A) Fluorescence microscopy of COS-7 cells co-transfected with plasmids pFLAG-UL6 and 
pRan-Q69L-mCherry. (B) Fluorescence microscopy of COS-7 cells co-transfected with plasmid pFLAG-UL6 and plasmid encoding Bimax2-RFP, 
M9M-RFP, DN kα1-mCherry or DN kβ1-mCherry. (C) Fluorescence microscopy of COS-7 cells co-transfected with pFLAG-UL6 and pmCherry-
N1. FITC-labeled proteins and mCherry fusion proteins were shown in its original color green and red, respectively, and the merged image 
was presented in yellow signal. All scale bars indicate 10 um, Statistical analysis of the fluorescence was shown in Table 3. 
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Table 3. Nuclear import mechanism of HSV-1 UL6. 

Transfected 

viral gene 

Co-transfected 

vector, DN 

mutant or 

inhibitor of 

nuclear 

import related 

receptor 

Total number of 

cells co-transfected 

with two plasmids 

(viral gene and 

vector, DN mutant 

or inhibitor of 

nuclear import 

related receptor) 

Subcellular 

localization 

change of 

viral gene in 

cells co-

transfected 

with two 

plasmids 

Subcellular 

localization 

pattern of 

viral gene in 

cells co-

transfected 

with two 

plasmids 

Number of 

subcellular 

localization 

change of viral 

gene in cells 

co-transfected 

with two 

plasmids 

Percentage of 

subcellular 

localization 

change of 

viral gene in 

cells co-

transfected 

with two 

plasmids 

FLAG-UL6 
DN Ran-

mCherry 
30 Yes Pan-cellular 28 93.33 

FLAG -UL6 RFP-Bimax2 30 Yes 

Pan-cellular, 

with slightly 

more 

fluorescence 

in nucleus 

23 76.67 

FLAG -UL6 RFP-M9M 30 Yes 

Pan-cellular, 

with slightly 

more 

fluorescence 

in nucleus 

25 83.33 

FLAG -UL6 
DN kα1-

mCherry 
30 No 

Predominantly 

nuclear 
2 6.67 

FLAG -UL6 
DN kβ1-

mCherry 
30 No 

Predominantly 

nuclear 
1 3.33 

FLAG -UL6 mCherry 30 No 
Predominantly 

nuclear 
0 0 

Expression plasmid of FLAG-UL6 was co-transfected with the plasmid expressing Ran-Q69L-mCherry, RFP-Bimax2, RFP-M9M, 
DN kα1-mCherry, DN kβ1-mCherry or mCherry into COS-7 cells. 24 h post-transfection, cells were examined for the subcellular 
localization of UL6 by confocal fluorescence microscopy. 
 

co-transfection of Bimax2 and M9M could efficiently 

diminished the nuclear import of UL6, whereas DN kα1 

or DN kβ1 did not obviously lessened the nuclear 

trafficking of UL6. As negative control, UL6 was not 

relocalized by mCherry when COS-7 cells were co-

transfected with pCMV-Flag-UL6 and mCherry vector 

(Figure 3C and Table 3). These data revealed that the 

nuclear transport of UL6 was mediated by transportin-1, 

and may be one of the cellular transporters of importin 

α1, α3, α6 and α7, but not importin α5 or importin β1. 

 

UL6 interacts with transportin-1, importin α1 and 

importin α7 

 

To further verify the assumption mentioned above, 

plasmids combination of pFLAG-CMV-transportin-

1/pEYFP-UL6, Flag-kα2 (importin α1)/pEYFP-UL6, 

Flag-kα4 (importin α3)/pEYFP-UL6, Flag-kα1/pEYFP-

UL6, Flag-kα6 (importin α7)/pEYFP-UL6 or pCMV9-

3×Flag-importin β1/pEYFP-UL6 were co-transfected 

into HEK293T cells for 24 h, then cell lysates were 

collected and co-immunoprecipitation (Co-IP) was 

implemented using anti-Flag mAb or mouse IgG. As 

results, UL6 was efficiently Co-IPed with transportin-1 

(Figure 4A), importin α1 (Figure 4B) and importin α7 

(Figure 4E), but not, importin α3 (Figure 4C), importin 

α5 (Figure 4D) or importin β1 (Figure 4F). In contrast, 

no target protein was Co-IPed by IgG (Figure 4), 

illustrating UL6 could interact with transportin-1, 

importin α1 and importin α7.  

 

Verification of the nuclear import mechanism of UL6 
 

To finally validate the nuclear import mechanism of 

UL6, short hairpin RNA (shRNA) expression plasmids 

were constructed to knock down the expression of 

importin α1, importin α7 and transportin-1. Compared to 

the shRNA control vector (shRandom), shImportin-α1, 

shImportin-α7 and shTransportin-1 could effectively 

knock down the expression of importin α1, importin α7 

and transportin-1, respectively (Figure 5A), suggesting 

the related shRNA expression plasmids were successfully 
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constructed. Then, one or two or three plasmids 

combination of shImportin-α1, shImportin-α7 and 

shTransportin-1 were co-transfected with pFLAG-UL6 

into COS-7 cells and IFA was carried out to analyze 

whether these shRNA expression plasmids can influence 

the nuclear import of UL6. As results, the nuclear 

translocation of UL6 was not obviously affected when 

one of importin α1, importin α7 and transportin-1, or two 

of importin α1/importin α7 and importin α1/transportin-1, 

were knocked down. However, the nuclear trafficking of 

UL6 was significantly inhibited when importin 

α7/transportin-1 or importin α1/importin α7/transportin-1 

were simultaneously knocked down (Figure 5 and  

Table 4), confirming UL6 could be imported into the 

nucleus via various transport pathways, which was 

primarily mediated by importin α7 and transportin-1. 
 

As we known, HSV-1 encodes more than 80 structural 

proteins, some of which need to be transported into the 

nucleus for their functions execution, such as promoting 

viral proliferation, restraining host transcription and 

expression, inhibiting host innate immunity, etc. The 

nuclear accumulation of these proteins is mediated by 

one or more different nuclear import receptors, of 

course including importin α1, importin α7 and 

transportin-1. In addition, some host proteins also need 

to be transported into the nucleus by different nuclear 

import receptors, to perform their corresponding 

functions. Therefore, it is bound to affect the nuclear 

accumulation of many proteins of HSV-1 (and host) 

when the DN mutants of importin α 1, importin α 7 and 

transportin-1 are transfected into cells or these nuclear 

import receptors are knocked down by shRNA 

expression plasmid. Consequently, it is difficult for us 

to determine whether the reduction of DNA replication, 

nucleocapsid assembly and virions production of HSV-

1 is the direct outcome of the inhibition of UL6 nuclear 

translocation. 

 

 
 

Figure 4. UL6 binds transportin-1, importin α1 and importin α7. (A–F) Co-IP of UL6 with Transportin-1 (A), importin α1 (B), importin 
α3 (C), importin α5 (D), importin α7 (E) or importin β1 (F). pEYFP-UL6 was co-transfected with plasmid expressing pFLAG-CMV-transportin-1 
(A), Flag-kα2 (importin α1) (B), Flag-kα4 (importin α3) (C), Flag-kα1 (importin α5) (D), Flag-kα6 (importin α7) (E) or pCMV9-3×Flag-importin β1 
(F) into HEK293T cells. 24 h post-transfection, cells were lysed and Co-IPed with anti-Flag mAb or mouse IgG control. Cell lysates and the Co-
IPed proteins were separated in denaturing 10% SDS-PAGE, and analyzed by IB with anti-Flag mAb or anti-YFP pAb.  
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Figure 5. Subcellular distribution of UL6 in presence of different shRNA expression plasmids. (A) Verification of knock down 
efficiency of the constructed shRNA expression plasmids for importin α1, importin α7 and transportin-1. HEK293T cells were co-transfected with 
the plasmids combination of Flag-kα2 (importin α1)/pSuper, Flag-kα2/shRandom, Flag-kα2/shImportin-α1, Flag-kα6 (importin α7)/pSuper, Flag-
kα6/shRandom, Flag-kα6/shImportin-α7, pFLAG-CMV-transportin-1/pSuper, pFLAG-CMV-transportin-1/shRandom or pFLAG-CMV-transportin-
1/shTransportin-1 for 24 h. Then, cells were lysed and IB was performed with anti-Flag mAb. β-actin was used as a loading control. (B) One or two 
or three plasmids of shImportin-α1, shImportin-α7 and shTransportin-1 were co-transfected with pFLAG-UL6 into COS-7 cells for 24 h, then IFA 
was carried out using confocal fluorescence microscopy. Statistical analysis of the fluorescence was shown in Table 4. 
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Table 4. Verification of the nuclear import mechanism of HSV-1 UL6. 

Transfected 

viral gene 

Co-transfected with one 

or two or three plasmids 

of shImportin α1, 

shImportin α7 and 

shTransportin-1 

Total 

number of 

cells with 

FLAG-UL6 

fluorescence 

Subcellular 

localization 

change of 

cells with 

FLAG-UL6 

fluorescence 

Subcellular 

localization 

pattern of 

cells with 

FLAG-UL6 

fluorescence 

Number of 

subcellular 

localization 

change of 

cells with 

FLAG-UL6 

fluorescence 

Percentage of 

subcellular 

localization 

change of cells 

with FLAG-

UL6 

fluorescence 

FLAG-UL6 shVector 30 No 
Predominantly 

nuclear 
0 0 

FLAG-UL6 shRandom 30 No 
Predominantly 

nuclear 
0 0 

FLAG-UL6 shImportin-α1 30 No 
Predominantly 

nuclear 
1 3.33 

FLAG-UL6 shImportin-α7 30 No 
Predominantly 

nuclear 
1 3.33 

FLAG-UL6 shTransportin-1 30 No 
Predominantly 

nuclear 
2 6.67 

FLAG-UL6 
shImportin-α1+ 

shImportin-α7 
30 No 

Predominantly 

nuclear 
3 10 

FLAG-UL6 
shImportin-α1+ 

shTransportin-1 
30 No 

Predominantly 

nuclear 
3 10 

FLAG-UL6 
shImportin-α7+ 

shTransportin-1 
30 Yes 

Pan-

cytoplasmic 
26 86.67 

FLAG-UL6 

shImportin-α1+ 

shImportin-

α7+shTransportin-1 

30 Yes 
Pan-

cytoplasmic 
28 93.33 

shVector, shRandom, one or two or three plasmids of shImportin-α1, shImportin-α7 and shTransportin-1 were co-transfected 
with FLAG-UL6 into COS-7 cells. 24 h post-transfection, cells were examined for the subcellular localization of UL6 by IFA 
using confocal fluorescence microscopy. 
 

In conclusion, we had proved that UL6 was a genuine 

nuclear localization protein. Although the predicted 

NLS of UL6 was nonfunctional, it was identified to be 

transported into the nucleus through Ran-, transportin-

1-, importin α1- and importin α7-dependent nuclear 

import mechanism, which was largely mediated by the 

later two nuclear import receptor. These results 

dissected the molecular determinant for the nuclear 

transport of UL6, and will shine light for the further 

study of its biological roles during HSV-1 infection. 

 

MATERIALS AND METHODS 
 

Plasmids construction 
 

DNA polymerase KOD-Plus-Neo, restriction enzyme and 

T4 DNA ligase that involved in molecular cloning were 

supplied by TOYOBO (Osaka, Japan), New England 

Biolabs (MA, USA) and Takara (Dalian, China), 

respectively. The UL6 ORF of HSV-1 (F strain) was 

amplified from plasmid template pYEbac102 [40] and 

inserted into pEYFP-C1 (Clontech) to yield pEYFP-UL6, 

as described in our previous studies [13, 15, 18, 22–24, 

41]. Subsequently, the UL6 ORF of pEYFP-UL6 was 

subcloned into pFLAG-CMV-2 (Sigma) to produce 

pCMV-Flag-UL6. The deletion mutants of UL6 fused to 

the C-terminus of EYFP were constructed with similar 

method, and the related primers used for UL6 are 

available upon request. In addition, the shRNAs for 

importin α1 (5′-CTACCTCTGAAGGCTACACTT-3′), 

importin α7 (5′-CCTGTGTTGATCGAAATCCTT-3′), 

transportin-1 (5′-CCGTACTGTGAACCTGTGTAT-3′) 

and a control shRNA (shRandom, 5′-CTCAA 

CTCACGTGTCTAGTGTC-3′) were inserted into 

pSUPER.retro.puro (shVector) (BD Biosciences) to 

construct pSUPER-shImportin α1 (shImportin-α1), 

pSUPER-shImportin α7 (shImportin-α7), pSUPER-

shTransportin-1 (shTransportin-1) and pSUPER-

shRandom (shRandom), respectively.  

 

pRan-Q69L-mCherry, pFLAG-CMV-transportin-1, 

pDN kα1-mCherry and pDN kβ1-mCherry were 
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described in our previous studies [14–19, 21, 22, 24]. 

Plasmids expressing RFP-M9M and RFP-Bimax2 were 

generously offered by Dr. Nobuyuki Nukina [42], and 

other plasmids were afforded as indicated by Dr. 

Yoshihiro Yoneda [43] (Flag-kα1 and Flag-kα6),  

Dr. Riku Fagerlund [44] (Flag-kα2 and Flag-kα4) and 

Dr. Ben Margolis (pCMV9-3×Flag-importinβ1).  

 

Plasmid transfection and fluorescence analysis 

 

Plasmid transfection and fluorescence analysis were 

carried out, as described in our previous studies [13, 15, 

18, 22–24, 41, 45]. Briefly, COS-7 cells were 

transiently transfected with the indicated plasmid DNA 

mixed with Thermo Scientific TurboFect Transfection 

Reagent in line with the manufacturer’s instructions. 24 

h post-transfection, DAPI staining, which is widely 

applied in our previous studies of related fluorescent 

experiments [12–15, 17, 18, 20, 21], was employed to 

investigate whether the target protein locates in the 

nucleus or in the cytoplasm. Then, cells were analyze 

by live cells fluorescence microscopy or IFA, using a 

laser scanning confocal microscopy (Leica SP8). The 

image shown represents a great proportion of the cells 

with homogeneous subcellular distribution. EYFP 

fusion proteins were shown in pseudocolor green, 

FITC-labeled proteins and mCherry fusion proteins 

were shown in their original colors green and red, 

respectively, and the merged image was presented in 

yellow signal. All scale bars indicate 10 um, and images 

were processed using Adobe Photoshop.  

 

Virus infection and IFA 
 

Vero cells infected with HSV-1 (MOI=1) for 8 h were 

fixed with 4% paraformaldehyde, permeabilized with 

0.5% Triton X-100, and stained with the anti-UL6 

polyclonal antibody (pAb) [46]. Then, cells were 

incubated with fluorescein isothiocyanate (FITC)-

conjugated goat anti-rabbit immunoglobulin G (Zymed 

Laboratories) and stained with DAPI. Cells were finally 

detected with a laser scanning confocal microscopy. All 

scale bars indicate 10 um, and images were processed 

with Adobe Photoshop.  

 

Co-IP and immunoblotting  
 

Co-IP and immunoblotting (IB) assays were 

manipulated as described previously [13, 15, 18, 22–24, 

41, 47, 48]. Summarily, HEK293T cells were co-

transfected with FLAG- or EYFP-tagged expression 

plasmids for 24 h. Cells were then collected and lysed 

on ice with 1 mL of lysis buffer. The lysate was 

subsequently incubated with anti-Flag monoclonal 

antibody (mAb, Sigma) or nonspecific mouse control 

antibody (IgG) and a 1:1 slurry of Protein A/G PLUS-

Agarose (Santa Cruz Biotechnology) for at least 4 h or 

overnight at 4 oC. Then, lysis buffer was used to wash 

beads for three times. Finally, cell lysates and the Co-

IPed proteins, were subjected to IB analysis with anti-

Flag mAb and anti-YFP pAb (Santa Cruz 

Biotechnology). All Co-IP were duplicated at least two 

times, and analogous data were obtained.  
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