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INTRODUCTION 
 
Alzheimer's disease (AD), the most prevalent 
neurodegenerative disorder, is characterized by the 
presence of extracellular amyloid plaques composed of 
amyloid-β (Aβ) and intracellular neurofibrillary tangles 
[1, 2]. Mounting evidence indicates that Aβ accumulation 
and aggregation are associated with a toxic cascade 
triggered by neuroinflammation, which further results in 
synaptic loss and cognitive dysfunction [3]. The levels of 
Aβ in the brain are regulated by an innate immune 

response [4, 5], and Aβ activates an inflammatory 
response that ultimately drives its uptake and clearance 
from astrocytes and microglia in the brain [6]. Because 
astrocytes are key regulators of the brain’s inflammatory 
response [7], elucidating the mechanisms by which Αβ 
initiates this inflammatory cascade is crucial to 
understand the interplay between astrocytes and neuronal 
viability in AD. 
 
9-cis Retinoic acid (RA), a biologically active 
derivative of vitamin A, has been shown to control a 
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ABSTRACT 
 
Alzheimer's disease (AD) is associated with the accumulation and deposition of a beta-amyloid (Αβ) peptide in the 
brain, resulting in increased neuroinflammation and synaptic dysfunction. Intranasal delivery of targeted drugs to 
the brain represents a noninvasive pathway that bypasses the blood-brain barrier and minimizes systemic 
exposure. The aim of this study was to evaluate the therapeutic effect of intranasally delivered 9-cis retinoic acid 
(RA) on the neuropathology of an AD mouse model. Herein, we observed dramatically decreased Αβ deposition in 
the brains of amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice (APP/PS1) treated 
intranasally with 9-cis RA for 4 weeks compared to that in the brains of vehicle-treated mice. Importantly, 
intranasal delivery of 9-cis RA suppressed Αβ-associated astrocyte activation and neuroinflammation and 
ultimately restored synaptic deficits in APP/PS1 transgenic mice. These results support the critical roles of Αβ-
associated neuroinflammation responses to synaptic deficits, particularly during the deposition of Αβ. Our 
findings provide strong evidence that intranasally delivered 9-cis RA attenuates neuronal dysfunction in an AD 
mouse model and is a promising therapeutic strategy for the prevention and treatment of AD. 
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wide range of biological processes, including cell 
proliferation, differentiation, and morphogenesis [8]. It 
is well known that 9-cis RA regulates the activity of 
target cells via their nuclear receptors RA receptors 
(RARs) and retinoid X receptors (RXRs) [9, 10]. In 
vitro studies have indicated that 9-cis RA exerts 
immunomodulatory and anti-inflammatory effects on 
various cell types [8, 11, 12]. Mice that carry mutated 
versions of RAR and/or RXRs also show deficits in 
spatial learning and memory [13]. The impairment of 
spatial learning and memory and depression of synaptic 
plasticity that occur in vitamin A-deprived rodents  
also occur as rodents age [14]. Importantly, clinical 
evidence has shown defective retinoid transport and 
functions in the AD brain, suggesting that increasing the 
availability of RA in the brain may prevent or decrease 
Aβ-associated neurodegeneration [15]. However, to 
date, no conclusive experimental evidence obtained 
from AD animal models shows a therapeutic effect of 9-
cis RA on AD. 
 
In the present study, we examined the effects of 
intranasally delivered 9-cis RA on amyloid precursor 
protein (APP) and presenilin 1 (PS1) double-transgenic 
mice (APP/PS1). Six-month-old APP/PS1 mice were 
intranasally treated with 20 µg of 9-cis RA for 4 weeks, 
which effectively reduced the Αβ burden. More 
intriguingly, 9-cis RA treatment significantly alleviated 
astroglial activation and synaptic loss in the brains of 
APP/PS1 mice. 
 
RESULTS 
 
9-cis RA reduces Aβ deposition in an amyloid mouse 
model 
 
To determine whether intranasal delivery of 9-cis RA 
affects amyloid pathology, we treated 6-month-old 
APP/PS1 mice for a period of 4 weeks, as these mice 
are known to develop amyloid plaques at 5 to 6 
months [16]. The brain sections were immunostained 
with an anti-Aβ antibody (82E1), and the extent of 
Aβ deposition in the cortical and hippocampal brain 
regions of APP/PS1 mice was captured by confocal 
microscopy (Figure 1A). Treatment of APP/PS1  
mice with 9-cis RA significantly reduced the  
plaque burden in the cortical and hippocampal 
regions. Immunohistochemical analysis of 82E1 
immunoreactive plaques in cortical slices from 
APP/PS1 mice revealed an ~40% reduction in the 
total areas of Aβ deposits compared with those in 
cortical slices from their vehicle-treated APP/PS1 
littermates (Figure 1B). More importantly, the 
number of total plaques was also reduced in the 
cortex and hippocampus of 9-cis RA-treated 
APP/PS1 mice by ~45% and ~43%, respectively 

(Figure 1C). These data demonstrate that 9-cis RA 
reduces the levels of Aβ deposition in the brains of 
APP/PS1 mice. 
 
9-cis RA decreases amyloid-associated 
neuroinflammation in an amyloid mouse model 
 
Abnormal activation of astrocytes has been observed in 
the brains of AD patients and APP transgenic mouse 
models [17, 18]. To determine the extent of Aβ-
mediated astrogliosis upon 9-cis RA treatment, we 
examined GFAP-positive reactive astrocytes by 
immunofluorescence staining and western blot. 
Interestingly, 9-cis RA-treated APP/PS1 mice displayed 
significantly fewer GFAP-positive astrocytes in the 
cortex (Figure 2A) and hippocampus (Figure 2B) than 
the vehicle-treated mice, indicating that 9-cis RA had an 
anti-inflammatory effect on Aβ-mediated 
neuroinflammation. Next, we evaluated astroglial 
reactivity surrounding amyloid deposits in both 9-cis 
RA- and vehicle-treated APP/PS1 animals. Treatment 
with 9-cis RA significantly reduced the levels of GFAP-
immunoreactive astrocytes surrounding amyloid 
plaques in transgenic animals at 7 months old, as 
determined by immunostaining (Figure 3A). 
Quantitative analysis of amyloid-associated astrocyte 
processes (Figure 3B) and body area (Figure 3C) 
revealed that 9-cis RA treatment dramatically reduced 
the level of reactive astrocytes associated with Aβ-
positive plaques in the brains of 7-month-old APP/PS1 
mice. These data suggest that 9-cis RA treatment can 
reduce amyloid deposition through its anti-
inflammatory function. 
 
Treatment with 9-cis RA rescued synaptic integrity 
in an amyloid mouse model 
 
Synaptic loss occurs early during AD progression and is 
one of the first signs of the neurodegenerative process [19, 
20]. To further understand how 9-cis RA affects synaptic 
changes associated with Aβ, we examined the levels of 
pre- and postsynaptic markers in the brains of APP/PS1 
mice. The level of postsynaptic density 95 (PSD-95) 
(Figure 4A, 4B), but not that of synaptophysin (Figure 4C, 
4D), was significantly increased in the 9-cis RA-treated 
mice, suggesting that 9-cis RA might ameliorate Aβ-
associated synaptic impairment. 
 
9-cis RA decreased the levels of proinflammatory 
cytokines in an amyloid mouse model 
 
Proinflammatory cytokines released by microglia are 
thought to have a central role in the AD 
neuroinflammation [21, 22]. Activated astrocytes serve 
as functional barriers and have the potential to release 
diverse molecules [23, 24]. To examine the effect of 
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Figure 1. Treatment with 9-cis RA reduced the level of Αβ deposition in APP/PS1 mice compared with vehicle-treated control 
mice. (A) Representative images of Αβ staining in the frontal cortex and hippocampus of APP/PS1 mice treated with vehicle as a control (left) 
or 9-cis RA (right). Scale bars, 500 μm. (B) Stereological quantification of the Αβ volume in the cortex (left) and hippocampus (right). (C) 
Stereological quantification of the Αβ numbers in the cortex (left) and hippocampus (right). Values from multiple images of each section that 
cover most of the region of study were averaged per animal per experiment. Data represent the mean ± SEM (n=6). **, p<0.01. 
 

 
 

Figure 2. 9-cis RA reduced Αβ-associated gliosis. (A, B) The levels of GFAP in the cortex (n=4/group) and hippocampus (n=4/group) 
were examined by western blotting. Data represent the mean ± SEM. *, p<0.05. 
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9-cis RA on proinflammatory cytokines, we analyzed 
the levels of proinflammatory cytokines in the brain. 
We found that 9-cis RA decreased the levels of IL-6, 
IL-1β, and TNF-α compared with those in the vehicle 
control group (Figure 5A–5C). Consistent with the 
effects of 9-cis RA on amyloid deposition, the levels of 
proinflammatory cytokines were significantly reduced 
in the mice treated with 9-cis RA. These results indicate 
that 9-cis RA reduces the activation of astrocytes by 
decreasing proinflammatory cytokine expression. 
 
DISCUSSION 
 
Excessive accumulation and aggregation of Aβ in senile 
plaques are the first events leading to AD-related 

dementia [6, 25]. Numerous pharmacological 
approaches and mechanical strategies to prevent and 
treat AD have targeted Aβ production, accumulation, 
and/or aggregation and have most recently focused on 
presymptomatic patients who are likely to develop AD 
[26, 27]. Neuroinflammation occurs in the brains of 
patients with symptomatic AD and has a critical impact 
on the neurodegenerative pathology of the disease [23]. 
Targeting Aβ-induced neuronal cell death has been 
demonstrated to play an important therapeutic role in 
modifying AD progression [28]. We previously found 
that 9-cis RA decreases cell-associated Aβ levels in 
astrocytes, which is beneficial for accelerating Aβ 
clearance [10]. In this study, we examined the effects of 
9-cis RA delivered intranasally on AD pathogenesis in 

 

 
 

Figure 3. 9-cis RA suppressed the activation of astrocytes in APP/PS1 mice. (A) Representative images of GFAP and 82E1 
immunochemistry in coronal sections from 7-month-old APP/PS1 animals treated with 9-cis RA (bottom) or vehicle (upper). (B) Quantification 
of amyloid-associated astrocyte processes compared with the Ctrl (vehicle). (C) Quantification of amyloid-associated astrocyte bodies 
compared with the Ctrl (vehicle). Scale bars, 50 μm. Data represent the mean ± SEM (n=6). **, p<0.01. 
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APP/PS1 mice, as this route is a minimally invasive 
way to repeatedly deliver drugs to animals. Although 
the blood-brain barrier is impaired in AD, it can still 
prevent exogenous compounds from entering the brain 
parenchyma [29]. Small molecules administered 
intranasally can pass through the blood-brain barrier, 
avoid first-pass metabolism, and reduce nonselective 
effects in the periphery [30, 31]. Our findings indicated 
that 9-cis RA treatment, for as little as 4 weeks, 
inhibited and possibly reversed the accumulation of Aβ 
deposits in APP/PS1 double-transgenic mice. The 9-cis 
RA-treated APP/PS1 mice showed significantly 
decreased levels of activated astrocyte markers and 
proinflammatory cytokines and elevated levels of 

synaptic markers in the cortex and/or hippocampal 
regions compared with those in the vehicle-treated 
APP/PS1 mice. 
 
RA has been considered a regenerative molecule in 
peripheral organs, as it is generated in multiple forms 
(all-trans, 9-cis, and 13-cis) from retinol by two 
sequential reactions after uptake [32–34]. 9-cis RA 
mainly interacts with RXRs to regulate the transcription 
of several target genes by binding RA response 
elements (RAREs) in DNA to maintain lipid 
metabolism and glucose homeostasis [35]. Exogenous 
9-cis RA has been shown to play multiple roles, such as 
increasing neurite outgrowth from cultured adult 

 

 
 

Figure 4. 9-cis RA rescued amyloid-associated synaptic loss. The levels of the postsynaptic marker PSD-95 (A, B) and presynaptic 
marker synaptophysin (Syp) (C, D) in the cortex (left) and hippocampus (right) were examined by western blotting. Data represent the mean 
± SEM (n=4). *, p<0.05. 
 

 
 

Figure 5. 9-cis RA reduced amyloid-associated neuroinflammation. (A–C) The levels of IL-1β, IL-6, and TNF-α in the cortex of APP/PS1 
were examined by ELISA. Data represent the mean ± SEM (n=6). *, P < 0.05. 
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Lymnaea neurons and accelerating remyelination in  
the injured central nervous system (CNS) through  
the proliferation of immortalized hippocampal 
progenitor cells [36, 37]. An in vitro study showed that 
9-cis RA inhibits lipopolysaccharide (LPS)-induced 
inflammatory responses in human adherent monocytes 
[11]. Taken together, these data suggest that 9-cis RA 
has neurotrophic properties and may be potentially 
useful for AD. 
 
In our AD mouse model, reactive astrocytes were 
intimately associated with amyloid plaques. Astrocytes 
can secrete inflammatory cytokines and generate 
toxicity, thus damaging and killing bystander neurons 
[7]. GFAP expression is associated with activated 
astrocytes, representing the inflammatory state of the 
CNS [38, 39]. We herein found decreased astrocyte 
activation in 9-cis RA-treated mice compared with 
vehicle-treated mice, indicating that astrocytes 
contributed to the reduced Aβ load in the treated mice. 
Compared to those in the control mice, the Aβ deposits 
in 9-cis RA-treated mice were associated with 
substantially less processing of activated astrocytes. 
Furthermore, the astrocytes in the 9-cis RA-treated 
mice were smaller than those in the control mice. 
Together, these results suggest that the Aβ in the 
plaques exhibited altered aggregation kinetics. Finally, 
it should be noted that the number of Aβ deposits was 
also significantly reduced in the brains of 9-cis RA-
treated mice compared with control mice, indicating 
that fewer new deposits were formed during the four 
weeks of treatment. 
 
Aβ deposition triggers a neuroinflammatory state, 
which plays a significant role in the progression of AD 
[23, 40]. Inflammatory components related to AD 
neuroinflammation include brain cells such as 
microglia and astrocytes, the complement system, and 
cytokines and chemokines [5]. Proinflammatory 
cytokines, such as IL-1β, IL-6, and TNF-α, play an 
important role in the development of AD [41, 42]. An 
in vitro study demonstrated that 9-cis RA suppresses 
the production of specific proinflammatory cytokines 
from activated primary glial cells [8]. However, how 
9-cis RA affects the levels of proinflammatory 
cytokines in an AD mouse model remains unclear. In 
this study, we found that 9-cis RA, as an anti-
inflammatory drug, decreased the levels of IL-1β, IL-
6, and TNF-α in APP/PS1 mice, suggesting that it 
could relieve the activation of astrocytes by reducing 
proinflammatory cytokine levels. 
 
In addition, neuroinflammatory components may 
contribute to synapse loss and dysfunction in AD. PSD-
95 is the most abundant scaffolding protein in the 
excitatory postsynaptic density, and its expression has 

been proven to decrease with the progression of 
memory loss in AD [43]. Treatment with 9-cis RA 
significantly increased the PSD-95 levels in both the 
cortices and hippocampi of APP/PS1 mice compared to 
the vehicle-treated controls, reflecting the restoration of 
postsynaptic damage. 
 
Overall, the data reported herein represent the first 
preliminary experimental evidence of the therapeutic 
effect of intranasally delivered 9-cis RA on AD. 
Additionally, we have provided a mechanism by which 
9-cis RA modulates Aβ-related pathology in a mouse 
model. We have shown a mechanistic linkage between 
reactive astrocytes and proinflammatory cytokines, 
which has not been previously documented in the brain, 
that facilitates amyloid deposition and accelerates 
synaptic loss. These data suggest that 9-cis RA, as an 
anti-inflammatory drug, represents a promising 
therapeutic approach for AD. 
 
MATERIALS AND METHODS 
 
Animals 
 
All animal care protocols and procedures were 
performed in accordance with the Animal Scientific 
Procedures Act and were approved by Harbin Medical 
University. APPswe/PS1Δe9 (APP/PS1) transgenic 
mice [B6C3-Tg (APPswe, PSEN1dE9)85Bdo/J] were 
obtained from the Model Animal Research Center of 
Nanjing University, China [44]. Briefly, 20 µg of 9-cis 
RA (1 µg/µl, ab141023, Abcam) or vehicle (10% 
DMSO in saline) was administered to 6-month-old 
APP/PS1 mice intranasally every 2 days for 4 weeks as 
previously described [45]. The animal brains were then 
harvested, and one hemisphere was fixed and processed 
for immunohistochemistry. The hippocampus and 
cortex were dissected from the other hemisphere, snap-
frozen and stored at 80°C until protein extraction. 
Approximately equal numbers of male (n=16) and 
female (n=16) transgenic mice were used for all 
experiments. 
 
Immunohistochemistry 
 
Postfixed hemispheres were sectioned (20 µm) on a 
cryostat and stored in PBS/glycerol (50:50) until use. 
Alternate sections were blocked with 5% BSA and 
stained with the appropriate primary antibody: anti-
amyloid (82E1, 1:1000, Immunobiological 
Laboratories) and anti-GFAP (1:1000, Millipore). The 
sections were incubated with the appropriate Alexa 
Fluor-conjugated secondary antibodies, and images 
were captured on a confocal laser scanning fluorescence 
microscope (model LSM510 invert; Carl Zeiss, 
Germany). 
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Western blot analysis 
 
Protein concentrations in brain extracts were measured 
using the BCA method (Pierce), and equal amounts of 
protein from the homogenized lysates were loaded onto 
SDS-PAGE gels and transferred to PVDF membranes. 
After the membranes were blocked, proteins were 
detected with one of the following primary antibodies: 
anti-GFAP (1:500, Millipore), anti-PSD-95 (1:200, Cell 
Signaling Technology), or anti-synaptophysin (1:200, 
Millipore). The membranes were probed with LI-COR 
IRDye secondary antibodies, and proteins were detected 
using the Odyssey infrared imaging system (LI-COR). 
 
ELISA quantification 
 
The concentrations of IL-1β, IL-6, and TNF-α were 
measured using commercial kits (Biolegend) according 
to the manufacturers’ instructions. Briefly, plates were 
coated with a capture antibody, incubated overnight at 
4°C, washed, and blocked for 1 hour at room 
temperature. Standard and experimental samples were 
added to the plate for 2 hours at room temperature. 
After washing, the plates were incubated with a 
detection antibody for 1 hour and then washed and 
incubated with an Avidin-HRP solution for 30 minutes. 
After washing the plates, substrate solution and stop 
solution were added to each well, and the absorbance 
was read at 450 nm and 570 nm. 
 
Statistical analysis 
 
All quantified data represent an average of samples. 
Statistical analyses were performed with Excel or 
GraphPad Prism software. Statistical significance was 
determined by either Student’s t-test or one-way 
analysis of variance (ANOVA) with Tukey’s post hoc 
test using GraphPad Prism 5. P < 0.05 was considered 
statistically significant. The levels of significance are 
indicated as follows: *P < 0.05, **P < 0.01. 
 
Data and materials availability 
 
Data from these experiments are available from the 
corresponding author upon reasonable request. 
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