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INTRODUCTION 
 

Aging is a complex process that involves multiple 

systems, leading to physiological dysregulation, health 

deterioration, and eventually death. Changes that occur  

 

at the molecular and cellular levels as individuals grow 

older propagate to changes detectable in laboratory 

tests of blood or other tissues and observable in 

measurements of various physiological variables in  

an individual at different ages. Cross-sectional 
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ABSTRACT 
 

Recently, Mahalanobis distance (DM) was suggested as a statistical measure of physiological dysregulation in 
aging individuals. We constructed DM variants using sets of biomarkers collected at the two visits of the Long 
Life Family Study (LLFS) and performed joint analyses of longitudinal observations of DM and follow-up 
mortality in LLFS using joint models. We found that DM is significantly associated with mortality (hazard ratio 
per standard deviation: 1.31 [1.16, 1.48] to 2.22 [1.84, 2.67]) after controlling for age and other covariates. 
GWAS of random intercepts and slopes of DM estimated from joint models found a genome-wide significant 
SNP (rs12652543, p=7.2×10-9) in the TRIO gene associated with the slope of DM constructed from biomarkers 
declining in late life. Review of biological effects of genes corresponding to top SNPs from GWAS of DM slopes 
revealed that these genes are broadly involved in cancer prognosis and axon guidance/synapse function. 
Although axon growth is mainly observed during early development, the axon guidance genes can function in 
adults and contribute to maintenance of neural circuits and synaptic plasticity. Our results indicate that decline 
in axons’ ability to maintain complex regulatory networks may potentially play an important role in the 
increase in physiological dysregulation during aging. 
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measurements of such biomarkers correspond to the 

instantaneous profile of the current physiological state 

of an organism which provides valuable information 

about the current aging status of the body. Numerous 

studies show that such biomarkers are associated with 

risks of death and aging-related diseases (see, e.g., 

reviews in [1–3]). However, such “snapshots” of the 

physiological state do not help in understanding how 

exactly the organism arrived at this particular state. 

For example, if a person at some age has values of 

biomarkers that are associated with higher survival 

chances or reduced risks of diseases (e.g., lower 

values), it is unclear from the cross-sectional 

information alone if such outcome is due to lower 

values of respective biomarkers early in life, or due to 

their slower change with age, or both. Different studies 

have shown that dynamic characteristics of individual 

trajectories of biomarkers are associated with mortality 

risk and other aging-related traits [4]. To investigate 

such associations, one needs repeated measurements of 

biomarkers along with relevant time-to-event 

outcomes (e.g., mortality, onset of diseases) and other 

relevant health-related outcomes. Such information is 

routinely collected in contemporary longitudinal 

studies on humans and many of those, in addition, 

contain extensive genetic (and, most recently, various 

omics) data providing opportunities to explore this 

additional dimension in relation to aging, health, and 

longevity.  

 

Analyses of longitudinal studies of aging present special 

methodological challenges due to inherent complexities 

that need to be taken into account to avoid biased 

inference. An essential assumption of such analyses is 

that the longitudinal outcomes (e.g., biomarkers) can be 

related to the risk of death so that the probability of 

having a missing value because of death depends on an 

unobserved value, which is missing not at random 

(MNAR) [5]. This means that standard methods such as 

mixed-effects models [6] or generalized estimating 

equations [7] are not appropriate in such applications 

because they assume the data are missing (completely) 

at random. Ignoring this can lead to severe bias, as is 

well-known in the statistical literature [8]. Furthermore, 

biomarkers are subject to measurement error and 

random biological variability; they can be collected at 

intermittent sparse examination visits, and typically 

they are not observed at event times. Ignoring 

measurement errors or biological variation and using 

the observed “raw” values of such variables as time-

dependent covariates in the Cox regression model may 

lead to biased estimates and incorrect inferences [9, 10], 

especially when biomarkers are measured at sparse 

examinations or with a long time interval before an 

outcome event. Despite such evidence and well 

recognized needs for using appropriate methods in 

analyses of longitudinal data on aging [11–14], the 

adoption of such methods is slow. 

 

In this paper, we apply one such method developed for 

dealing with MNAR situations, joint models (JM) [15, 

16], to data on mortality and available longitudinal 

measurements of multiple biomarkers from two visits in 

the Long Life Family Study (LLFS). We apply the 

statistical (Mahalanobis) distance measure (denoted as 

DM) [17] to reduce a high-dimensional biomarker space 

into a single measure that summarizes information 

about deviations of biomarkers from an optimal 

“baseline” state defined in a “reference population” and 

that is interpreted as the measure of physiological 

dysregulation [17]. DM trajectories were shown to be 

good predictors of mortality, frailty, and chronic 

diseases in different studies [18–21] (with higher DM 

values associated with higher mortality risk, etc.). The 

dynamic characteristics of DM trajectories are related to 

different hidden mechanisms of aging-related changes 

that produce an increase in the risk of death with age 

[22], onset of unhealthy lifespan, and survival following 

the onset of unhealthy lifespan [23]. The LLFS 

collected follow-up data on mortality and measurements 

of multiple biomarkers in two visits as well as extensive 

data on common single nucleotide polymorphisms 

(SNPs) for genotyped participants. Such information 

allows one to construct DM using biomarker data from 

both visits, to explore its dynamics in relation to 

mortality, and to perform genome-wide association 

studies (GWAS) to investigate genetic factors 

associated with such dynamics. However, the 

methodological complexities indicated above are 

applicable to this analysis. First, DM is constructed from 

biomarkers that can have measurement errors and 

random biological variability and thus appropriate 

modelling (e.g., joint models [15, 16]) should be used 

rather than analyses using the observed “raw” values of 

DM as time-dependent covariates in the Cox model [9, 

10]. Second, the LLFS currently has only two visits (at 

which the biomarkers were collected) and many 

individuals died before visit 2; thus they will have DM 

measured only at visit 1. DM is known to be strongly 

associated with the risk of death [17, 18, 20, 22, 23]. 

Hence, individuals with adverse dynamics of DM should 

tend to drop-out earlier due to death (see hypothetical 

illustration in Figure 1), i.e., the probability of drop-out 

can depend on missing (unobserved) values of DM. 

Also, a single observation at visit 1 does not provide 

information on the future dynamics of DM. However, 

information on time to death combined with available 

observations of DM can still be used to infer the 

dynamics of DM (if modeled appropriately). Here we 

illustrate this using such modelling (joint models) and 

show how the estimates from joint models can be used 

to perform GWAS to infer associations of SNPs with 
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static and dynamic characteristics of the measure of 

physiological dysregulation (DM). 

 

RESULTS 
 

Empirical analyses and applications of joint models 

 

Table 1 shows the characteristics of the LLFS sample 

(for the probands’ and offspring generations and the 

total sample) including information on variables used 

in fitting the joint models (see section Specification of 

joint models). Information on time-dependent 

variables is presented for each visit. Information on 

time-independent variables is given for each individual 

participating in the study (whether he/she was enrolled 

at baseline or at follow-up visit). See Notes under the 

table for the number of missing values for each 

variable.  
 

Table 1 also includes information on prevalent 

(existing before the baseline visit) and incident (new 

cases reported after the baseline visit) cases of major 

aging-related diseases in the LLFS. It shows that 

participants from the probands’ generation had higher 

prevalence of major diseases compared to the younger 

(offspring) generation, as expected. However, for 

incidence the pattern is not uniform: the proportions of 

new cancer cases are almost the same in two 

generations and the proportions of new diabetes cases 

tended to be higher in the offspring generation. We 

note also that verified information on causes of deaths 

of LLFS participants was not available for this study. 

Therefore, the numbers and proportions of individuals 

dying from different causes were not determined in 

this sample. 

We constructed the measure of physiological dys-

regulation (denoted as 1
MD ) from a set of biomarkers 

moderately correlated with age as described in Methods 

and separate measures based on subsets of respective 

biomarkers negatively and positively correlated with 

age ( 1
MD   and 1

MD  ), as well as the “age-dependent” DM 

variants (denoted, accordingly, 1
MaD , 1

MaD  , and 1
MaD  ) 

that considered deviations of biomarker values from 

those typical of age peers rather than those of younger 

individuals as in the original measures ( 1
MD , 1

MD  , and 

1
MD  ) (see Methods). Table 2 lists the biomarkers used 

in these computations along with respective numbers of 

observations in each LLFS visit and the total number of 

observations. 

 

We compared the average values of DM at visit 1 

between (1) those who died between visit 1 and visit 2 

and (2) those who survived beyond visit 2. The average 

values of DM at visit 1 for those who died were 

significantly higher than those for the second group (see 

Table 3). Similar patterns were observed when stratified 

by sex, with larger and more significant differences for 

the “original” DM variants. These analyses indicate that 

the situation depicted in Figure 1 is likely to be 

happening here, i.e., participants with higher values of 

DM and/or higher rates of change tend to die earlier thus 

creating the paradigm for application of appropriate 

statistical techniques for joint analyses of longitudinal 

observations of DM and time-to-event data on mortality. 

 

Table 4 shows the results of application of the joint 

models to DM variants 1
MD  , 1

MD  , and 1
MD  and mortality 

 

 
 

Figure 1. Hypothetical dynamics of the measure of physiological dysregulation (DM) in LLFS among those who survived 
beyond visit 2 and those who died before visit 2. 
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Table 1. Characteristics of the LLFS Probands and Offspring generations and the total sample. 

 
Probands Offspring Total Sample 

Number of participants at in-person visit 1 1673 3226 4899 

Number of visit 1 participants who died before 

in-person visit 2 
1050 189 1239 

Number of visit 1 participants who returned 

for in-person visit 2 
554 2623 3177 

Number of new participants enrolled for in-

person visit 2 
14 123 137 

Number of participants (returning and new) at 

in-person visit 2 
568 2746 3314 

Number of participants who died after in-

person visit 2 
173 43 216 

Total number of participants in the study 1687 3349 5036 

Number of deaths during the entire follow-up 1223 232 1455 

Years from visit 1 to visit 2 (mean ± SD 

[range]) (for those with both visits) 
7.13 ± 1.02 [5–11] 8.03 ± 1.1 [5–11] 7.88 ± 1.13 [5–11] 

Age at visit 1 (mean ± SD [range]) 89.57 ± 6.81 [49–110] 60.65 ± 8.37 [24–88] 70.53 ± 15.81 [24–110] 

Age at visit 2 (mean ± SD [range]) 92.93 ± 6.82 [56–110] 68.4 ± 7.84 [40–95] 72.39 ± 11.88 [40–110] 

Females (%) 55.78 55.03 55.28 

Participants from US field centers (%) 84.77 70.02 74.96 

Low educated participants (below high 

school) (%) 
24.72 6.42 12.55 

Smokers (smoked >100 cigarettes in  

lifetime) (%) 
37.7 45.6 42.95 

Medication use at visit 1: anti-diabetic (%) 7.11 4.68 5.51 

Medication use at visit 1: anti-hypertensive (%) 67.54 31.43 43.76 

Medication use at visit 1: lipid-lowering (%) 31.68 25.33 27.5 

Medication use at visit 2: anti-diabetic (%) 5.28 6.08 5.94 

Medication use at visit 2: anti-hypertensive (%) 54.58 35.4 38.68 

Medication use at visit 2: lipid-lowering (%) 33.27 29.53 30.18 

Fasting (>=8 hrs.) at visit 1 (%) 88.11 89.77 89.2 

Fasting (>=8 hrs.) at visit 2 (%) 54.05 74.25 70.79 

Follow-up period (mean ± SD [range]) 5.66 ± 2.97 [0–11.9] 8.36 ± 2.49 [0–12] 7.46 ± 2.95 [0–12] 

Prevalence of cancer, number (%) 588 (34.85) 621 (18.54) 1209 (24.01) 

Prevalence of CVD, number (%) 461 (27.33) 206 (6.15) 667 (13.24) 

Prevalence of AD or dementia, number (%) 119 (7.05) 8 (0.24) 127 (2.52) 

Prevalence of diabetes, number (%) 162 (9.60) 212 (6.33) 374 (7.43) 

Incidence of cancer, number (%) 183 (10.85) 339 (10.12) 522 (10.37) 

Incidence of CVD, number (%) 341 (20.21) 188 (5.61) 529 (10.50) 

Incidence of AD or dementia, number (%) 119 (7.05) 27 (0.81) 146 (2.90) 

Incidence of diabetes, number (%) 23 (1.36) 112 (3.34) 135 (2.68) 

Note: Number of missing data (Probands, Offspring, Total Sample): indicator of death/lifespan - (0, 0, 0); age at visit 1 - (0, 0, 
0); age at visit 2 - (100, 338, 438); sex - (0, 0, 0); country - (0, 0, 0); education - (8, 3, 11); smoking - (6, 14, 20); anti-diabetic 
drugs at visit 1 - (62, 424, 486); anti-diabetic drugs at visit 2 - (123, 529, 652); anti-hypertensive drugs at visit 1 - (62, 424, 
486);  anti-hypertensive  drugs at visit 2 - (123, 529, 652); lipid-lowering drugs at visit 1 - (62, 424, 486); lipid-lowering drugs at 
visit 2 - (123, 529, 652); fasting at visit 1 - (3, 16, 19); fasting at visit 2 - (0, 0, 0); follow-up period - (0, 0, 0); cancer - (1, 3, 4); 
CVD - (1, 3, 4); AD - (5, 3, 8); diabetes - (4, 5, 9) 
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Table 2. Biomarkers used in construction of statistical distance measures (DM). 

Name (Unit of Measurement) 

Number of 

Observations 

Visit 1 

Number of 

Observations 

Visit 2 

Number of 

Observations 

Total 

Absolute monocyte count (10e9/L) 4,495 2,252 6,747 

Creatinine (mg/dL) 4,658 2,615 7,273 

Diastolic blood pressure (mmHg) 4,757 2,777 7,534 

Forced vital capacity (mL) 4,399 2,353 6,752 

Grip strength (kg) 4,731 2,714 7,445 

Hematocrit (%) 4,522 2,571 7,093 

Glycosylated hemoglobin (%) 4,626 2,596 7,222 

Mean corpuscular volume (fl) 4,519 2,569 7,088 

Pulse pressure (mmHg) 4,757 2,777 7,534 

Red cell distribution width (%) 4,506 2,569 7,075 

Total cholesterol (mg/dL) 4,658 2,613 7,271 

White blood cell count (10e9/L) 4,521 2,555 7,076 

Note: Biomarkers included in 1
MD  (and its “age-dependent” variant 1

MaD ) are highlighted in bold. Other (not highlighted) 

biomarkers are included in 1
MD  and 1

MaD  . All biomarkers indicated in the table are included in 1
MD  and 1

MaD . See 

explanations about DM variants in the text. 
 

Table 3. Average values of DM at visit 1 among those who died between visit 1 and visit 2 and those who survived 
beyond visit 2 (standard deviations in parentheses). 

DM 

Total Sample Females Males 

Died before 
Visit 2 

Alive at 
Visit 2 

P-value 
Died before 

Visit 2 
Alive at  
Visit 2 

P-value 
Died before 

Visit 2 
Alive at 
Visit 2 

P-value 

1
MD  1.58 (0.42) 0.90 (0.48) 2.1×10-254 1.55 (0.42) 0.89 (0.47) 2.3×10-116 1.62 (0.42) 0.91 (0.50) 5.1×10-138 

1
MD  1.34 (0.40) 0.97 (0.41) 1.7×10-125 1.38 (0.38) 0.98 (0.41) 8.3×10-80 1.31 (0.42) 0.97 (0.40) 3.1×10-51 

1
MD  1.51 (0.21) 1.15 (0.25) 3.4×10-257 1.51 (0.21) 1.15 (0.25) 1.6×10-133 1.50 (0.22) 1.16 (0.25) 4.1×10-124 

1
MaD  0.87 (0.49) 0.81 (0.47) 4.8×10-4 0.87 (0.50) 0.82 (0.47) 0.084 0.88 (0.47) 0.79 (0.47) 8.5×10-4 

1
MaD  0.92 (0.41) 0.85 (0.37) 5.7×10-6 0.93 (0.40) 0.85 (0.38) 4.6×10-5 0.90 (0.41) 0.86 (0.37) 0.018 

1
MaD  1.14 (0.24) 1.09 (0.23) 3.2×10-8 1.15 (0.24) 1.09 (0.24) 1.4×10-5 1.14 (0.24) 1.09 (0.22) 4.5×10-4 

 

Table 4. Results of the joint models applied to DM variants 1
MD , 1

MD , and 1
MD . 

DM Variable  Longitudinal  Survival 

1
MD    Coef. 95% CI P-value  Coef. HR 95 % CI P-value 

 DM      1.380 2.10 [1.718, 2.577] 6.6×10-13 

 AgeV1  0.023 [0.022, 0.024] 0  0.096 1.10 [1.089, 1.112] 6.7×10-77 

 SexM  0.071 [0.047, 0.095] 7.9×10-9  0.239 1.27 [1.110, 1.453] 5.0×10-4 

 IsDK  -0.117 [-0.147, -0.088] 8.9×10-15  0.486 1.63 [1.352, 1.954] 2.3×10-7 

 LowEduc  0.063 [0.021, 0.105] 0.003  0.005 1.01 [0.851, 1.186] 0.955 

 Smoke100  0.026 [0.002, 0.050] 0.036  0.134 1.14 [1.001, 1.305] 0.048 

 DrugDiab  0.144 [0.097, 0.191] 2.4×10-9      

 DrugHtn  0.033 [0.009, 0.058] 0.008      

 DrugLipid  0.0003 [-0.025, 0.026] 0.983      
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 Fasting  -0.026 [-0.065, 0.012] 0.183      

 TimeV1  0.017 [0.014, 0.020] 2.8×10-35      

1
MD    

    
 

   

 DM      1.190 1.66 [1.420, 1.937] 1.7×10-10 

 AgeV1  0.011 [0.011, 0.012] 6×10-177  0.109 1.12 [1.107, 1.123] 4.6×10-200 

 SexM  -0.013 [-0.034, 0.008] 0.221  0.385 1.47 [1.303, 1.658] 3.5×10-10 

 IsDK  0.008 [-0.018, 0.034] 0.54  0.307 1.36 [1.159, 1.593] 1.6×10-4 

 LowEduc  0.039 [0.003, 0.074] 0.034  0.024 1.02 [0.881, 1.192] 0.75 

 Smoke100  0.026 [0.005, 0.047] 0.017  0.110 1.12 [0.989, 1.259] 0.075 

 DrugDiab  0.303 [0.262, 0.344] 3.6×10-47      

 DrugHtn  0.068 [0.046, 0.089] 8.2×10-10      

 DrugLipid  -0.018 [-0.040, 0.004] 0.116      

 Fasting  -0.023 [-0.057, 0.011] 0.182      

 TimeV1  0.019 [0.016, 0.021] 4.5×10-57      

1
MD    

   
  

   

 DM      2.883 2.22 [1.841, 2.673] 5.8×10-17 

 AgeV1  0.011 [0.011, 0.012] 0  0.090 1.09 [1.084, 1.105] 2.4×10-80 

 SexM  0.018 [0.006, 0.031] 0.005  0.317 1.37 [1.203, 1.568] 2.7×10-6 

 IsDK  -0.027 [-0.042, -0.011] 6.2×10-4  0.373 1.45 [1.212, 1.739] 5.1×10-5 

 LowEduc  0.042 [0.021, 0.064] 1.3×10-4  0.028 1.03 [0.870, 1.217] 0.741 

 Smoke100  0.018 [0.005, 0.031] 0.005  0.077 1.08 [0.945, 1.235] 0.257 

 DrugDiab  0.160 [0.136, 0.185] 3.4×10-37      

 DrugHtn  0.038 [0.025, 0.051] 7.1×10-9      

 DrugLipid  -0.001 [-0.014, 0.012] 0.922      

 Fasting  -0.025 [-0.045, -0.005] 0.016      

 TimeV1  0.014 [0.012, 0.015] 7.9×10-81      

Notes: 1. Variables:  AgeV1: Age at visit 1, SexM: Sex (1 – male, 0 – female), IsDK: Participant is from Denmark (1) or USA (0), 
LowEduc: Low education (1 – below high school, 0 – otherwise), Smoke100: Smoker (1 – smoked >100 cigarettes in lifetime, 0 
– otherwise), DrugDiab: Takes (1) or does not take (0) anti-diabetic drugs, DrugHtn: Takes (1) or does not take (0) anti-
hypertensive drugs, DrugLipid: Takes (1) or does not take (0) lipid-lowering drugs, Fasting: Fasting (1 – >=8 hrs., 0 – 
otherwise), TimeV1: Follow-up period since visit 1. 

2. Hazard ratios (HR) of all-cause mortality risk for DM variables are per standard deviation: 1
MD : 0.539, 1

MD : 0.425, 1
MD : 

0.276; HR for other variables are per a unit change. 
 

data in LLFS. The “Longitudinal” values represent 

estimates (coefficients, 95% confidence intervals [CI], 

and p-values for the null hypotheses of zero 

coefficients) from the fixed effects parts of joint 

models. Positive (and highly significant) values of the 

coefficient for age at visit 1 and follow-up period since 

visit 1 indicate that the trajectories of DM increase with 

age for all variants, similar to other studies, e.g., [23]. 

The estimates for sex and country indicator varied in 

direction and significance showing that the levels of 

physiological dysregulation represented by the DM 

variants constructed from different sets of biomarkers 

can be different in females and males and can have 

geographical/country-specific variation. Smoking and 

low education have consistent negative impacts on all 

DM variants (i.e., smoking and low education are 

associated with an increase in the level of physiological 

dysregulation represented by the respective DM 

variants). Use of medication for diabetes and 

hypertension, but not lipid-lowering medications also 

consistently showed negative impacts on the level of 

physiological dysregulation. The observations for anti-

diabetic and anti-hypertensive drugs may reflect the 

destabilizing role of underlying disease in the 

physiological regulation since such drugs are typically 

prescribed after respective diagnoses. On the contrary, 

lipid-lowering drugs are commonly prescribed for 

prevention, often without clinical manifestation of a 

pathology (e.g., cardiovascular disease), which might 

contribute to their weaker association with 
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physiological dysregulation. The fasting variable 

consistently reduced the values of DM, but it reached 

significance only for 1
MD . The “Survival” values 

represent estimates (coefficients, hazard ratios (HR) 

along with their 95% CI and p-values) from the survival 

parts of joint models. The results indicate that DM 

(current value estimated continuously through time 

using the joint model) is associated with mortality (HR 

per standard deviation (SD) ranging from 1.66 for 1
MD   

to 2.22 for 1
MD ) even after controlling for age and the 

other covariates indicated in the table (see Methods), all 

of which increase the risk of death with varying 

magnitude and significance levels.  

 

For comparison, the results of application of the Cox 

model to the same data (with the respective DM variant 

included as a time-dependent covariate carried forward 

from visit 1 and updated if there is a visit 2) are 

presented in Table 5. This table shows that the HRs for 

DM from joint models were 1.3 to 1.4 times larger than 

the estimates from the Cox model. 

 

The results for the “age-dependent” DM variants ( 1
MaD  , 

1
MaD  , 1

MaD ) are shown in Tables 6 (joint models) and 7 

(Cox model). In contrast to the “original” DM variants  

( 1
MD  , 1

MD  , 1
MD ), AgeV1, and TimeV1 have little 

influence on these measures (p=0.04 for 1
MaD  , AgeV1; 

p=0.03 for 1
MaD  , TimeV1; non-significant for the other 

cases; see Table 6, “Longitudinal”) reflecting the way 

such measures were constructed. Other variables in the 

“Longitudinal” part of Table 6 show varying 

significance and direction of impact on DM. The 

“Survival” part of Table 6 reveals that the “age-

dependent” variants still have strong associations with 

mortality after controlling for age and the other 

covariates indicated in the table (see Methods) which 

showed significance levels similar to the original DM 

variants. However, the effect size for “age-dependent” 

DM variants diminished compared to the original DM 

variants (HR per SD ranging from 1.31 for 1
MaD   to 1.7 

for 1
MaD ). Table 7 shows that the HRs from joint 

models are also larger (1.1 to 1.4 times) than the HRs 

from the Cox model, similar to the original  

DM variants. 

 

Genetic analyses of DM-related traits 

 
The R-package JM provides estimates of two types of 

random effects (random intercept, DM-RI, and random 

slope, DM-RS) for each individual in the analytic 

sample; these random effects are the traits used in the 

genetic analyses (see Methods). Figure 2 presents the 

results of the GWAS of MD -RS for the "age-

dependent" MD  variants. We found two genome-wide 

significant variants on chromosome 5 in the TRIO gene 

(rs12652543, p=7.2×10-9, and rs16903264, p=1.2×10-8, 

which are in linkage disequilibrium (LD) [r2 ~ 0.95] in 

whites, according to the NIH-supported online tool 

LDlink, https://ldlink.nci.nih.gov) that are associated 

with MD -RS for 1
MaD  . Biological interpretations of 

these findings are provided in Discussion. Several SNPs 

from this region and some others showed suggestive 

associations (p < 10-5) with MD -RI for 1
MaD   

(Supplementary Figure 1). Analyses of other DM 

variants (Figure 2: DM-RS for 1
MaD   and 1  MaD ; 

Supplementary Figure 2: DM-RS for 1
MD  , 1

MD  , and 

1
MD ; Supplementary Figure 3: DM-RI for 1

MD  , 1
MD  , 

and 1
MD ) did not yield any genome-wide significant 

signals, but there were several suggestive signals on 

different chromosomes. 

 

The DM variants were constructed using several 

biomarkers (see Methods). To check whether the 

signals observed in the analyses of MD -RS for 1
MaD   

are due to associations of the genetic variants with 

some particular biomarker (or a subset of biomarkers) 

used in the construction of 1
MaD  , we performed GWAS 

of MD  constructed from individual biomarkers 

following the same procedures as for MD  based on 

several biomarkers. The results are shown in 

Supplementary Figure 4. As one can see from this 

figure, there were no signals on chromosome 5 for any 

of the biomarkers constituting 1
MaD  . However, the 

GWAS of MD -RS for grip strength revealed a 

genome-wide significant signal (see description of 

sensitivity analyses below) on chromosome 7 

(rs10231286, p=4.6×10-8; this SNP is located near 

GRM3, a glutamate receptor gene involved in brain 

functioning). Supplementary Table 1 shows top SNPs 

from this analysis.  
 

We also performed sensitivity analyses running the 

models with different numbers of principal 

components (PCs: 1, 2, 5, 10). The top two signals  

for MD -RS of 1
MaD   shown in Figure 2 remained 

genome-wide significant in all cases (p-values for the 

top SNP rs12652543 varied from p = 2.1 ×10-8 to 

p=9.7×10-9; p-values for the second-ranked SNP 

rs16903264 varied from p=3.3×10-8 to p=1.4×10-8). 

However, the genome-wide significant signal for grip 

strength found in the analyses with 20 PCs 

https://ldlink.nci.nih.gov/
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Table 5. Results of the Cox model with DM as a time-dependent covariate. 

DM Variable Coef. HR 95 % CI P-value 

1
MD  

 
    

 DM 0.877 1.60 [1.460, 1.764] 1.0×10-22 

 AgeV1 0.105 1.11 [1.103, 1.120] 3.6×10-162 

 SexM 0.275 1.32 [1.159, 1.494] 2.2×10-5 

 IsDK 0.366 1.44 [1.219, 1.705] 1.9×10-5 

 LowEduc 0.051 1.05 [0.901, 1.230] 0.517 

 Smoke100 0.131 1.14 [1.005, 1.293] 0.041 

1
MD       

 DM 0.478 1.23 [1.147, 1.309] 1.8×10-9 

 AgeV1 0.121 1.13 [1.121, 1.136] 5.7×10-296 

 SexM 0.386 1.47 [1.309, 1.655] 9.6×10-11 

 IsDK 0.324 1.38 [1.184, 1.615] 4.2×10-5 

 LowEduc 0.036 1.04 [0.897, 1.199] 0.626 

 Smoke100 0.133 1.14 [1.016, 1.285] 0.026 

1
MD       

 DM 1.666 1.58 [1.442, 1.740] 7.4×10-22 

 AgeV1 0.108 1.11 [1.106, 1.123] 2.7×10-175 

 SexM 0.364 1.44 [1.269, 1.634] 1.7×10-8 

 IsDK 0.360 1.43 [1.211, 1.698] 2.9×10-5 

 LowEduc 0.055 1.06 [0.904, 1.236] 0.489 

 Smoke100 0.105 1.11 [0.978, 1.261] 0.106 

Notes: Variables:  AgeV1: Age at visit 1, SexM: Sex (1 – male, 0 – female), IsDK: Participant is from Denmark (1) or USA (0), 
LowEduc: Low education (1 – below high school, 0 – otherwise), Smoke100: Smoker (1 – smoked >100 cigarettes in lifetime, 0 
– otherwise). 

Hazard ratios (HR) of all-cause mortality risk for DM variables are per standard deviation: 1
MD : 0.539, 1

MD : 0.425, 1
MD : 0.276; 

HR for other variables are per a unit change. 
 

Table 6. Results of the joint models applied to age-dependent DM variants 1
MaD , 1

MaD , and 1
MaD . 

DM Variable  Longitudinal  Survival 

1
MaD  

 
 Coef. 95% CI P-value  Coef. HR 95 % CI P-value 

 DM  
   

 0.562 1.31 [1.155, 1.476] 2.1×10-5 

 AgeV1  0.00006 [-0.001, 0.001] 0.904  0.125 1.13 [1.125, 1.140] 9.1×10-300 

 SexM  0.003 [-0.024, 0.030] 0.821  0.364 1.44 [1.268, 1.634] 1.9×10-8 

 IsDK  0.045 [0.012, 0.079] 0.008  0.255 1.29 [1.089, 1.530] 0.003 

 LowEduc  0.030 [-0.018, 0.077] 0.221  0.066 1.07 [0.912, 1.251] 0.413 

 Smoke100  0.037 [0.010, 0.065] 0.007  0.129 1.14 [1.000, 1.292] 0.049 

 DrugDiab  0.100 [0.046, 0.154] 2.7×10-8   
   

 DrugHtn  0.011 [-0.017, 0.04] 0.427   
   

 DrugLipid  0.017 [-0.012, 0.046] 0.247   
   

 Fasting  -0.011 [-0.055, 0.033] 0.623   
   

 TimeV1  -0.003 [-0.006, -0.0003] 0.032   
   

1
MaD            

 DM      1.332 1.67 [1.419, 1.965] 6.6×10-10 
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 AgeV1  -0.0008 [-0.001, -0.0004] 0.040  0.127 1.14 [1.129, 1.143] 0 

 SexM  -0.0008 [-0.021, 0.020] 0.939  0.376 1.46 [1.290, 1.644] 1.3×10-9 

 IsDK  0.013 [-0.013, 0.038] 0.325  0.282 1.33 [1.129, 1.556] 5.7×10-4 

 LowEduc  0.041 [0.006, 0.077] 0.022  -0.001 .998 [0.856, 1.165] 0.986 

 Smoke100  0.024 [0.003, 0.045] 0.024  0.112 1.12 [0.989, 1.263] 0.074 

 DrugDiab  0.288 [0.247, 0.330] 8.1×10-43      

 DrugHtn  0.037 [0.016, 0.059] 7.3×10-4      

 DrugLipid  -0.033 [-0.055, -0.010] 0.004      

 Fasting  -0.029 [-0.063, 0.005] 0.098      

 TimeV1  -0.001 [-0.004, 0.001] 0.321      

1
MaD            

 DM      2.246 1.70 [1.445, 2.005] 1.9×10-10 

 AgeV1  -0.0002 [-0.0007, 0.0003] 0.420  0.128 1.14 [1.129, 1.145] 4.2×10-279 

 SexM  0.003 [-0.011, 0.016] 0.683  0.383 1.47 [1.286, 1.674] 1.2×10-8 

 IsDK  0.010 [-0.006, 0.027] 0.223  0.279 1.32 [1.109, 1.576] 0.002 

 LowEduc  0.030 [0.006, 0.054] 0.013  0.023 1.02 [0.866, 1.209] 0.791 

 Smoke100  0.023 [0.01, 0.037] 7.3×10-4  0.088 1.09 [0.956, 1.247] 0.196 

 DrugDiab  0.157 [0.130, 0.184] 1.0×10-29      

 DrugHtn  0.016 [0.002, 0.030] 0.024      

 DrugLipid  -0.012 [-0.026, 0.003] 0.114      

 Fasting  -0.019 [-0.042, 0.004] 0.103      

 TimeV1  -0.001 [-0.003, 0.001] 0.198      

Notes: Variables:  AgeV1: Age at visit 1, SexM: Sex (1 – male, 0 – female), IsDK: Participant is from Denmark (1) or USA (0), 
LowEduc: Low education (1 – below high school, 0 – otherwise), Smoke100: Smoker (1 – smoked >100 cigarettes in lifetime, 0 
– otherwise), DrugDiab: Takes (1) or does not take (0) anti-diabetic drugs, DrugHtn: Takes (1) or does not take (0) anti-
hypertensive drugs, DrugLipid: Takes (1) or does not take (0) lipid-lowering drugs, Fasting: Fasting (1 – >=8 hrs., 0 – 
otherwise), TimeV1: Follow-up period since visit 1. 

Hazard ratios (HR) of all-cause mortality risk for DM variables are per standard deviation: 1
MaD : 0.474, 1

MaD : 0.385, 1
MaD : 

0.237; HR for other variables are per a unit change. 
 

Table 7. Results of the Cox model with age-dependent DM as a time-dependent covariate. 

DM Variable Coef. HR 95 % CI P-value 

1
MaD  

 
    

 DM 0.284 1.14 [1.077, 1.216] 1.2×10-5 

 AgeV1 0.126 1.13 [1.127, 1.142] 0.4×10-309 

 SexM 0.375 1.46 [1.284, 1.650] 4.7×10-9 

 IsDK 0.274 1.32 [1.112, 1.556] 0.001 

 LowEduc 0.075 1.08 [0.922, 1.259] 0.348 

 Smoke100 0.131 1.14 [1.004, 1.293] 0.043 

1
MaD       

 DM 0.503 1.21 [1.148, 1.283] 8.7×10-12 

 AgeV1 0.128 1.14 [1.129, 1.143] 0 

 SexM 0.376 1.46 [1.296, 1.637] 3.1×10-10 

 IsDK 0.301 1.35 [1.158, 1.578] 1.4×10-4 

 LowEduc 0.024 1.02 [0.885, 1.185] 0.748 

 Smoke100 0.124 1.13 [1.006, 1.273] 0.04 
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1
MaD       

 DM 0.938 1.25 [1.173, 1.329] 3.1×10-12 

 AgeV1 0.128 1.14 [1.129, 1.144] 0.6×10-309 

 SexM 0.395 1.48 [1.307, 1.685] 1.1×10-9 

 IsDK 0.284 1.33 [1.123, 1.572] 9.2×10-4 

 LowEduc 0.067 1.07 [0.914, 1.252] 0.402 

 Smoke100 0.100 1.11 [0.973, 1.255] 0.124 

Notes: Variables:  AgeV1: Age at visit 1, SexM: Sex (1 – male, 0 – female), IsDK: Participant is from Denmark (1) or USA (0), 
LowEduc: Low education (1 – below high school, 0 – otherwise), Smoke100: Smoker (1 – smoked >100 cigarettes in lifetime, 0 

– otherwise). Hazard ratios (HR) of all-cause mortality risk for DM variables are per standard deviation: 1
MaD : 0.474, 1

MaD : 

0.385, 1
MaD : 0.237; HR for other variables are per a unit change. 

 

 
 

Figure 2. Results of genome-wide association study of random slopes of DM (DM-RS) for “age-dependent” DM variants ( 1
MaD , 

1
MaD , 1

MaD ; see Methods). 
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(Supplementary Figure 4) did not reach the genome-

wide significant level in some models with different 

numbers of PCs (e.g., p=8.8×10-8 for the model with 2 

PCs). In addition, we performed analyses of DM 

variants constructed using different sets of biomarkers  

selected according to other thresholds for correlation 

with age (absolute value of the correlation ≥ 0.1  

and ≥ 0.2) which did not produce any genome-wide 

significant signals. We also ran the model with  

time-interaction terms for all covariates (except age) 

in the fixed effects part of the longitudinal sub-model 

in JM. All interactions were non-significant except 

that for country (estimate: -0.008; p = 0.03). The 

GWAS results for MD -RS of 1
MaD   constructed from 

this model were similar to those shown in Figure 2 

(the top two SNPs remained genome-wide significant: 

p = 4.3×10-9 for rs12652543 and p = 7.4×10-9 for 

rs16903264). 

 

DISCUSSION 
 

Applications of joint models to composite measures 

of physiological dysregulation (DM) and genetic 

analyses of individual characteristics of DM, in the 

context of research on aging 

 

In this work, we constructed the statistical 

(Mahalanobis) distance measure (DM) using multiple 

biomarkers collected at two visits in the LLFS using 

the original approach from [17] and its “age-

dependent” modification that considers deviations of 

biomarker values from those typical of age peers rather 

than those of younger individuals. Analyses of 

longitudinal trajectories of such measures present 

methodological challenges (see Introduction) that 

require applying appropriate statistical methodology 

for correct inference. Here we applied one such 

method, joint models, for joint analyses of longitudinal 

observations of DM and follow-up data on mortality for 

LLFS participants. Applications confirmed that, as in 

other studies [17, 18, 20, 22, 23], the association of DM 

with mortality in LLFS is significant and effect sizes 

are substantial (with larger HRs for the “original” DM 

variants). Comparisons of joint models with the Cox 

regression model with DM considered as a time-

dependent covariate indicated that the values of the 

association parameter for DM in the hazard are 

underestimated in the Cox model, as expected [9, 10, 

15]. Even though both models reveal the same 

direction of the influence and the result remains highly 

significant so that one may argue that the 

interpretation of the results in this case is the same in 

these two approaches, application of an inappropriate 

approach can still have substantial consequences if, for 

example, one needs to build a predictive model based  

on these results. As shown in many studies [4], 

including our applications to LLFS [24] and other data 

[23], inclusion of composite measures improves the 

predictive accuracy of the models for mortality and 

other health-related outcomes. Therefore, such 

predictive models should be based on an appropriate 

statistical approach such as joint models, which 

effectively account for informative missingness 

(death), and thus are able to correct for that type  

of bias. 

 

Joint models is an active area of research in statistics 

with numerous extensions of the basic model (analyzed 

in this paper) suggested in the literature that cover a 

wide range of research applications such as latent 

classes, competing risks, multivariate models, non-

linear models, dynamic predictions, stochastic 

processes, etc. (see books [15, 16] and recent review 

papers and tutorials [25–33]). Such extended models 

can be applied to analyze dynamic characteristics of 

composite measures such as DM with various outcomes 

in more comprehensive ways.  

 

One particular approach for joint analyses of 

longitudinal and time-to-event outcomes, the stochastic 

process model, SPM (see non-technical introduction in 

[4] and technical reviews in [34, 35]), is especially 

relevant in the context of research on aging as the model 

has components that permit clear biological 

interpretation in terms of fundamental features of aging-

related changes in an organism. Our recent applications 

[22, 23] of SPM to DM confirmed its significant 

association with mortality and proxy measures of 

physiological robustness and resilience, and revealed 

significant relationships of physiological dysregulation 

with other hidden aging-related characteristics, such as 

decline in stress resistance and adaptive capacity which 

typically are not observed in the data and thus can be 

analyzed only indirectly through such an analytic 

approach. The availability of genetic data in 

longitudinal studies makes it possible to explore genetic 

determinants of biological aging of individuals based on 

the dynamics of such composite measures as DM. 

However, this is still a largely unexplored area. The 

“genetic” SPM [36–38] allows investigation of genetic 

determinants of such aging-related characteristics in 

applications to longitudinal observations of composite 

biomarkers (such as DM). In particular, recent 

developments in the SPM methodology [39] have 

considerably enhanced the computational speed (which 

was a critical barrier in implementing this approach to 

large-scale genetic analyses) and opened new avenues 

for applying this model to GWAS, with far reaching 

implications for significantly improving our 

understanding of the genetic underpinnings of complex 

aging-related traits.  
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Interpretation of genetic associations with DM: 

Biological and health effects of genes associated with 

the increase in physiological dysregulation with age 
 

Table 8 shows the five genes (TRIO, FNBP1, PLXNA4, 

CADM1, and UBE2E2) corresponding to the top SNPs 

found in the association analysis of the random slope of 

DM (for the “age-dependent” DM constructed from 

biomarkers that decline in late life), including the SNP 

rs12652543 that reached genome-wide level of 

significance (other three genes shown in Table 8 will be 

discussed later). Note that multiple SNPs in these five 

genes were associated with slopes of DM, many of 

which were in LD with each other (according to LDlink, 
https://ldlink.nci.nih.gov). We eliminated the redundant 

SNPs (r2>0.8), so the SNPs shown in Table 8 represent 

not only themselves but also LD blocks (r2>0.8) of other 

(not shown) SNPs associated with DM slopes.  We then 

performed in depth review of scientific literature and 

information provided by the NCBI Gene (https://www. 

ncbi.nlm.nih.gov/gene/), and found that four of the 

above five genes have been implemented in cancer, 

especially in its progression/prognosis. Three of these 

genes (TRIO, PLXNA4 [Plexin A4] and CADM1 

[TSLC1, SynCAM1]) are also involved in axon guidance 

and growth (Table 8, last column) [40–46]. 

 

For a broader functional analysis, we selected 36 genes 

corresponding to the top 100 SNPs (all with p-value < 

10-4) from GWAS of the DM-RS for the "age-

dependent" DM (Supplementary Table 2). We 

performed the pathway/process enrichment analyses for 

these 36 genes using several online  tools available 

through Enrichr (https://amp.pharm.mssm.edu/Enrichr/ 

[47]) and MetaScape (http://metascape.org/gp/ 

index.html#/main/step1) portals that exploit traditional 

ontologies and pathway sources, such as Gene Ontology 

[GO]  processes, KEGG, BioCarta and Reactome 

pathway collections, among other. We also run the 

enrichment analysis using a commercial MetaCore 

platform for the functional analyses, by Clarivate 

Analytics (https://clarivate.com/products/metacore/), 

which uses custom-made manually curated libraries of 

pathways and processes, along with open-access 

ontologies, such as the GO and other [48]. We used 

several tools rather than just one since we wanted to 

feature pathways/processes that consistently show up 

among the top results of the enrichment analyses using 

the different tools.   

 

We found that in most cases axonal guidance was 

among the top biological processes enriched for the 36 

genes associated with the rate of increase in 

physiological dysregulation with age (DM-RS) (see 

examples in Supplementary Figure 5). These results 

were further supported by the information provided by 

NCBI Gene (https://www.ncbi.nlm.nih.gov/gene/) about 

biological effects of these 36 genes, and relevant 

research publications (e.g., [49–51]).  

 

Then we used the Pathway Map Creator tool, a part of 

the MetaCore platform [48], to create a custom map 

showing only products of those genes (of the 36) that 

participate in functionally related biological processes 

(Supplementary Figure 6). This figure, again, pointed to 

a common involvement of TRIO, PLXNA4 (Plexin A4) 

and CADM1 (TSLC1) in axon guidance and growth, and 

in cell-cell adhesion, which plays a role in both the axon 

guidance and cancer, and also featured the products of 

three more genes among those 36 (ALCAM (CD166), 

CNTN6 and RTN4 (Reticulon 4)) as involved in the 

axon guidance and nerve growth. We added these three 

genes to Table 8, to show their biological effects in the 

context of the top significant genes. 

 

In summary, our analysis of the biological effects of the 

top 36 genes from GWAS of the DM-RS, based on (i) 

the up-to-date scientific literature and the NCBI Gene 

resource, (ii) commercial (MetaCore) and open online 

pathway/process enrichment tools, and (iii) a custom 

pathway map creator (a part of the MetaCore platform), 

pointed to a common biological process that shows up 

across all these analyses, namely axon guidance. 

Although axon growth is mainly observed during early 

development, the axon guidance genes can be functional 

in adults and impact the maintenance of neural circuits, 

synaptic function and plasticity, neuroinflammatory 

responses, and as result neurological disorders [44, 52, 

53]. Also, a recent study of the changes in human 

proteome across the lifespan revealed that proteins 

corresponding to genes involved in axon guidance and 

synaptic function are significantly over-represented 

among the clusters of proteins whose plasma levels 

show the strongest correlation with increasing age [54], 

thus supporting the role of respective biological 

processes in human aging.  

 

Our results thus indicate that the decline in axons ability 

to form and maintain complex neuroregulatory 

networks may potentially play an important role in the 

increase in physiological dysregulation during aging.  

 

In our recent paper we showed that the level of 

physiological dysregulation (estimated through DM) can 

be a useful aggregate indicator of the whole-body 

resilience and robustness [23]. In this context, our current 

results of the functional analysis of genetic associations 

with DM may also indicate that the declining ability to 

form and maintain complex neuroregulatory networks 

could contribute to the decline in physical resilience with 

age, which is the key universal feature of aging [55]. This 

potential connection deserves further investigation. 

https://ldlink.nci.nih.gov/
https://ldlink.nci.nih.gov/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
https://amp.pharm.mssm.edu/Enrichr/
http://metascape.org/gp/index.html#/main/step1
http://metascape.org/gp/index.html#/main/step1
https://clarivate.com/products/metacore/
https://www.ncbi.nlm.nih.gov/gene/
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Table 8. Top-ranked SNPs from GWAS of the random slope of DM, and respective genes (explanation in Discussion). 

SNP Chr Position A1 A2 MAF P-value Region Gene Gene/protein is involved in 

rs12652543 5 14177235 A G 0.18 7.2×10-9 intron TRIO 
cancer cells migration, invasion, 

prognosis, axon guidance, 

rs32573 5 14172108 G A 0.20 3.0×10-7 intron TRIO 
synapse function, neurite 

outgrowth, neurotransmission,  

rs151473 5 14123313 T C 0.16 1.6×10-6 20kb 5'  TRIO cognition, intellectual disability  

rs72757229 9 132653055 G A 0.04 8.9×10-7 intron FNBP1 high expression in cancer 

 rs79434268 7 131853832 A G 0.07 9.8×10-6 intron 

PLXNA4 

(Plexin 

A4) 

axon guidance, Parkinson's, AD, 

tau, cancer progression  

rs1892773 11 115122626 C A 0.21 9.6×10-6 intron 
CADM1 

(TSLC1) 

synaptic cell adhesion, axon 

guidance, cancer prognosis 

rs11713090 3 23570654 T G 0.20 3.4×10-6 intron UBE2E2 T2D  

rs1436351 3 104617973 G T 0.25 5.1×10-5 5' of  
ALCAM 

(CD166) 

cell adhesion, migration, cancer, 

axon growth, immunoglobulins  

rs13097329 3 1320815 A G 0.45 5.9×10-5 intron CNTN6 
cell adhesion, axon connections, 

intellectual disability 

rs1444261 2 55354466 C T 0.08 1.9×10-5 intron 

RTN4 

(Reticul

on4) 

nerve growth inhibitor, blocks 

regeneration  

Notes: SNP – rs-number; Chr – chromosome number; Position – SNP position on chromosome; A1 – minor allele; A2 – major 
allele; MAF –  minor allele frequency; P-value – p-value after GC; Region – SNP location in gene, or distance to closest gene; 
Gene – GENCODE gene name of closest gene; Gene/protein is involved in – cell process, biological function, or health 
disorder associated with this gene/gene product (based on the NCBI Gene resource [https://www.ncbi.nlm.nih.gov/gene/] 
and the up-to-date  literature). 
 

One should note that our results do not imply that aging 

can be explained by a single biological process, such as 

the decline in axons ability to maintain complex 

networks that may lead to the increase in physiological 

dysregulation, in turn resulting in the decline in 

resilience and the increase in mortality risk with age. 

Aging is heterogeneous, and the increase in 

physiological dysregulation per se is one of potentially 

many processes contributing to its heterogeneity. 

Respectively, genes associated with the decline in 

physiological dysregulation are not the only genes 

involved in aging; however, they may significantly 

contribute to the genetic heterogeneity of aging.  

 

Concluding remarks 
 

The “geroscience” hypothesis posits that interventions 

aimed at slowing biological aging could prevent or 

delay many different diseases simultaneously thus 

prolonging healthy lifespan and total lifespan [56]. 

Recent projections showed that the economic value of 

delayed aging (with a moderate increase in life 

expectancy by about 2.2 years, most of which would be 

spent in good health) is estimated to be $7.1 trillion 

over fifty years and, “in contrast, addressing major 

diseases such as heart disease and cancer separately 

would yield diminishing improvements in health and 

longevity by 2060 –- mainly due to competing risks” 

[57] providing additional arguments on the importance 

of identifying systemic factors that can underlie 

increased vulnerability to multiple diseases (rather than 

a specific pathology) in aging organisms. One of the 

critical barriers in developing interventions to slow or 

delay aging is that aging in humans is a gradual and 

slow process spanning years and decades which is not 

feasible to investigate in the timeframe of clinical trials. 

Thus, developing “proxy” measures quantifying the 

process of biological aging and investigation of the 

effects of different genetic and non-genetic factors on 

such measures is of paramount importance for moving 

research on aging forward.  

 

Different measures to quantify biological aging 

(including DM) have been recently suggested in the 

literature and, as the recent comparative study of such 

measures reveals [58], they may not measure the same 

aspects of the aging process thus calling for further 

evaluation and refinement of such measures in additional 

studies. This, in particular, requires rich data containing 

relevant information on human aging and appropriate 

statistical methodology that would help utilize the full 

potential of such data. Our previous results [23] using 

https://www.ncbi.nlm.nih.gov/gene/
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Framingham Heart Study and Cardiovascular Health 

Study data suggested that multiple deviations of 

biomarkers from their baseline physiological states 

(reflected in higher physiological dysregulation levels 

summarized by DM) could be promising indicators of 

declining robustness and resilience during aging, and 

may precede clinical manifestation of not just one but 

many diseases (thus supporting a “geroscience” concept), 

even though deviations can be small and not clearly 

abnormal for individual biomarkers. The current paper is, 

to the best of our knowledge, the first study which 

revealed the significant genetic underpinnings of such 

composite measures of physiological dysregulation (DM) 

in the framework of the statistical approach relevant for 

joint analyses of longitudinal and time-to-event outcomes 

(joint models).  

 

Results of GWAS of dynamic characteristics of DM 

constructed from the output of joint models yielded 

genes (Table 8) broadly involved in the axon guidance, 

synaptic function, neuroinflammatory responses, 

cognitive disorders and cancer, which points out to a 

potentially important role of the decline in neurons 

ability to maintain complex regulatory networks in the 

increase in physiological dysregulation and related 

mortality risk during aging.  

 

These encouraging findings call for further exploration 

of the genetic mechanisms of the change in 

physiological dysregulation with age, and its role in the 

heterogeneity of human aging. They also call for future 

replication in independent large cohorts that collect 

repeated measurements of biomarkers similar to those 

used in the construction of composite measures of 

physiological dysregulation in the LLFS data. 

 

MATERIALS AND METHODS 
 

Data 
 

The Long Life Family Study (LLFS) is a family-based, 

longitudinal study of healthy aging and longevity that 

enrolled more than 4,900 participants from 583 families 

selected for exceptional familial longevity [59]. 

Participants were recruited at three U.S. (Boston, New 

York, Pittsburgh) and one European (Denmark) field 

centers during 2006–2009 based on age, capacity to 

understand the study, and their Family Longevity 

Selection Score (FLoSS) [59]. This score was developed 

specifically to select the families for the LLFS and it takes 

into account both the exceptionality of family members’ 

survival and the presence of very old living family 

members. The FLoSS was later validated in an 

independent large-scale genealogically-based resource 

(the Utah Population Database [60]) as a selection 

criterion for family longevity studies [61]. Sibships were 

eligible for the LLFS if their FLoSS was greater than 7 

(this threshold was chosen because it was determined that 

such families are rare but are still detectable with 

sufficient frequency [59]) and they had at least one living 

sibling and at least one offspring willing to be enrolled in 

the study. Written informed consent was obtained from all 

subjects following protocols approved by the respective 

field center’s Institutional Review Boards. In this paper, 

we performed secondary analyses of LLFS data collected 

at all field centers. The data used in this study were 

provided by the LLFS Data Management and 

Coordinating Center (Washington University, St. Louis). 

The LLFS data are also available in the database of 

Genotypes and Phenotypes (https://www.ncbi. 

nlm.nih.gov/gap; Study Accession: phs000397.v1.p1). 

 

Socio-demographic variables, data on past medical 

history and current medical conditions, medications use, 

physical and cognitive functioning, and blood samples 

were collected via in-person visits and phone 

questionnaires for all subjects at the time of enrollment, 

as described elsewhere [62]. Participants are followed-

up annually to track their vital and health status. The 

analyses reported in this paper used the April, 20, 2018 

release of LLFS data with the latest recorded date of 

death on January, 24, 2018. Ages at death for those 

participants who died within the follow-up period were 

computed from available dates of birth and death. Ages 

at censoring for those who did not die within the follow-

up period were determined from dates of birth and last 

follow-up. The ages of the oldest participants were 

validated against external data [63]. Surviving 

participants underwent a second in-person evaluation in 

2015–2018. Blood assays were centrally processed at a 

Laboratory Core (University of Minnesota) and 

protocols were standardized, monitored and coordinated 

through the LLFS Data Management and Coordinating 

Center. Genotyping was performed by the Center for 

Inherited Disease Research using Illumina Human 

Omni 2.5 v1 BeadChip array (see details on genotyping 

and quality control (QC) procedures in [64]).  
 

We also reported disease-related characteristics of the 

analyzed sample that include the disease status at the 

baseline (prevalence) and new cases reported during the 

follow-up (incidence) for four major aging-related 

diseases available in the study: Alzheimer’s 

disease/dementia (AD), cancer, cardiovascular diseases 

(CVD), and diabetes. Information on diseases and health 

conditions was collected during the interviews either from 

the participants or proxies (if the participant was unable to 

respond). Using responses to questions about specific 

diseases (AD or dementia: Alzheimer’s Disease or 

Dementia; cancer: All cancer cites; CVD: Myocardial 

Infarction, Heart Attack, Coronary Angioplasty, Coronary 

Artery, Bypass Grafting, (Congestive) Heart Failure, 

https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
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Stroke, Cerebrovascular Accident, Transient Ischemic 

Attack, or Mini-Stroke; diabetes: Diabetes) from the 

baseline and the follow-up interviews, we computed the 

numbers of prevalent cases at the baseline and the 

numbers of new cases reported since the baseline. 

 

Construction of the measure of physiological 

dysregulation (DM) 

 

The measure of physiological dysregulation (DM) is a 

recently developed approach for constructing a 

composite measure from multiple biomarkers [17, 18, 

21]. It is a continuous measure which is essentially the 

statistical (Mahalanobis) distance [65] from 

“optimality” constructed for the joint distribution of 

multiple biomarkers and it uses the correlation structure 

of the biomarkers to measure how “aberrant each 

individual’s profile is with respect to the overall average 

(centroid) of the reference population” [19]. The 

“reference” centroid is assumed to represent the optimal 

physiological state. The “reference” population can be 

either a subsample of the same study population or it 

can come from some other study. For a set of 

biomarkers represented by a column vector x measured 

in an individual at age t, x(t), DM is defined as [17]:  

 

1( ) ( ( ) ) ( ( ) ),  T
MD t x t x S x t x  (1) 

 
where x  is a vector of means and S is the variance-

covariance matrix for the respective biomarkers 

calculated from the “reference” population, and 

superscript T denotes transposition. 
 

Information on biomarkers measured in the LLFS 

(number of measurements at each visit, correlations 

with age and pairwise correlations between biomarkers, 

p-values for testing the null hypothesis of a zero 

correlation, and number of observations used for 

computation of correlations) is given in Supplementary 

Table 3. For the purpose of this paper, we initially 

selected a set of biomarkers collected at both visits, for 

a total of 30 out of 47 biomarkers available in the study 

(see Supplementary Table 3). We then further reduced 

the list of biomarkers including only those moderately 

correlated with age (absolute value of the correlation ≥ 

0.15; see description of sensitivity analyses for 

different correlation thresholds in Results) to consider 

for the computations of the statistical distance DM, 

following the ideas from previous work [17, 18]. 

Further, for the groups of related biomarkers  

(such as systolic/diastolic/pulse pressure; forced 

expiratory volume/forced vital capacity; red blood cell 

count/hematocrit/hemoglobin; total/low-density lipo-

protein cholesterol; and white blood cell count/ 

absolute neutrophil count), we randomly selected one 

biomarker for inclusion in DM. We constructed the DM 

variants from the resulting set of biomarkers, separating 

those negatively and positively correlated with age, i.e., 

declining versus increasing at old ages (~65+) in most 

people [66]. Resulting variants were denoted 1
MD   and 

1
MD  , respectively. 1

MD   includes the following 

biomarkers: diastolic blood pressure, forced vital 

capacity, grip strength, hematocrit, and total cholesterol, 

and 1
MD   includes: absolute monocyte count, creatinine, 

glycosylated hemoglobin, mean cor-puscular volume, 

pulse pressure, red cell distribution width, and white 

blood cell count. 1
MD  is computed using the combined 

list of biomarkers from 1
MD   and 1

MD  .  

 

We first constructed the DM variants ( 1
MD  , 1

MD  , 1
MD ) 

using the conventional approach suggested in [17]. 

Specifically, the observed values of each biomarker were 

transformed using the Box-Cox transformation and 

standardized so that the transformed biomarkers were all 

on the same scale (with a zero mean and a unit variance). 

These standardized and transformed values were used in 

calculations of DM as in Eq. 1. We used individuals aged 

<60 years at the LLFS visit 1 as a “reference 

population.” This cutoff gave a reasonable number of 

participants in the reference population: 1,407 (834 

females, 573 males), 1,437 (847, 590), 1,389 (821, 568), 

for 1
MD  , 1

MD  , 1
MD , respectively. Computations of the 

means and variance-covariance matrix in the “reference” 

population were performed separately for females and 

males using the observed values of the biomarkers 

included in the definition of the respective DM. Note that 

in the LLFS there are at most two observations of 

biomarkers per individual. Therefore, we did not impute 

missing values of biomarkers as we did in our previous 

studies [22, 23] in applications to other datasets with 

longer series of measurements. Rather, the appropriate 

approach to handle missing not at random (MNAR) data 

is used here to jointly model the dynamics of DM and the 

risk of death (see section Specification of joint models). 

For  1
MD  , we computed 6,244 values (4,056 at Visit 1, 

2,188 at Visit 2) in 4,365 individuals. For 1
MD  , we 

calculated 6,557 (4,344, 2,213) values in 4,598 

participants, and for 1
MD , the observations of 5,921 

(4,010, 1,911) values in 4,290 persons were available. 

The resulting DM variables were also transformed using 

the Box-Cox transformation. We performed sensitivity 

analyses (for the joint models analyses and genetic 

associations, see below) using the DM in the original and 

the transformed scales which showed similar results so 

that only those for the Box-Cox transformed values are 

reported in the paper. 
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Next, we constructed the “age-dependent” DM variants 

(denoted, accordingly, 1
MaD  , 1

MaD  , 1
MaD ) using a 

conceptually different approach in constructing the 

measure of physiological dysregulation. In the original 

specification [17], it was assumed that there is a fixed 

“normal” physiological state represented by the 

reference population (typically, a relatively younger 

sample) so that the DM measures deviations from that 

state at respective ages. Here, in the definition of the 

“age-dependent” DM we considered deviations of the 

biomarker values from those typical of age peers rather 

than those of younger individuals. That is, the means 

and variance-covariance matrix in Eq. 1 were defined in 

the respective age groups. Ideally, such values should 

be calculated for each age, however, due to small sizes 

of one-year age groups in our data, we computed these 

quantities for five-year age groups <50, 50-54, …, 90-

94, 95+. For example, for a female aged 83 years at visit 

1, the means and variance-covariance matrix were 

calculated based on a sample of females aged 80-84 

years at visit 1 from which the DM value at visit 1 was 

computed using the observations of biomarkers at visit 

1 according to Eq. 1. Altogether, we computed 6,244 

values (4,056 at Visit 1, 2,188 at Visit 2) for 4,365 

individuals for 1
MaD  , 6,557 (4,344, 2,213) values for 

4,598 participants for 1
MaD  , and 5,921 (4,010, 1,911) 

values for 4,290 persons for 1
MaD . 

 

Specification of joint models  
 

We used joint models [15, 16] as a tool to jointly 

estimate the longitudinal (DM) and time-to-event 

(mortality) outcomes (see Introduction). The R-package 

JM [67] version 1.4-8 was used to estimate the 

parameters of joint models. We applied the standard 

version of joint models as described below using the 

notations from [67]. The survival part of joint models 

quantifies the association between the longitudinal 

outcome and the risk of an event: 

 

0( | ( ), ) ( )exp{ ( )},  T
i i i i ih t M t w h t w m t  (2) 

 

where ( | )ih t   is the hazard rate (mortality rate in our 

applications) for i-th individual at time point t,  

( ) { ( ),0 }i iM t m u u t    denotes the history of the 

“true” (i.e., unobserved) longitudinal outcome ( ( )im  , 

see below) up to t, 0 ( )h  is the baseline hazard, iw  is a 

vector of baseline covariates,   is a corresponding 

vector of regression coefficients, and   is the 

parameter quantifying the effect of the longitudinal 

outcome on the risk of an event (this is usually the main 

parameter of interest in applications of joint models). A 

linear mixed effects model describes the dynamics of 

the longitudinal outcome (DM in our case):  

 

( ) ( ) ( ) ( ) ( ) ( ),      T T
i i i i i i iy t m t t x t z t b t  (3) 

 

where ( )iy t  is the observed longitudinal process (with 

available observations { ( ), 1 }ij i ij iy y t j n     for i-th 

individual),   is a vector of fixed effects parameters, 

ib  is a vector of random (normally distributed) effects, 

( )ix t  and ( )iz t  are corresponding design vectors for 

fixed and random effects, and ( )i t  denotes a normally 

distributed error term (assumed to be independent of ib ) 

with zero mean and variance 2 . The quantity 

( ) ( ) ( )T T
i i i im t x t z t b   (that is, the observed value 

minus the error term) represents the “true” value of the 

longitudinal outcome which is included in the formula 

for the hazard rate (Eq. 2). This distinguishes joint 

models from the Cox model with time-dependent 

covariates which includes the observed values of the 

longitudinal process in the hazard rate. Ignoring 

measurement errors (or natural biological variation) in 

such variables in the latter model can result in 

underestimation of the strength of association between 

the hazard and the underlying longitudinal process [9, 

10] which can be correctly inferred from joint models in 

such cases.  

 

In our applications, the longitudinal trajectories of DM 

(the longitudinal sub-model in joint models) were 

specified as a linear mixed effects model with linear 

(random intercept and random slope) random effects 

and time since visit 1 as a time variable (as 

implemented in the R-package JM). The list of 

covariates in the fixed effects part included: sex (1 – 

male, 0 – female), age at visit 1, country (1 – Denmark, 

0 – USA), education (1 – below high school, 0 – 

otherwise), smoking (smoked >100 cigarettes in 

lifetime: yes [1]/no [0]), medication use (anti-diabetic, 

lipid-lowering, anti-hypertensive) (1 – used, 0 – did not 

use), and fasting (1 –  ≥8 hours, 0 – otherwise). The 

groups of medications indicated above were constructed 

by the LLFS investigators in a separate study from 

original medications records using the corresponding 

Anatomical Therapeutic Chemical Classification 

System codes. We note that this list of medications does 

not include all possible groups of medications that 

might be relevant for this analysis (e.g., osteoporosis 

related medications). The time-to-event outcome (the 

survival sub-model in joint models) was modeled as the 

standard relative risk form [68] with the “true” or 

unobserved value of DM (i.e., the estimate from the 

longitudinal sub-model [15]) included in the hazard (the 

“value” parameterization in the R-package JM, as in Eq. 
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2) along with the baseline covariates (the same list as 

above except medication use and fasting which are 

time-dependent covariates). The baseline hazard was 

represented as a piecewise constant function and the 

pseudo-adaptive Gauss-Hermite quadrature rule [69] 

was chosen to approximate the required integrals in the 

estimation algorithm (the "piecewise-PH-aGH" method 

in the R-package JM). We kept the default values for 

the number of internal knots (6 knots) in the baseline 

hazard and for the number of Gauss-Hermite quadrature 

points (3 points) used to approximate the integrals over 

the random effects. In some cases, the estimation 

algorithm in the R-package JM did not converge for the 

default values. In such situations, we varied the 

numbers (10 knots and/or 6 points) to achieve 

convergence. Sensitivity analyses confirmed that, in the 

cases of convergence, using models with different 

values for knots and points had little effect on the 

estimates of the parameter of interest (association 

parameter for DM in the survival sub-model). See also 

sensitivity analyses with other specifications of JM 

described in Results.  

 

Genome-wide association study (GWAS) of DM-

related traits 

 

We performed GWAS of two DM-related traits 

constructed using the output of the joint models 

estimation procedure for the respective DM variants 

specified above: random intercept (DM-RI) and random 

slope (DM-RS). These characteristics were computed for 

each study participant and define how the baseline value 

of DM (DM-RI) and the age dynamics of DM (DM-RS) in 

the particular individual differed from the average 

values in the study sample (adjusted for the respective 

covariates, as estimated by the fixed effects part of the 

longitudinal sub-model in joint models). 

 

The QC procedure was performed according to the 

protocol described in [70] before running the 

association analyses. The original data contained 4,693 

genotyped individuals (2,581 females, 2,112 males) and 

2,225,478 SNPs. The sample QC check removed 

individuals with call rate below 95% and/or 

heterozygosity rate beyond ± 3 standard deviations (SD) 

from the mean as well as individuals of divergent 

ancestry (those for whom the first two principal 

components (PC) scores were beyond 8 SD from the 

respective mean scores for the HapMap Phase III 

European reference populations). The SNP’s QC check 

removed duplicated SNPs, variants with missing allele 

code information, indels, SNPs with call rate below 

95%, minor allele frequency (MAF) below 1%, and 

those with a significant deviation from Hardy-Weinberg 

equilibrium (HWE) with p-value < 10-5. The resulting 

sample after QC contained 4,608 individuals of 

European ancestry (2,536 females, 2,072 males) and 

1,464,300 autosomal SNPs which passed the QC 

procedure.  
 

The R-package GENESIS (Bioconductor) [71] was used 

for the association testing and for computation of PCs 

using the PC-AiR method [72] to take into account the 

relatedness among individuals in the LLFS sample. The 

KING-robust kinship coefficient estimator [73] was 

used as the measure of ancestry divergence to identify a 

mutually unrelated and ancestry representative subset of 

individuals, as implemented in the PC-AiR algorithm. 

The mixed model was used for genetic association 

testing which included 20 PC-AiR PCs as fixed effects 

covariates to adjust for population stratification in the 

baseline scenario and a genetic relationship matrix 

(GRM) to account for genetic similarity among sample 

individuals. The kinship coefficient estimates from PC-

Relate [74] (implemented in GENESIS) were used to 

construct the GRM. Genomic control (GC) [75, 76] was 

also applied as an additional tool to control for 

population stratification. In all analyses the GC lambdas 

were close to 1 indicating that the PCs were sufficient 

for this purpose.  
 

We also performed sensitivity analyses to test the 

sensitivity of our results to various aspects of the 

analytic procedures. This included running GWAS for 

DM variants computed from biomarkers selected using 

different thresholds for correlation with age, GWAS for 

separate biomarkers constituting the specific DM 

variant, and analyses with different number of PCs, as 

described in Results.  
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Supplementary Figure 1. Results of genome-wide association study of random intercepts of DM (DM-RI) for “age-dependent” 

DM variants ( 1
MaD , 1

MaD , 1
MaD ; see Materials and Methods). 
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Supplementary Figure 2. Results of genome-wide association study of random slopes of DM (DM-RS) for “original” DM 

variants ( 1
MD , 1

MD , 1
MD ; see Materials and Methods). 

  



 

www.aging-us.com  5944 AGING 

 
 

Supplementary Figure 3. Results of genome-wide association study of random intercepts of DM (DM-RI) for “original” DM 

variants ( 1
MD , 1

MD , 1
MD ; see Materials and Methods). 
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Supplementary Figure 4. Results of genome-wide association study of random slopes of DM (DM-RS) constructed for separate 

biomarkers constituting 1
MaD  (see Materials and Methods). Notes: DBP: diastolic blood pressure; FVC: forced vital capacity; Grip 

Mean: mean grip strength; HC: hematocrit; TC: total cholesterol. For HC, the original scale of the biomarker was used due to non-
convergence of joint model for the Box-Cox transformed scale. 
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Supplementary Figure 5. Examples of pathway/process enrichment for the 36 genes corresponding to the top 100 SNPs from 
the GWAS of the DM-RS for the "age-dependent" DM, using different enrichment tools. Left top: Enrichment with Process 
Networks, using MetaCore [1]. N.B.: The content of these cellular/molecular processes is manually annotated and defined by Clarivate 
Analytics scientists (https://clarivate.com/products/metacore/). Right top: Enrichment with the Gene Ontology (GO) Biological Processes, 
using Enrichr (https://amp.pharm.mssm.edu/Enrichr/; [2]). Bottom:  Enrichment with the Gene Ontology (GO) Processes, using MetaScape 
(http://metascape.org/gp/index.html#/main/step1).  

 

 
 

Supplementary Figure 6. Involvement of products of the genes associated with slopes of DM in functionally related 
biological processes (explanation in Discussion). 

https://clarivate.com/products/metacore/
https://amp.pharm.mssm.edu/Enrichr/
http://metascape.org/gp/index.html%23/main/step1
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Supplementary Tables 
 

Supplementary Table 1. Top-ranked variants found in genome-wide association study of random slopes of DM 
constructed for grip strength (see Supplementary Figure 4). 

SNP Chr Position A1 A2 MAF P-val (GC) Closest Gene Gene Region 

rs10231286 7 85967146 C T 0.14 4.6×10-8 GRM3 Intergenic/5’ of GRM3 

rs2037877 7 86066709 C T 0.14 5.9×10-8 GRM3 Intergenic/5’ of GRM3 

rs2373213 7 85990327 G A 0.14 9.9×10-8 GRM3 Intergenic/5’ of GRM3 

rs2423401 20 9649074 T C 0.12 1.3×10-7 PAK7 Intron 

rs17160578 7 85672109 A G 0.14 5.7×10-7 GRM3 Intergenic/5’ of GRM3 

rs9969120 7 85990367 G A 0.32 1.3×10-6 GRM3  Intergenic/5’ of GRM3 

rs117882408 18 28482872 C T 0.02 2.6×10-6 DSC3 Intergenic/3’ of DSC3 

rs10255211 7 86124483 C T 0.39 3.1×10-6 GRM3 Intergenic/5’ of GRM3 

rs2708580 7 85890669 G A 0.15 3.3×10-6 GRM3             Intergenic/5’ of GRM3 

rs79576017 7 85744649 A G 0.15 3.5×10-6 GRM3 Intergenic/5’ of GRM3 

rs73382292 7 85730104 C T 0.15 4.3×10-6 GRM3 Intergenic/5’ of GRM3 

rs76915606 5 68769560 G A 0.10 4.6×10-6 OCLN Intergenic/5’ of OCLN 

rs10030044 4 157011923 G T 0.38 5.3×10-6 CTSO Intergenic/5’ of CTSO 

rs2708582 7 85893683 C T 0.15 7.4×10-6 GRM3 Intergenic/5’ of GRM3 

rs10769988 11 9071175 T C 0.25 7.4×10-6 SCUBE2 Intron 

rs4417922 4 157006346 C T 0.32 7.8×10-6 CTSO Intergenic/5’ of CTSO 

rs11722256 4 156994724 T G 0.32 8.0×10-6 CTSO Intergenic/5’ of CTSO 

rs12668989 7 85662201 C T 0.15 8.9×10-6 GRM3 Intergenic/5’ of GRM3 

rs11201991 10 88117122 C T 0.30 1.0×10-5 GRID1 Intron 

rs7904985 10 88116479 A G 0.30 1.2×10-5 GRID1 Intron 

 

Supplementary Table 2. The list of the thirty-six genes (in alphabetical order) corresponding to the top 100 SNPs 
found in GWAS of the DM-RS. 

7SK, AGAP1, ALCAM, ANO4, BMP2K, C2orf48, CADM1, CDC42BPA, CDH4, CDK15,  CDK6, CNTN6, EIF3H, 

ELMOD1, FNBP1, GPC5, GRIK2, LEUTX, LMX1A, MACROD2, NBEAL2, PBX1, PCDH9, PLXNA4, RNF150, RSPO4, 

RTN4, SGK1, ST6GAL1, STXBP6, SYNE1, TCERG1L, THSD7B, TRIO, UBE2E2, UTP23.  

 

Please browse Full Text version to see the data of Supplementary Table 3. 

Supplementary Table 3. Information on biomarkers measured in the LLFS (number of measurements at each visit, 
correlations with age and pairwise correlations between biomarkers, p-values for testing the null hypothesis of a 
zero correlation, and number of observations used for computation of correlations). 
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