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INTRODUCTION 
 

Myotonic dystrophy is the most common type of 

muscular dystrophy in adults and is inherited in an 

autosomal dominant manner [1]. There are two 

clinically similar but genetically distinct types: DM 

type 1 (DM1, also known as Steinert’s disease; MIM 

#160900), caused by an unstable expansion of a CTG 

trinucleotide repeat in the noncoding region of the  

 

dystrophia myotonic-protein kinase gene (DMPK) [2], 

and DM type 2 (DM2; MIM #602668), caused by a 

tetra-nucleotide repeat CCTG expansion in the zinc 

finger 9 (ZNF9) gene [3]. CTG and CCTG expansions 

lead to formation of transcript aggregates in the 

nucleus, which interfere with proteins that play an 

important role in RNA metabolism, including 

members of the muscleblind (MBNL) and CUGBP 

RNA-Binding Protein Elav-Like Family Member 1 
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ABSTRACT 
 

Myotonic dystrophy type 1 (DM1; MIM #160900) is an autosomal dominant disorder, clinically characterized by 
progressive muscular weakness and multisystem degeneration. The broad phenotypes observed in patients 
with DM1 resemble the appearance of a multisystem accelerated aging process. However, the molecular 
mechanisms underlying these phenotypes remain largely unknown. In this study, we characterized the impact 
of metabolism and mitochondria on fibroblasts and peripheral blood mononuclear cells (PBMCs) derived from 
patients with DM1 and healthy individuals. Our results revealed a decrease in oxidative phosphorylation 
system (OXPHOS) activity, oxygen consumption rate (OCR), ATP production, energy metabolism, and 
mitochondrial dynamics in DM1 fibroblasts, as well as increased accumulation of reactive oxygen species (ROS). 
PBMCs of DM1 patients also displayed reduced mitochondrial dynamics and energy metabolism. Moreover, 
treatment with metformin reversed the metabolic and mitochondrial defects as well as additional accelerated 
aging phenotypes, such as impaired proliferation, in DM1-derived fibroblasts. Our results identify impaired cell 
metabolism and mitochondrial dysfunction as important drivers of DM1 pathophysiology and, therefore, reveal 
the efficacy of metformin treatment in a pre-clinical setting. 
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(CELF1) families of RNA-binding proteins [4]. Both 

diseases are characterized by missplicing of several 

downstream effector genes with negative effects on 

multiple tissues, thus contributing to the multisystem 

pathogenesis of DM [5]. DM1 is more common than 

DM2 and represents a more severe phenotype. In 

DM1, unaffected individuals carry less than 50 triplet 

repeats, whereas expansions ranging between 50 and 

4000 CTG repeats have been found in affected 

individuals [6].  

 

Patients with DM1 present a multisystem degenerative 

process that includes progressive muscular weakness 

and atrophy, myotonia, cardiomyopathy, insulin-

resistance, cataracts, increased cancer incidence, 

neurodegeneration, metabolic syndrome, or premature 

death. This multisystem degenerative process strongly 

resembles an accelerated aging process [7, 8]. From a 

cellular point of view, different pathogenic mechanisms, 

such as alteration of autophagy, increased senescence, 

telomere shortening, or genomic instability, all of them 

hallmarks of aging [9], have been proposed to explain 

how the expansion in the CTG repeat of affected 

patients leads to the DM multisystem phenotypes [7]. 

However, detailed experimental validation of these 

mechanisms remains incomplete and has not yet been 

clarified. 

 

It is well known the existence of several metabolic 

alterations, which accumulate over time, that affect 

longevity, aging and neurodegeneration [10, 11]. As a 

consequence, deregulated nutrient sensing and 

mitochondrial dysfunction have been proposed as 

hallmarks of aging [9] and metabolism is a pillar of 

aging [12]. In DM1, patients present several metabolic 

defects such as hyperinsulinemia, glucose resistance, 

and, in some cases, diabetes mellitus [7]. Moreover, 

muscle samples in vitro and blood samples in vivo 

show reduced Coenzyme Q10 (CoQ10) levels, a 

component of the electron transport chain that 

participates in aerobic cellular respiration [13, 14], 

which is indicative of mitochondrial dysfunction. 

However, the role of metabolism and mitochondria in 

the pathogenesis of DM1 has not been addressed in 

detail. In this work, we studied their contribution using 

human primary fibroblasts and peripheral blood 

mononuclear cells (PBMCs) derived from healthy 

donors and patients with DM1 as models. Our results 

indicated that DM1 fibroblasts showed impaired 

metabolism and mitochondrial dysfunction resulting in 

lower levels of ATP production and increased reactive 

oxygen species (ROS) production. PBMCs from DM1 

patients also showed impaired mitochondrial dynamics 

and energy homeostasis. Interestingly, treatment with 

metformin resulted in the restoration of these 

phenotypes. 

RESULTS 
 

DM1-derived fibroblasts present impaired 

metabolism 
 

To investigate the role of cellular metabolism in the 

pathogenesis of DM1, we first measured the oxygen 

consumption rate (OCR) in the fibroblasts of patients 

with DM1 and healthy donors. DM1 fibroblasts showed 

a 40% and 50% reduction in basal respiration and 

maximal respiration, respectively, compared to controls, 

which leads to a 50% reduction in ATP production  

via the Mitochondrial Oxidative Phosphorylation 

System (OXPHOS) activity (Figure 1A, 1B). Next, we 

hypothesized that the reduction in OXPHOS activity 

could be responsible for a reduction in the glycolysis 

pathway. To examine this hypothesis, we measured 

extracellular acidification (ECAR) as a measure of 

glycolysis [15]. We did not find any alteration in the 

glycolysis pathway (Supplementary Figure 1A, 1B), 

suggesting that all glucose taken by DM1 fibroblasts 

was coupled to pyruvate production. 

 

The addition of carbonyl cyanide-4 (trifluoromethoxy) 

phenylhydrazone (FCCP) simulates an exacerbated 

physiological energy demand by stimulating the 

respiratory chain to operate at maximum capacity. DM1 

cells were not able to respond to this stress as efficiently 

as controls, farther indicating impaired maximal 

respiration (Figure 1A, 1B). However, we did not find 

any difference in the proton-leak nor the coupling 

efficiency (Figure 1A–1C). Therefore, it seems that all 

the protons generated are coupled to ATP production. 

Moreover, DM1 fibroblasts have a more quiescent 

metabolism compared to healthy controls. In addition, 

after simulating a stress, DM1 fibroblasts could not 

switch to a more energetic metabolism (Figure 1D, 1E), 

resulting in a lower metabolic potential. Consistent with 

these results, DM1 fibroblasts presented lower AKT 

activation (measured as phosphorylated AKT) (Figure 

1F), which is the central mediator of the PI3K pathway 

that serves a key role in multiple cellular processes, 

including glucose metabolism [16]. In summary, DM1-

derived fibroblasts present decreased cellular 

metabolism. 

 

Correlation between impaired metabolism and 

markers of disease pathophysiology 
 

Next, we attempted to associate the impaired 

metabolism of DM1-derived fibroblasts with several 

pathophysiological characteristics of the disease. First, 

we found that the decrease in AKT phosphorylation in 

DM1-derived fibroblasts correlated with lower 

expression of DMPK and MBNL1, both at protein 
(Figure 2A) and mRNA (Figure 2B) levels. Moreover, 



 

www.aging-us.com 6262 AGING 

we examined whether there was a correlation between 

the severity of the metabolic alterations and both the 

number of CTG expansions and the Muscular 

Impairment Rating Scale (MIRS) score. We did not 

detect significant differences in basal and maximal 

respiration or in ATP production when fibroblasts were 

divided into those with less or more than 500 CTG 

repeats and 3 MIRS score (Figure 2C, 2D, 

Supplementary Figure 2). Moreover, there were no 

marked differences between cells obtained from DM1 

patients of different ages, although the cells from a 71 

year-old patient showed slightly higher impairment than 

others (Table 1, Supplementary Figure 3). Overall, 

metabolic dysfunction in fibroblasts derived from 

patients with DM1 seems not to be significantly altered 

by the repeat expansion of these patients. 

DM1-derived fibroblasts display mitochondrial 

dysfunction but no changes in mitochondrial 

biogenesis 
 

The results presented above indicate that the 

mitochondria of patients with DM1 could function 

normally, but with a reduced OXPHOS activity. We 

further investigated this by examining the biogenesis of 

mitochondria [17]. First, we evaluated the levels of two 

markers of mitochondrial content and biogenesis such 

as TOMM20 and PGC1-α. Immunofluorescence 

showed that expression of these two markers was not 

markedly altered in cells from DM1 compared to 

healthy controls (Figure 3A, 3B). In addition, flow 

cytometry was used to analyze another marker of 

mitochondrial content, MitoTracker, obtaining similar 

 

 
 

Figure 1. DM1-derived fibroblasts present impaired metabolism. (A) Kinetic normalized OCR response in DM1 and control fibroblasts 
in basal conditions and after consecutive addition of Oligomycin 1.5 µM, FCCP 1.5 μM and Antimycin-A/Rotenone 1.5 μM. A representative 
experiment out of 3 is shown with 3 independent control cultures and 2 DM1. (B, C) Quantification of mitochondrial respiratory functions and 
coupling efficiency in DM1 (n=7) and control fibroblasts (n=3). (D) Representative energy map and (E) Quantification of metabolic potential of 
DM1 and control fibroblasts. Stressed indicates the values of OCR and ECAR after the injection of oligomycin and FCCP simultaneously. 
Results are obtained from controls (n=3) and DM1 (n=5) cultures. (F) Representative immunoblots of phospho-AKT, AKT, DMPK and MBNL1 in 
DM1-derived fibroblasts and healthy controls (n=3). 
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results. Indeed, no differences were detected in the 

mitochondrial content in DM1 and control cells (Figure 

3C). Moreover, the mitochondrial membrane potential 

remained elevated in DM1 cells (Figure 3D). However, 

the expression of the mitochondrial transcription factor 

A (TFAM) gene that participates in the regulation of the 

mitochondrial genome [18], was reduced by 50% in 

DM1 fibroblasts (Figure 3E). These results suggest that 

the impaired cellular bioenergetics were not related to 

substantial alterations in mitochondrial biogenesis and 

content. 

 

Mitochondria are organelles with high dynamic 

plasticity to rapidly adapt in response to stress 

situations. Mitochondrial dynamic is regulated by a 

machinery of pro-fusion and -fission proteins, which 

constitutes an important part of the mitochondria quality 

control as it facilitates the elimination of damaged 

mitochondria by mitochondrial selective autophagy 

(mitophagy) [19]. We studied the expression of OPA1, 

MFN1 and MFN2 fusion related genes, DRP1 fission 

related gene, and PARKIN, which is involved in 

mitophagy [20]. Interestingly, the levels of OPA1, 

MFN2, DRP1, and PARKIN were decreased in DM1-

derived fibroblasts (Figure 3F). Overall, DM1-derived 

fibroblasts show mitochondrial dysfunction. 

 

DM1-derived blood samples show mitochondria 

dysfunction 

 

Next, we investigated whether these results could be 

translated to the clinical setting. Therefore, we 

measured the expression levels of several of the 

aforementioned genes in PBMCs from a cohort of 

patients with DM1 established in Guipuzcoa (Basque 

Country, Spain) [21]. Interestingly, we found lower 

expression levels of SIRT1, a key metabolic sensor that 

modulates a large variety of cellular processes such as 

energy metabolism stress response and aging [22], 

OPA1 and TFAM (Figure 4), further supporting

 

 
 

Figure 2. Correlation between impaired metabolism and markers of disease pathophysiology. (A) Quantification of protein levels 
shown in Figure 1F (n=4). (B) mRNA levels of DMPK in DM1 fibroblasts (n=7) and controls (n=3). (C) Basal respiration levels in controls (n=3) 
and DM1 fibroblasts stratified by CTG expansion in <500 (n=4) and >500 (n=3) (left) and MIRS scale in <3 (n=2) and >3 n=5 (right). (D) ATP 
production levels using the same stratification. 
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Table 1. Characteristics of human primary fibroblasts.  

Fibroblasts  Status Gender 
Age biopsy 

(years) 
MIRS 

CTG (n) in 

blood 

Age diagnosis 

(years) 

C1 Control M 49       

C2 Control F 48       

C3 Control Unknown 53       

DM1-1 DM1 patient M 71 3 167 53 

DM1-2 DM1 patient F 45 2 333 41 

DM1-3 DM1 patient F 59 3 333 26 

DM1-4 DM1 patient F 44 2 833 27 

DM1-5 DM1 patient M 56 3 1333 20 

DM1-6 DM1 patient F 34 4 1650 12 

DM1-7 DM1 patient M 50 5 233 20 

MIRS: Muscle impairment rating scale; M: male; F: female. 
 

the relevance of the results obtained in cell culture and 

highlighting the importance of metabolism and 

mitochondria for the disease. 

 

DM1-derived fibroblasts present accumulation of 

ROS and p38MAPK activation 
 

Production of ROS is enhanced in several pathological 

conditions in which the respiratory chain is impaired 

[23]. Therefore, we measured ROS production and 

found a 50% increase in total ROS in DM1 cells 

compared to controls (Figure 5A). Similar results were 

obtained when specific ROS produced by the 

mitochondria were measured in DM1 fibroblasts and 

compared to controls (Figure 5B). Further, the 

expression of glutathione peroxidase 1 (GPX1) 

antioxidant gene was decreased by 50% in DM1 cells 

(Figure 5C). In agreement with metabolic studies, we 

 

 
 

Figure 3. DM1-derived fibroblasts have no changes in mitochondria biogenesis. (A, B) Representative images of 

immunofluorescence of TOMM20, and PGC1-α in DM1 and control fibroblasts (n=3). (C) Medium fluorescence intensity of MitoTracker Red 
FM in control (n=3) and DM1 cells (n=5) and (D) of Rhodamine 123 in DM1 and control fibroblasts (n=3). (E) mRNA levels of TFAM 
transcription factor (n=3). (F) mRNA levels of OPA1, MFN1, MFN2, DRP1 and PARKIN in DM1 and control fibroblasts (n≥2). 



 

www.aging-us.com  6265 AGING 

did not observe differences in ROS accumulation when 

fibroblasts were divided based on the number of CTG 

repeats and MIRS score (Figure 5D, 5E). 

 

p38MAPK is a stress-activated protein kinase, which 

accumulates with aging and it is activated by the 

presence of ROS [24, 25]. Consequently, we measured 

the total levels of p38MAPK and its phosphorylated 

form (P-p38MAPK) and found an over 2-fold increase 

in the levels of P-p38MAPK in DM1-derived 

fibroblasts compared to control cells (Figure 5F, 5G). In 

summary, DM1 fibroblasts display increased ROS 

production, which is associated with an enhanced 

activation of p38MAPK.  

 

Metformin restores metabolism and mitochondria 

activity  
 

Metformin is a first-line anti-diabetic agent that 

functions mainly through the suppression of glucose 

production and alleviation of insulin resistance and has 

recently been shown to improve mitochondrial 

respiratory activity [26, 27]. We examined whether 

metformin could improve the impaired OXPHOS 

activity in patients with DM1. To test this idea, we 

treated DM1 and control fibroblasts with 1 μM of 

metformin for 72 hours and evaluated cellular 

metabolism and mitochondrial activity. Interestingly, 

metformin improved the basal oxygen consumption  

rate and maximal respiration of DM1 fibroblasts  

by more than twice (Figure 6A–6C), which resulted  

in an increased ATP production via OXPHOS  

(Figure 6A, 6D). Moreover, it increased the levels of 

OPA1, MFN2, DRP1 and TFAM in DM1 cells by at 

least 1.5-fold (Figure 6E).  

 

 
 

Figure 4. DM1-derived blood samples also show 
mitochondria dysfunction. mRNA levels of SIRT1, OPA1 and 
TFAM in PBMCs derived from DM1 (n≥12) and controls (n=4). 

Next, we measured ROS production and found that 

treatment with metformin significantly decreased ROS 

production in control as well as in DM1 fibroblasts  

(Figure 6F). In accordance, the levels of GPX1 and 

PARKIN were elevated in the presence of metformin in 

DM1 cells (Figure 6G). The levels of SIRT1, a critical 

downstream target, were also induced in DM1 cells 

cultured in the presence of metformin validating the 

effect of metformin in metabolic pathways (Figure 6G). 

In summary, metformin restores the impaired 

metabolism and mitochondrial activity in DM1 

fibroblasts. 

 

Metformin restores additional DM1-associated 

phenotypes  

 

Metformin exerts a potent anti-aging activity, in part by 

increasing proliferation and inhibiting senescence  

[28, 29]. It has been previously reported that DM1 

fibroblasts display decreased cell proliferation and 

enhanced senescence accumulation [8, 30]. Next, we 

investigated the impact of metformin in the proliferative 

potential of DM1 fibroblasts. For this, we treated DM1 

and control fibroblasts with 1 and 10 μM of metformin 

and measured cell viability. As expected, DM1 cells had 

lower viability than controls but, importantly, the 

treatment increased significantly the viability of DM1 

fibroblasts, reaching almost the levels of control cells 

(Figure 7A and Supplementary Figure 4). Moreover, we 

measured the number of cells positive for phospho-

Histone H3 (p-H3) and Ki-67, which are well-

established markers of mitosis and cell division, 

respectively, and found reduced numbers in both 

markers in DM1 cells (Figure 7B–7E). Importantly, 

metformin increased the number of p-H3 and Ki-67 

positive cells by almost 3-fold in DM1 cells (Figure 7C, 

7E). These functional results were further validated at 

the molecular level. Metformin modulated the 

expression of critical genes involved in cell 

proliferation and cell cycle activity such as BMI-1, 

p16INK4a and p21CIP. In particular, treatment for 72 h 

increased the levels of BMI-1, and partially decreased 

the levels of p16INK4a and p21CIP cell cycle inhibitors 

(Figure 7F). Finally, we also detected that metformin 

restored by 1.5-fold the levels of DMPK and MBNL1 

(Figure 7G). Thus, metformin rescues multiple 

phenotypes associated to DM1 cells. 

 

DISCUSSION 
 

We established primary cultures of fibroblasts derived 

from patients with DM1 and found that they display 

impaired metabolism and mitochondrial dysfunction. In 

particular, DM1 fibroblasts present lower production of 

ATP by OXPHOS, less efficient mitochondrial electron 

transport chain, impaired mitochondrial dynamics, and 
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higher production of ROS compared with healthy 

control-derived fibroblasts. Interestingly, some of these 

defects, such as energy homeostasis and mitochondrial 

dynamics, were also detected in PBMCs from patients 

with DM1, together revealing the impact of metabolism 

and mitochondrial function on the pathophysiology of 

DM1.  

 

These results show that fibroblasts, which are a well-

established model for cell aging studies in vitro [31], 

might be a good cellular model to characterize the 

pathophysiology of the disease, as they resemble 

multiple molecular and cellular phenotypes of the 

disease. However, we did not detect a correlation 

between the severity of the phenotypes and the number 

of CTG repeats. This result might be potentially biased 

by methodological reasons because CTG expansion was 

measured several years before isolation of skin 

fibroblasts and blood samples. In addition, some 

experiments were performed at early passage. 

 

Our results reveal novel processes involved in the 

pathophysiology of the disease. Indeed, the role of 

mitochondria in DM1 remained practically unknown. A 

previous study observed an inverse correlation between 

the expression of CoQ10, an electron carrier in the 

mitochondrial respiratory chain, and lactate production 

with CTG expansion in PBMC samples [14], whereas 

mitochondrial dysfunction was suggested to occur in 

muscles of patients with DM1 as well [32]. The results 

of these studies are in line with our data and are 

indicative of mitochondrial dysfunction in DM1. The 

lower mitochondrial efficiency detected in our study 

could be due to the conversion of pyruvate, generated 

  

 
 

Figure 5. DM1-derived fibroblasts present accumulation of ROS and p38MAPK activation. (A) Luminescence signal proportional to 
H2O2 production in DM1 (n=4) and control fibroblasts (n=3). (B) Medium fluorescence intensity of MitoSOX+ values normalized to mean 
fluorescence of MitoTracker values in controls (n=3) and DM1 (n=5). (C) GPX1 mRNA levels in DM1 and control fibroblasts (n≥2). (D) 
Luminescence signal proportional to H2O2 production in controls (n=3) and DM1 fibroblasts stratified by CTG expansion in <500 CTG (n=3) and 
>500 CTG (n=1). (E) Medium fluorescence intensity of MitoTracker Red FM in controls (n=3) and DM1 stratified by CTG expansion in <500 
(n=3) and >500 (n=2) (left) and MIRS scale in <3 (n=2) and >3 (n=3) (right). (F, G) Representative immunoblot and quantification of P-
p38MAPK and p38MAPK protein levels in DM1 and control fibroblasts (n=3). 
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during glycolysis, to lactate instead of acetyl CoA, which 

is transported to mitochondria and enters into the Krebs 

cycle. Moreover, our results show that mitochondrial 

biogenesis seems to be normal in DM1 cells, but they are 

not able to maintain the metabolic state as a consequence 

of unbalance remodeling of mitochondrial network 

morphology, which is not correctly controlled by the 

machinery of pro-fusion and fission proteins, and 

impaired elimination through mitophagy.  

 

DM1 patients develop a large variety of symptoms in 

multiple systems that strongly resemble the clinical signs 

of accelerated aging, including some related to 

metabolism and mitochondria dysfunction such as insulin 

resistance, glucose intolerance, hyperinsulinemia, and 

increased risk of type 2 diabetes [33, 34]. Our results 

shed light in the underlying molecular mechanisms of 

these symptoms. Given that mitochondria is the main 

energy hub of the cell and the main intracellular source of 

ROS, our results might be extended to additional DM1 

symptoms, particularly in the muscle, since a shift in 

energy production anticipates muscle atrophy with aging. 

Finally, our results further support the link between DM1 

and accelerated aging [8], since cellular metabolism and 

mitochondrial dysfunction are critical mechanisms in 

aging. 

 

 
 

Figure 6. Metformin restores OXPHOS activity and ROS production in DM1 fibroblasts. (A) Representative kinetic normalized OCR 
response in DM1 (n=6) and control fibroblasts (n=3) after treatment with 1 μM of metformin for 72 h. DM1 and control fibroblasts were 
plated at 5.000 cells/well 24 hours prior to the assay. A representative experiment out of 3 is shown. (B–D) Quantification of mitochondrial 
basal respiration, maximal respiration, and ATP production respectively after treatment with 1 μM of metformin for 72 h of controls (n=3) 
and DM1 fibroblasts (n=6). (E) mRNA levels of OPA1, MFN1, MFN2, DRP1 and TFAM after treatment with 1 μM of metformin for 72 h (n≥2). 
(F) H2O2 production after treatment with 1 μM of metformin for 72 h (n=3). (G) mRNA levels of SIRT1, GPX1 and PARKIN in DM1 and control 
fibroblasts after treatment with 1 μM of metformin 72 h (n≥2). 
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DM1 is a rare, clinically variable disease with no 

currently available treatment to slow or stop disease 

progression. Supportive treatments, preventive 

measures and clinical surveillance are the only 

options available for patients with DM1 [35]. 

Metformin is a synthetic biguanide that is currently 

one of the most recommended medications for type 2 

diabetes treatment around the world. Interestingly, 

studies in both vertebrates and invertebrates have 

shown that metformin delays aging and increases 

longevity [29]. Moreover, a meta-analysis has 

suggested that metformin reduces all-cause mortality 

and aging-related diseases in humans independent of 

its effect on diabetes [36]. We show here that 

metformin improves ATP production by OXPHOS 

and decreases the production of ROS in DM1 cells 

even at a much lower concentration compared to its 

current therapeutic dose (1 μM vs 75 μM). In line with 

our results, it has been recently shown that 

mitochondria might be a target of metformin [27]. We 

also found that metformin treatment reverses 

additional DM1-related phenotypes such as impaired 

proliferation, suggesting that its mechanism of action 

in DM1 is wider. In support, low doses of metformin 

may also correct several alternative splicing defects in 

DM1 myoblasts in vitro [37], the use of metformin 

reduced the risk of cancer in patients with DM1 

having diabetes [38], and also improved mobility of 

DM1 patients in a small randomized clinical trial [39]. 

If the hypothesis of an accelerated aging in patients 

with DM1 is validated, our results could be added to 

the potential benefits of expanding metformin use in 

DM1, outside of the management of T2D, to include 

cancer prevention [38] and also phenotypes associated 

with aging. In summary, our results showed the 

efficacy of metformin in a pre-clinical setting and 

suggest that it warrants further assessment as a 

candidate drug for DM1 treatment.  

 

 
 

Figure 7. Metformin restores cell viability and proliferation in DM1 fibroblasts. (A) Cell viability of DM1 (n=5) and control (n=3) 
fibroblasts measured in MTT studies after treatment with 1 μM of metformin for 72 h. (B, C) Representative image and quantification of p-H3 
(Ser10) staining in the same conditions in controls (n=3) and DM1 (n=7). (D, E) Representative image of Ki-67 staining and quantification in 
controls (n=2) and DM1 cells (n=3). (F) mRNA levels of BMI-1, p16INK4a and p21CIP in cells treated or not with 1 μM of metformin for 72 h (n≥2). 
(G) mRNA levels of DMPK and MBNL1 in the same conditions (n=3). 
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MATERIALS AND METHODS 
 

Study approval 

 

This study was approved by the Donostia University 

Hospital Ethical Board (approval number 15-57) and 

was conducted in accordance with the Declaration of 

Helsinki’s ethical standards. All subjects gave written 

informed consent before sample donation.  

 

Reagents and cell culture 
 

For the isolation of primary fibroblasts, punch skin 

biopsies were chopped into 2–3 mm3 fragments and 

placed on a surface moistened with modified Eagle’s 

medium containing 13% newborn calf serum, 0.4% 

penicillin/streptomycin (Gibco, Waltham, MA, USA) 

and 2 mM L-glutamine (Gibco). Flasks were incubated 

vertically for 3–6 hours at 37 °C in a 5% CO2 

atmosphere and then returned to the horizontal 

position. Human fibroblasts were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco) 

containing 10% fetal bovine serum (FBS) (Sigma-

Aldrich, St Louis, MO, USA), 1% L-glutamine (Gibco) 

and 1% penicillin/streptomycin (Gibco). 7 independent 

cultures from different patients with DM1 and 3 from 

healthy controls were established (see Table 1 for 

patient characteristics). When indicated, fibroblasts 

were treated with metformin (Sigma-Aldrich) for 72 

hours. Experiments were performed in early passage 

cultures (range of 5 to 10 passages).  

 

Metabolic measurements 
 

Measurement of OCR and ECAR were performed in 

XF96 plates with XF Extracellular Flux Analyzer 

(Seahorse Bioscience). Fibroblasts were seeded in 

collagen (BD Biosciences) coated XF 96-well plates 

(Seahorse/Agilent) in octuplicates at 1.2x104 cells/well 

in 100 μl of growth medium. Mitochondrial activity 

was evaluated using the Seahorse XF Cell Mito stress 
Test Kit, according to manufacturer’s instructions 

(Agilent). In the metformin treatment experiments, 

cells were plated at 5x103 cells/well 24–28 hours prior 

to the assay. Oligomycin (75351, Sigma-Aldrich), 

FCCP (C2920, Sigma-Aldrich), and 

Rotenone/Antimycin A (R8875 and A8674, Sigma-

Aldrich) were used at 1.5 μM concentration, after a 

titration experiment. Glycolytic activity was evaluated 

using the XF Glycolysis Stress Test according to 

manufacturer’s instructions (Agilent). Glucose (G8769, 

Sigma-Aldrich) was used at 10 mM, oligomycin at 1 

μM and 2-D-Deoxy-Glucose at 50 mM (D6134, Sigma-

Aldrich). Cell content was normalized using crystal 

violet. The post-normalization values of OCR and 

ECAR reflect both the metabolic activities of the cells 

and the number of cells being measured. Data were 

further processed according to manufacturer’s 

instructions.  

 

Total ROS measurement 

 

A total of 1x103 fibroblasts were plated in 96-well 

plates and grown for 3 days. Afterwards, ROS-Glo 
H2O2 Assay (G8820, Promega) was performed 

according to the manufacturer’s instructions. Briefly, a 

H2O2 substrate reacts directly with H2O2 to generate a 

luciferin precursor and, upon addition of a detection 

reagent, this precursor is converted to luciferin, which 

generates a luminescent signal that is proportional to 

the H2O2 concentration. White flat bottom plates 

(Corning) were used for final readout in a PHERAstar 

(BMG Labtech) luminometer plate reader. 

 

Mitochondrial ROS production and mitochondrial 

content measurement 

 

Mitochondrial ROS analysis was performed using the 

dye MitoSOX (M36008, Invitrogen). Mitochondrial 

content was assayed using the dye MitoTracker FM 

(M22425, Invitrogen), which passively diffuses across 

the plasma membrane and accumulates in active 

mitochondria. 

 

20x104 fibroblasts per condition were grown for two 

days, reaching 70% confluence in p100 plates. Cells 

were detached using trypsin for 5 min at 37 °C. For 

MitoSOX staining, cells were washed once using warm 

HBSS, incubated with 5 μM of MitoSOX in HBSS for 

30 min at 37 °C, washed 3x using warm HBSS and 

suspended in HBSS. For MitoTracker staining, cells 

were washed with PBS, incubated with 0.2 μM 

MitoTracker for 30 min at 37 °C, washed 3x using 

warm PBS and suspended in PBS. Cells were directly 

analyzed via flow cytometry. In FSC and SSC, we first 

gated the population; next, two gates were set on SSC-

A vs. SSC-H and SSC-A vs. SSC-W to exclude 

doublets. Based on an unstained control, MitoSOX+ 

and MitoTracker+ gates were set. Mean fluorescence of 

MitoSOX+ was normalized as a mean fluorescence of 

MitoTracker values, which represents ROS production 

per mitochondria. Antimycin was used as a positive 

control and FCCP as a negative control. 

 

Mitochondrial membrane potential measurement 
 

20x104 fibroblasts per condition were grown for 2 days, 

reaching 70% confluence in p100 plates. Cells were 

detached using trypsin for 5 min at 37 °C. We used 1 

μM of Rhodamine 123 (Invitrogen) for 15 min at 37 °C 

to measure the mitochondrial membrane potential. This 

probe is readily sequestered by functioning 
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mitochondria and is easily washed out of cells once the 

mitochondria experience a loss in membrane potential. 

 

Cell viability 
 

Fibroblasts were seeded in 96-well plates followed by 

treatment with metformin for 72 h. Viable cells were 

quantified using the modified 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma-

Aldrich) assay in six replicates per condition. 

 

mRNA expression analysis 

 

Total RNA was extracted using TRIzol (Life 

Technologies). Reverse transcription was performed 

using random priming and the Maxima First Strand 
cDNA Synthesis Kit for RT-qPCR, with dsDNase 

(Thermo Fisher Scientific, Waltham, MA, USA), 

according to the manufacturer’s guidelines. Quantitative 

PCR was performed using Power SYBR Green PCR 

Master Mix (Thermo Fisher Scientific), 10 mM of each 

primer and 20 ng of cDNA, in a CFX384 thermocycler 

(Bio-Rad, Hercules, CA, USA). Primer sequences will 

be given upon request. Variations in RNA input were 

corrected by analyzing the expression of GAPDH as a 

housekeeping gene. The ΔΔCT method was used for 

relative quantification. 

 

Western blot and immunofluorescence analysis 
 

Immunoblot and immunofluorescence assays were 

performed following standard procedures, as 

previously described [40]. Primary antibodies were: 

phospho Histone H3 Ser10 (ab14955, Abcam), 

TOMM20 (11802-1-AP, Proteintech), PGC1-α 

(NBP1-04676, Novus Biologicals), phospho 

p38MAPK Thr180/Tyr182 (9211, Cell Signaling), 

p38MAPK (sc-7972, Santa Cruz Biotechnology) 

AKT1/2/3 (sc-8312, Santa Cruz Biotechnology), 

phospho AKT Ser 473 (9271, Cell Signaling), DMPK 

(sc-134319, Santa Cruz Biotechnology), MBNL1 

(ab45899, Abcam) and β-actin (AC-15, Sigma-

Aldrich). For western blot detection of primary 

antibodies, we used HRP-linked antibodies (Santa 

Cruz Biotechnology) and the detection was performed 

by chemiluminescence using Novex ECL Chemi 
Substrate (Thermo Fisher). For immunofluorescence, 

nuclear DNA was stained with Hoechst (33342, 

Sigma-Aldrich). 

 

Statistics 

 

Data are presented as mean values ± S.E.M., with the 

number of experiments (n) in parentheses. Unless 

otherwise indicated, statistical significance (p-values) 

was calculated using the Student´s t-test. Asterisks (*, 

**, and ***) indicate statistical significance (p < 0.05, p 

< 0.01, and p < 0.001, respectively).  
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SUPPLEMENTARY MATERIAL 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. DM1-derived fibroblasts have no changes in glycolysis. (A) Kinetic normalized ECAR response in DM1 and 
control fibroblasts obtained in basal conditions and after consecutive addition of Glucose 10 mM, Oligomycin 1 μM and 2-D-Deoxy-Glucose 
50 mM. DM1 and control fibroblasts were plated at 5x103 cells/well, in XF96 cell culture plates, 24–28 h prior to the assays. The assay 
medium was the substrate-free base medium supplemented with 2 mM glutamine. Upon completion of an assay, cells were normalized using 
violet crystal. A representative experiment is shown here (n=3 controls and n=4 DM1 patients). (B) Quantification of glycolytic functions in 
DM1 and control fibroblasts (n=3 controls and n=4 DM1 patients).  

 
 

 

 
 

Supplementary Figure 2. No differences in maximal respiration of DM1 fibroblasts stratified by CTG amplification and MIRS 
scale. (A) Maximal respiration in fibroblasts derived from controls (n=3) and DM1 patients stratified by CTG expansion in <500 CTG (n=4) and 
>500 (n=3). (B) Maximal respiration in fibroblasts derived from controls (n=3) and DM1 patients stratified by MIRS scale in <3 (n=2) and >3 
(n=5). 
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Supplementary Figure 3. Comparison of results in DM1 fibroblasts based on patient age. (A) Analysis of Basal respiration. (B) 
Maximal respiration, (C) ATP production and (D) H2O2 production in control fibroblasts (control; black) (n=3), in DM1-derived fibroblasts 
excluding a 71 years-old case (DM1; blue) (n=6), and cells derived from a 71 years-old patient (DM1; grey). 

 

 

 
 

Supplementary Figure 4. Metformin restores cell viability in DM1-derived fibroblasts. Cell viability after treatment with 1 and 10 
mM of metformin for 72 h. Figure shows results from controls (n=3) and DM1 (n=5) cells.  


