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INTRODUCTION 
 
For decades, researchers have investigated the process 

of aging: a decline in health over time, which is 
generally considered to be due to an accumulation of 

cellular damage [1, 2]. This cellular damage has 
different causes, but genomic instability is considered 
one of the main factors that contribute to cellular aging 

[3]. Genetic damage such as point mutations, 
chromosomal rearrangements, aneuploidy and copy 
number variations accumulate during life and are 

caused by endogenous and exogenous sources, 
including UV radiation, ionizing radiation and reactive 

oxygen species (ROS) [3, 4]. While the accumulation of 
genomic instability over time can cause cellular 
senescence and apoptosis in the case of aging, in other 

cases it can lead to uncontrolled cellular proliferation,  

 

and is therefore associated with an increased cancer  
risk [3, 4].  

 
Defects in DNA repair proteins lead to an accumulation 
of DNA damage and thus contribute to accelerated 

aging, as is the case for several human diseases 
including Cockayne, Bloom and Werner syndromes, 

trichothiodystrophy and ataxia telangiectasia [5, 6]. In 
addition, several mouse models have confirmed that 
mutations in DNA repair proteins lead to accelerated 

aging. These mice exhibit accelerated aging and aging-
related phenotypes such as alopecia, grey hair, 
osteoporosis, cachexia, neurological abnormalities, 

retinal degeneration and a predisposition to a wide 
variety of cancers [5, 7–12]. Taken together, this 

indicates that an exacerbated accumulation of DNA 
damage leads to premature aging, albeit the actual 
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ABSTRACT 
 

Replication Stress (RS) is a type of DNA damage generated at the replication fork, characterized by single-stranded 
DNA (ssDNA) accumulation, and which can be caused by a variety of factors. Previous studies have reported 
elevated RS levels in aged cells. In addition, mouse models with a deficient RS response show accelerated aging. 
However, the relevance of endogenous or physiological RS, compared to other sources of genomic instability, for 
the normal onset of aging is unknown. We have performed long term survival studies of transgenic mice with 
extra copies of the Chk1 and/or Rrm2 genes, which we previously showed extend the lifespan of a progeroid ATR-
hypomorphic model suffering from high levels of RS. In contrast to their effect in the context of progeria, the 
lifespan of Chk1, Rrm2 and Chk1/Rrm2 transgenic mice was similar to WT littermates in physiological settings. 
Most mice studied died due to tumors -mainly lymphomas- irrespective of their genetic background. Interestingly, 
a higher but not statistically significant percentage of transgenic mice developed tumors compared to WT mice. 
Our results indicate that supraphysiological protection from RS does not extend lifespan, indicating that RS may 
not be a relevant source of genomic instability on the onset of normal aging. 
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contribution of DNA damage to normal aging remains 
to be elucidated. More importantly, which types of 

DNA damage play a central role in the context of aging 
is still unknown.   
 

Besides strategies to accelerate aging, genetic 
manipulation studies in worms, flies and mice have also 

successfully lead to increases in lifespan, suggesting a 
direct implication of the manipulated genes in normal 
aging [1, 13]. For instance, mice overexpressing the 

spindle assembly checkpoint protein BubR1 show a 
reduction in age-dependent aneuploidy, reduced 
incidence of cancer, and an increased healthy lifespan 

compared to WT mice [14]. Another relevant mouse 
model with delayed aging is a mouse model with extra 

copies of tumor suppressor genes Trp53 and its positive 
regulator Arf, which in addition to having an increased 
median lifespan has a reduced tumor incidence [15]. 

The median survival is increased further in mice with 
constitutive telomerase reverse transcriptase (TERT) 
overexpression in addition to extra copies of Trp53 and 

Arf [16].  
 

In recent years, replication stress (RS) has been 
acknowledged as an important source of endogenous 
DNA damage [17]. RS is a type of DNA damage that 

occurs when obstacles to replication lead to an 
accumulation of single stranded DNA (ssDNA) at 
stalled replication forks, which is recognized by 

ssDNA binding protein RPA. This initiates a signaling 
cascade involving Ataxia Telangiectasia and Rad3-
related (ATR) kinase and CHK1 which promotes DNA 

repair, cell cycle arrest, and apoptosis [18–20]. Similar 
to other types of DNA damage, RS has been linked to 

aging. For instance, aged hematopoietic stem cells 
(HSCs) exhibit increased levels of RS compared to 
young HSCs [21]. In addition, mutations in the ATR 

gene cause Seckel syndrome in humans, which is 
characterized by progeria, growth retardation, 
microcephaly, mental retardation and dwarfism [22] 

(OMIM210600). The involvement of RS in premature 
aging has also been shown experimentally with a 

mouse model for Seckel syndrome [12]. ATR-Seckel 
mice exhibit a phenotype similar to that of human 
patients, which is further aggravated in combination 

with several cancer-driving mutations such as the Myc 
oncogene or the absence of the tumor suppressor p53 
[12, 23]. ATR-Seckel mice show high levels of RS 

during embryonic development, accelerated aging in 
adult life and early lethality [12]. Interestingly, mice 
harbouring extra alleles of Chk1 (Chk1

Tg
) or of the 

ribonucleotide reductase (RNR) regulatory subunit 
Rrm2 (Rrm2

Tg
), which is a limiting factor for dNTP 

production, improved the lifespan and alleviated the 
progeroid phenotype of ATR mutant mice [24, 25]. 
These Chk1 and Rrm2 transgenic mice carry bacterial 

artificial chromosome (BAC) alleles of the respective 
genes, including exons and introns, under their own 

endogenous promoters. This strategy provides 
supraphysiological levels of CHK1 and RRM2 while 
preventing overexpression in tissues where these genes 

are normally not expressed, and was proven successful 
with the Trp53 BAC-transgenic mouse model [26]. 

Collectively, these studies suggested that RS might 
have important implications in mammalian aging. 
However, the effect of Chk1 and Rrm2 expression 

levels on normal aging, in mice with physiological 
levels of ATR, remains to be elucidated.  
 

In the current study, we investigated the effect of 
supraphysiological levels of CHK1 and RRM2, which 

confer extra protection against RS, on normal aging. We 
utilized cohorts of WT, Chk1

Tg
, Rrm2

Tg
 and 

Chk1
Tg

;Rrm2
Tg

 mice to asses tumor-free survival of 

these mice. We found no differences in survival 
between the genotypes and all mice exhibited similar 
signs of aging, although there was a higher tumor 

incidence in the transgenic mice compared to WT mice. 
Thus, supraphysiological levels of CHK1 and RRM2 do 

not affect normal aging in mice. 
 

RESULTS 
 

Generation of mice with supraphysiological levels of 

CHK1 and RRM2 
 

In order to investigate the effect of RS on lifespan, we 
used the Chk1

Tg
 and Rrm2

Tg
 mouse models previously 

generated in our laboratory [24, 25]. Chk1
Tg

 and 
Rrm2

Tg
 mice were crossed in order to obtain Chk1

Tg
, 

Rrm2
Tg

 and Chk1
Tg

;Rrm2
Tg

 mice. Transgenic mice 

were not phenotypically distinguishable from WT 
littermates and were born in accordance with 
Mendelian ratios (Chi-square p-value = 0.243)  

(Table 1).  
 

MEFs with increased levels of RRM2 and CHK1 

show less damage after induction of RS 
 

To confirm that supraphysiological levels of CHK1 
and RRM2 could protect cells against RS, we 
generated mouse embryonic fibroblasts (MEFs) from 

crosses between Chk1
Tg

 and Rrm2
Tg

 mice. Chk1
Tg

 and 
Rrm2

Tg
 MEFs have been previously described to be 

resistant to RS induced by the ribonucleotide reductase 

inhibitor hydroxyurea (HU) [24, 25]. Genomic PCR 
genotyping confirmed the four different MEF 

genotypes: WT, Chk1
Tg

, Rrm2
Tg

 and Chk1
Tg

;Rrm2
Tg

 
(Figure 1A). In addition, increased protein levels of 
RRM2 and CHK1 in MEFs carrying the Rrm2 or Chk1 

transgene were confirmed by Western blotting  
(Figure 1B).  
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Table 1. Offspring from Chk1Tg x Rrm2Tg and Chk1Tg;Rrm2Tg x WT  
crosses. 

  WT Chk1
Tg

 Rrm2
Tg

 Chk1
Tg

;Rrm2
Tg

 

Observed 84 66 91 83 

Expected 81 81 81 81 

 

We then assessed whether elevated levels of CHK1 
and RRM2 would influence cell proliferation, and 

found that Chk1
Tg

, Rrm2
Tg

 and Chk1
Tg

;Rrm2
Tg

 MEFs 
proliferated similarly to WT MEFs (Figure 1C). 
Similarly, Edu incorporation analyses showed similar 

cell cycle distribution and percentage of replicating 
cells in all the genotypes (Figure 1D and 
Supplementary Figure 1).  

 
Next, we assessed whether MEFs carrying extra copies 

of Rrm2 and Chk1 were protected against RS by 
assessing γH2AX levels in these cells. Using high-
content microscopy, we found that Chk1

Tg
, Rrm2

Tg
 and 

Chk1
Tg

;Rrm2
Tg

 MEFs have lower basal levels of 
γH2AX compared to WT MEFs (Figure 1E, 1F and 
Supplementary Figure 2A, 2B). In addition to assessing 

γH2AX levels in unstressed conditions, we induced RS 
by treating the cells with CHK1-inhibitor UCN-01 at 

different doses and found that the cells with higher 
CHK1 and/or RRM2 levels showed a decrease in 
γH2AX intensity compared to WT MEFs (Figure 1E 

and Supplementary Figure 2A). In addition, the MEFs 
were treated with HU (Figure 1F and Supplementary 
Figure 2B). In accordance with previously published 

data on Chk1 and Rrm2 transgenic MEFs [24, 25], we 
observed lower γH2AX intensity in these MEFs 

compared to WT. Importantly, these γH2AX analyses 
were performed in early passage MEFs (passage 3), 
when replication and cell proliferation were proficient 

and comparable among the different genotypes. Thus, 
the differences found in γH2AX cannot be explained by 
differences in replication or proliferation rates. These 

data confirm that cells from mice carrying extra copies 
of the Rrm2 or Chk1 genes show less DNA damage 
after induction of RS with HU and UCN-01 compared 

to cells from WT mice. 
 

Supraphysiological levels of CHK1 and RRM2 do 

not influence lifespan in mice 
 

Next, we aimed to investigate whether the protection 
against RS conferred by extra copies of Chk1 and Rrm2 
would be reflected in the survival of mice, as they did in 

the context of reduced levels of ATR [24, 25]. To this 
end, we used mice containing the Chk1 and/or Rrm2 

transgenes, and assessed tumor-free survival of these 
mice. Mice were euthanized when they had noticeable 
tumors or were visibly ill, as observed by rapid weight 

loss, hunched posture, rough hair coat, labored 
breathing, lethargy, impaired mobility or abdominal 

swelling. Only female mice were included in the 
cohorts, since they could be group-housed more easily 
than males.  

 
Our results show that survival was not increased due to 
CHK1 or RRM2 levels: the survival of WT, Chk1

Tg
, 

Rrm2
Tg

 and Chk1
Tg

;Rrm2
Tg

 was not significantly 
different (log-rank p=0.3944) (Figure 2A). We collected 

tissues of two year-old mice (not included in survival 
curve). H&E staining of spleens, livers and kidneys of 
mice did not show obvious differences between the 

genotypes (Figure 2B). Furthermore, we observed no 
noticeable differences in appearance among the mice 
with different genotypes, as reflected by their weight at 

1 year of age (Figure 2C). In addition, all mice 
displayed comparable signs of aging such as weight 

loss, grey hair and baldness (data not shown). In 
summary, unlike in an ATR-deficient background, extra 
copies of Chk1 and Rrm2 did not increase the overall 

survival of mice.  
 

Extra copies of Chk1 and Rrm2 mildly increase the 

prevalence of spontaneous tumors 
 

While none of the genetic combinations used in this 
study was able to extend mouse lifespan, the median 
survival of Chk1

Tg
;Rrm2

Tg
 mice was the lowest with 

100 weeks compared to 123 weeks for WT mice (not 
statistically significant). In addition, and despite no 
significant differences on overall survival, the 

percentage of mice that developed tumors was higher, 
although not statistically significant, for the mice 
containing extra copies of Chk1, Rrm2 or both 

transgenes (74%, 70% and 71%, respectively) compared 
to the percentage of WT mice with tumors (64%). This 

could be in line with previous reports indicating that 
overexpression of CHK1 or RRM2 favors 
tumorigenesis (Figure 3A) [25, 27]. The majority of the 

observed tumors were lymphomas, which was 
confirmed by an enlarged spleen or lymph nodes 
containing CD3e positive cells (Figure 3B). This is in 

agreement with our previous reports showing that 
increased CHK1 or RRM2 levels can reduce the DNA 

damage induced by oncogenes thereby facilitating 
oncogenic transformation or cell reprogramming [25, 
28, 29].    
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Figure 1. Chk1Tg, Rrm2Tg and Chk1Tg;Rrm2Tg MEFs are protected against replication stress compared to WT MEFs. (A) DNA 
genotyping results for Chk1 and Rrm2 alleles in MEFs; (B) Western blot showing CHK1 and RRM2 protein levels in MEFs; (C) Proliferation 
curves for Chk1 and Rrm2 transgenic MEFs. Cells were counted and replated every 3-4 days, in three technical replicates per genotype; (D) 
Cell cycle distribution of MEFs determined by EdU incorporation and DAPI profiles. At least 7000 cells were quantified per condition using 
high-content microscopy; (E, F) Quantification of γH2AX intensity in MEFs treated with UCN-01 (E) or HU (F) at indicated concentrations for 
four hours. At least 7000 cells obtained from two technical replicates were quantified per condition using high-content microscopy. 
Percentages indicate cells with γH2AX intensity above a threshold of 400 AU, and means are indicated by horizontal black lines for each 
condition. The control cells are the same for (E) and (F), as the results were obtained from the same experiment. **** = P ≤0.0001; *** = P 
≤0.001; ns = P > 0.05. Statistical significance was calculated using the unpaired t-test. 
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DISCUSSION 
 

In the presented study, we aimed to determine whether 
overexpression of Chk1 and/or Rrm2 could extend 
mammalian lifespan by utilizing transgenic mouse 

models carrying extra copies of the Chk1 and Rrm2 
genes. These BAC-transgenic mouse models contain 
extra copies of the genes of interest, which keep the 

expression of the genes in a physiological range and 

maintain their endogenous regulation and has been a 
successful strategy in the past [15, 26]. Previous studies 

have shown that defects in RS-related proteins lead to 
increased RS levels and accelerated aging [12, 30, 31]. 
Lopez-Otin and colleagues described in 2013 the 

hallmarks of aging [3], one of them being DNA 
damage. However, a hallmark of aging should not only 

cause accelerated aging when aggravated, but also 
increase lifespan when attenuated [3].  

 

 
 

Figure 2. Chk1 and Rrm2 transgenes do not affect mouse lifespan. (A) Kaplan-Meier survival curves for WT (n=26), Chk1
Tg

 (n=34), 
Rrm2

Tg
 (n=42) and Chk1

Tg
;Rrm2

Tg
 (n=33) mice. P-value = 0.3944 using the log-rank test; (B) Hematoxylin and eosin staining of mouse spleen, 

liver and kidney for mice with the indicated genotypes. Scale bar indicates 60 µm; (C) Total body weight of mice at one year of age. P-values 
were calculated using the unpaired t-test. 
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Previous studies from our group showed that CHK1- and 
RRM2-overexpressing MEFs have lower levels of DNA 

damage in basal conditions and have greater protection 
against HU- and UCN-01-induced RS [24, 25], and we 
hypothesized that this protection against RS could lead to 

an increase in lifespan in vivo. However, we did not 
observe a difference in lifespan between Chk1

Tg
, Rrm2

Tg
 

and Chk1
Tg

;Rrm2
Tg

 and WT mice, and all mice developed 
similar age-related symptoms. Based on these results we 
conclude that supraphysiological levels of CHK1 and 

RRM2 do not influence normal aging, and more 
generally, we propose that physiological RS might not be 
an important driver of aging. However, we cannot rule out 

that RS might influence aging in a less controlled 
environment where mice could be exposed to pathogens 

and other insults. Although Chk1
Tg

 and Rrm2
Tg

 mice were 
previously shown to extend the lifespan and alleviate the 
progeroid symptoms of ATR-deficient mice [24, 25], this 

is not a direct indication that CHK1 and RRM2 levels 
influence normal aging. CHK1 overexpression could 
compensate for ATR deficiency, as CHK1 is a 

downstream target of ATR. For RRM2 this connection to 
the ATR pathway is not as direct, although studies in 

yeast have shown that ATR ortholog Mec1 can activate 
the ribonucleotide reductase (RNR) complex [32, 33]. 
Therefore, extra levels of RRM2 could also partially 

compensate for ATR deficiency.  
 
Interestingly, a higher fraction of the Chk1 and Rrm2 

transgenic mice developed tumors, primarily lymphomas, 

compared to WT mice, although this difference was not 
statistically significant. The exact role of the RS response 

in regard to tumorigenesis is complex [34, 35]. On the one 
hand, CHK1 is known as a tumor suppressor, and its 
expression can induce senescence and apoptosis, thereby 

limiting tumorigenesis [36, 37]. On the other hand, 
experiments with Chk1

Tg
 MEFs have shown that 

overexpression of CHK1 can promote oncogenic 
transformation, and elevated CHK1 levels are present in 
lymphomas, suggesting that CHK1 could also have a role 

in promoting tumorigenesis [25, 38]. In relation to RRM2, 
nucleoside supplementation has been shown to both limit 
and promote transformation [39, 40]. In addition, 

increased nucleotide levels can lead to errors during DNA 
replication and tumorigenesis [27, 41]. Our findings favor 

the concept that RS is not a requirement for 
transformation, but also that protection against RS does 
not prevent tumorigenesis.  

 
Furthermore, the increased tumor incidence in Chk1 and 
Rrm2 transgenic mice could affect their survival, as is 

the case for TERT-overexpressing mice. Several Tert 
transgenic mouse models have an increased incidence 

of spontaneous tumors [42–45]. Thus, extension of 
lifespan by TERT-overexpression is only possible in the 
context of a cancer-resistant background [16]. Since we 

observed a slightly higher tumor incidence in Chk1 and 
Rrm2 transgenic mice, these mice could possibly 
survive longer in a cancer-resistant background. Also, 

the process of aging is complex and influenced by
 

 
 

Figure 3. Increased incidence of spontaneous tumors in Chk1Tg, Rrm2Tg and Chk1Tg;Rrm2Tg mice compared to WT littermates. 
(A) Tumor incidence in WT (n=22), Chk1

Tg
 (n=19), Rrm2

Tg
 (n=27) and Chk1

Tg
;Rrm2

Tg
 (n=24) mice subjected to necropsy. The differences 

observed in tumor incidence were not statistically significant according to the Chi-square test; (B) H&E and CD3e IHC staining of mouse 
spleens with tumor found with necropsy. Tumors are CD3e positive. Scale bar indicates 200 µm. 
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different factors. Conversely, overexpression of DNA 
damage proteins may improve several aspects of aging, 

but not the aging process as a whole, and therefore we 
cannot rule out the involvement of RS on aging. 
Nevertheless, our data indicate that RS might not be a 

relevant contributing factor to normal aging in mice. 
 

MATERIALS AND METHODS 
 

Mouse husbandry 
 

Chk1
Tg

 and Rrm2
Tg

 mouse models have been described 
previously [24, 25]. Both strains have a mixed C57BL/6-

129/Sv background and carry a bacterial artificial 
chromosome (BAC) transgene. In case of Chk1

Tg
 mice, 

there is one extra copy of the gene; Rrm2
Tg

 mice carry 

multiple copies of Rrm2
Tg

 in tandem. The mice in this 
study were housed at the University of Copenhagen, 
Department of Experiment Medicine and mouse work 

was monitored by the Institutional Animal Care and Use 
Committee and performed in compliance with Danish and 
European regulations.  

 

Primers for PCR genotyping 

 
Mice were genotyped using the following primers: 
gRrm2_Fw (TGTCCTGGAGAGCCAGTCTT), gRrm2_ 

Rev (AAGGAGGGAGGGAGGCTATT) and gRrm2_ 
Transgen (ACTGGCCGTCGTTTTACAAC) for the 
Rrm2 locus and gChk1_Fw (TGTCTTCCCTTCCCTGC 

TTA), gChk1_Rev (TCCCAAGGGTCAGAGATCAT) 
and gChk1_Transgen (GTAAGCCAGTATACACTC 

CGCTA) for the Chk1 locus. Expected band sizes are 265 
bp for the Rrm2

 +
, 380 bp for the Rrm2

Tg
, 400 bp for the 

Chk1
+
 and 270 bp for the Chk1

Tg
 allele. 

 

Cell culture 
 

Mouse embryonic fibroblasts (MEFs) were generated 
from 13.5 dpc mouse embryos according to standard 
procedures. MEFs were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM; Gibco) 
supplemented with 15% heat-inactivated fetal bovine 

serum (FBS; ThermoFisher Scientific) and 1% 
penicillin-streptomycin (ThermoFisher Scientific). 
Three MEF lines were used for WT, Chk1

Tg
 and 

Chk1
Tg

;Rrm2
Tg

, and two MEF lines for Rrm2
Tg

. The 
MEFs used in Figure 1 were derived from the same 
mating, and the MEFs used in Supplementary Figures 1 

and 2 were derived from a second mating. 
 

Proliferation assay 
 
Early-passage MEFs were plated at a density of 100.000 

cells per well of a 6-well plate. Every three to four days, 
cells were counted and re-seeded at a density of 100.000 

cells per well. The experiment was carried out in three 
technical replicates.  

 

Cell cycle analysis 
 

10.000 cells were plated per well of a 96 well optical 
plate. After 24 hours, cells were incubated with 10 

µM EdU (Life Technologies, A10044) for 30 minutes, 
before fixation in 4% PFA. Cells were permeabilized 
with 0.5% Triton X-100 in PBS for 15 min and 

washed three times with PBS. Click-iT reaction 
cocktail containing CuSO4, L-ascorbic acid and Alexa 
Fluor 647 fluorescent dye azide in PBS was added to 

each well and incubated according to the 
manufacturer’s protocol (Invitrogen C10269). Nuclei 

were counterstained with DAPI, and cell cycle 
profiles were made by image acquisition on an 
automated Olympus IX83 ScanR microscope and 

Olympus ScanR analysis software. 
 

DNA damage experiments and drug treatments 

 
MEFs at passage four were seeded in a 96 well optical 

plate at a density of 10.000 cells/well. After 24 hours, 
MEFs were incubated with hydroxyurea (Sigma-
Aldrich H8627) or UCN-01 (Sigma-Aldrich U6508) 

at indicated concentrations for four hours, followed by 
fixation with 4% paraformaldehyde (PFA). For 
immunofluorescence experiments, cells were 

permeabilized with Triton X-100 (Sigma-Aldrich 
T8787), blocked in IF blocking buffer (3% BSA, 
0.1% Tween in PBS), and incubated with γH2AX 

antibody (Merck Millipore 05-636) at 4°C overnight. 
Samples were incubated with goat anti-mouse IgG 

secondary antibody, Alexa Fluor 488 (Sigma-Aldrich 
A-11001) for 1 hour at room temperature, and nuclei 
were stained with DAPI. High-content microscopy 

was performed using an automated Olympus IX83 
ScanR microscope.  
 

Western blotting 
 

Cells were lysed in RIPA buffer (Sigma-Aldrich 
R0278) supplemented with protease (Roche 
4693132001) and phosphatase inhibitors (Sigma-

Aldrich P0044). Western blot analysis was performed 
according to standard procedures. Primary antibodies 
used were anti-CHK1 (Novocastra), anti-RRM2 

(Santa Cruz Biotechnology, SC-10844) and anti-β-
actin (Sigma-Aldrich, A5441).  
 

Histopathology 
 

Mouse tissues were fixed in formalin and processed for 

immunohistochemistry (IHC) by HistoWiz Inc. 

(https://home.histowiz.com/; Figure2B) or the 

https://home.histowiz.com/
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Histopathology unit at the Spanish National Cancer 

Research Center (CNIO; Figure 3B).  

 

Statistical analysis 

 

P-values were calculated in GraphPad Prism 7, unless 

otherwise indicated. For γH2AX analysis (Figure 1E, 1F 

and Supplementary Figure 2A, 2B), and for comparison 

of mouse weights (Figure 2C), an unpaired t-test was 

performed. The log-rank test was used for the mouse 

survival curve in Figure 2A. For Figure 3A, a Chi-square 

test was performed using GraphPad QuickCalcs 

(https://www.graphpad.com/quickcalcs/chisquared1.cfm). 
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SUPPLEMENTARY MATERIAL 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Chk1Tg, Rrm2Tg and Chk1Tg;Rrm2Tg MEFs replicate similarly to WT MEFs. Cell cycle distribution of MEFs 
determined by EdU incorporation and DAPI profiles, as in figure 1D but with two additional MEF lines for WT, Chk1

Tg
 and Chk1

Tg
;Rrm2

Tg
 MEFs, 

and one for Rrm2
Tg

 MEFs, derived from another mating. The MEF lines in this figure are all derived from the same mating. At least 7000 cells 
from two technical replicates were quantified per condition using high-content microscopy.  
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Supplementary Figure 2. Chk1Tg, Rrm2Tg and Chk1Tg;Rrm2Tg MEFs are more resistant to induction of replication stress 
compared to WT MEFs. Quantification of γH2AX intensity in MEFs treated with UCN-01 (A) or HU (B) at indicated concentrations for four 
hours, as in Figure 1E–1F but with two additional MEF lines for WT, Chk1

Tg
 and Chk1

Tg
;Rrm2

Tg
 MEFs, and one for Rrm2

Tg
 MEFs. At least 10000 

cells obtained from two technical replicates were quantified per condition using high-content microscopy. Percentages above graphs indicate 
cells with γH2AX intensity above a threshold of 200 AU, and means are indicated by horizontal black lines for each condition. The control cells 
are the same for (A) and (B), as the results were obtained from the same experiment. **** = P ≤0.0001. Statistical significance was 
determined using an unpaired t-test, by pooling the cells with the same genotypes as indicated.  

 

 


