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INTRODUCTION 
 

Melanoma is a life-threatening malignancy with high 

metastasis and mortality rates [1, 2]. Approximately 

232,000 new melanoma patients were diagnosed in 

2011 and with 55,000 deaths recorded in the same year 

[3]. High mortality rates result from poor prognosis 

leading to late diagnosis. Therefore, there is need to 

come up with approaches for early diagnosis [4–6]. 

 

The TNM stage is an effective approach for detection of 

the cancer stage, is invaluable in cancer prognosis and 

informs on the right therapy approaches [7]. However, 

differences in the overall survival associated with TNM 

stage method are observed [8]. Current studies on 

tumors have revealed the clinical limitations of TNM 

stage method [9, 10]. Therefore, there is a need to 

explore new melanoma markers to guide the clinical 

treatment and improve melanoma prognosis. Gene-based 

biomarkers have become more popular with the 

advances in human gene sequencing [11, 12]. 

 

Most immune system components are implicated in  

the initiation and progression of melanoma [13, 14]. In 
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ABSTRACT 
 

Background: Melanoma is a cancer of the skin with potential to spread to other organs and is responsible for 
most deaths due to skin cancer. It is imperative to identify immune biomarkers for early melanoma diagnosis 
and treatment. 
Results: 63 immune-related genes of the total 1039 unique IRGs retrieved were associated with overall survival 
of melanoma. A multi-IRGs classifier constructed using eight IRGs showed a powerful predictive ability. The 
classifier had better predictive power compared with the current clinical data. GSEA analysis showed multiple 
signaling differences between high and low risk score group. Furthermore, biomarker was associated with 
multiple immune cells and immune infiltration in tumor microenvironment. 
Conclusions: The immune-related genes prognosis biomarker is an effective potential prognostic classifier in the 
immunotherapies and surveillance of melanoma. 
Methods: Melanoma samples of genes were retrieved from TCGA and GEO databases while the immune-
related genes (IRGs) were retrieved from the ImmPort database. WGCNA, Cox regression analysis and LASSO 
analysis were used to classify melanoma prognosis. ESTIMATE and CIBERSORT algorithms were used to explore 
the relationship between risk score and tumor immune microenvironment. GSEA analysis was performed to 
explore the biological signaling pathway. 

 

mailto:237586233@qq.com


 

www.aging-us.com 6967 AGING 

tumor immunity, tumor cells act as antigens while 

immune cells and leukocytes infiltrates the tumor tissue 

function through chemotaxis for immune defense [13]. 

Immune escape also is an important factor in 

tumorigenesis [15, 16]. Currently, a myriad of new 

immunotherapy are used in melanoma and including PD-

1, PD-L1 and CTLA-4 inhibitors [17, 18]. However, these 

approaches are effective only on a few patients while the 

majority of the patients have limited or no response to the 

therapy especially during melanoma progression [19, 20]. 

Therefore, comprehensive analyses of the correlation 

between immune genes and overall survival in melanoma 

are important in exploring the potential prognostic value 

of immune genes and new biomarkers. 

 

In this study, our aim was to construct a novel immune-

related genes biomarker for use in immunotherapies and 

melanoma prognosis. Comprehensive bioinformatics 

analyses were performed to explore underlying 

mechanisms of the biomarker. This study provides 

information for subsequent personalized diagnosis and 

treatment of melanoma. 

 

RESULTS 
 

Identification of survival-related modules by WGCNA 

 

WGCNA analysis was carried out on 950 overlapping 

IRGs (Figure 1). The soft-thresholding power in 

WGCNA was determined based on a scale-free R2  

(R2 = 0.95). Six modules were identified based on  

the average linkage hierarchical clustering and the  

soft-thresholding power. The red module showed the 

highest correlation with the overall survival of 

melanoma. Additionally, the blue module was highly 

correlated with the overall survival of melanoma. The 

red module contained 22 IRGs while the blue module 

contained 138 IRGs (Figure 2). Data for these two 

modules were selected for further analysis. 

 

Construction of prognostic classifier based on IRGs 

 

63 IRGs of the red and blue modules were identified as 

survival related IRGs of melanoma with the criterion of  

P < 0.01 (Supplementary File 1). LASSO analysis 

identified eight IRGs (PSME1, CDC42, CMTM6, HLA-

DQB1, HLA-C, CXCR6, CD8B, TNFSF13) which were 

included in the classifier (Figure 3). The coefficients of the 

eight IRGs are shown in Table 1 and the expression levels 

are shown in Figure 4. The high-RS group showed a poor 

overall survival rate compared with low-RS group based 

the Kaplan-Meier analysis (Figure 5B). Time-dependent 

ROC curves showed that the classifier had a strong 

predictive ability in GSE dataset (Figure 5A). In the 

training cohort, the AUC was 0.679 in 1 year, 0.743 in 3 

years and 0.740 in 5 years (Figure 5A). 

 

Verification of the prognostic classifier in TCGA 

cohort 
 

We used the TGCA cohort to validate the predictive 

ability of the classifier. Kaplan-Meier analysis showed 

that the high-RS group had a poor overall survival 

(P<0.0001, Figure 5D). Time-dependent ROC curves 

 

 
 

Figure 1. Venn diagram and Histogram was used to visualize common IRGs shared between GEO dataset, TCGA dataset and 
IRGS. 950 IRGs overlapped in the three datasets. The value used represented the number of gene symbol covered from the ensemble IDs 
and probe IDs. The number of genes annotated are presented on the y-axis. 
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showed that the classifier had a good accuracy with  

0.642 in 1 year, 0.636 in 3 years and 0.645 in 5 years 

(Figure 5C). Moreover, the classifier had better predictive 

power and accuracy compared with other clinical features 

(Figure 5E, 5F). In Addition, the classifier was an 

independent factor in multivariate Cox analysis. Results 

of univariate and multivariate analyses in prognostic 

factors and overall survival were showed in Table 2. 

Immune infiltration score between high and low RS 

group 

 

Kaplan-Meier analysis showed that different immune 

scores had differential overall survival in melanoma 

samples (Figure 6A, 6B). The immune score showed a 

significant difference between high and low-RS group 

(Figure 6C, 6D). 

 

 
 

Figure 2. Weighted melanoma gene co-expression network. (A) The scale-free fit index for soft-thresholding powers. The 
soft-thresholding power in the WGCNA was determined based on a scale-free R2 (R2 = 0.95). The left panel presents the relationship 
between the soft-threshold and scale-free R2. The right panel presents the relationship between the soft-threshold and mean 
connectivity. (B) A dendrogram of the differentially expressed genes clustered based on different metrics. Each branch in the figure 
represents one gene, and every color below represents one co-expression module. (C) Distribution of average gene significance  
and errors in the modules associated with overall survival of melanoma patients. Based  on the average linkage hierarchical 
clustering and the soft-thresholding power, six modules were identified. To determine the significance of each module, gene 
significance (GS) was calculated to measure the correlation between genes and sample traits. GS was defined as the log10 
conversion of the p-value in the linear regression between gene expression and clinical data (GS = lg P). The red and blue module 
showed high correlation with the survival of melanoma patients. (D) A heatmap showing the correlation between the gene module 
and clinical traits. The red module contained 22 IRGs while the blue module contained 138 IRGs. The correlation coefficient i n each 
cell represented the correlation between gene module and the clinical traits, which decreased in s ize from red to blue. The blue 
module showed the highest positive correlation with the survival while the red module showed the highest negative correlation  
with the survival. 



 

www.aging-us.com 6969 AGING 

Table 1. The IRGs in the prognostic classifier associated with OS in the GSE dataset. 

Symbol 
Univariate Cox regression analysis 

LASSO coefficient 
HR 95%CI P Value 

PSME1 0.416 0.285-0.608 5.854205e-06 -0.30396287 

CDC42 0.428 0.248-0.74 0.00236537 -0.24399092 

CMTM6 0.364 0.218-0.608 0.0001131757 -0.23548175 

HLA-DQB1 0.692 0.592-0.809 3.711835e-06 -0.07311844 

HLA-C 0.595 0.466-0.759 2.920363e-05 -0.10691953 

CXCR6 0.509 0.363-0.713 8.635839e-05 -0.03143482 

CD8B 0.248 0.108-0.566 0.0009273984 -0.05032655 

TNFSF13 0.172 0.055-0.54 0.002576346 -0.25872281 

 

Immune cell subtypes between high and low RS 

group 

 

The 22 immune cell proportions of melanoma are shown 

in Figure 7A, 7B. Macrophages M0, Macrophages M2 

and T cells CD8 accounted for a large proportion of 

melanoma immune cell infiltration. High and low RS 

groups showed differential immune cells expression 

(Figure 7C, 7D). 

 

GSEA analysis 
 

GSEA analysis showed 14 significant KEGG pathways 

associated with risk score, including Rap1 signaling 

pathway, Ras signaling pathway, Herpes simplex  

virus 1 infection, Regulation of actin cytoskeleton, 

MAPK signaling pathway, Neuroactive ligand- 

receptor interaction, Human cytomegalovirus infection, 

Human T-cell leukemia virus 1 infection, Human 

 
 

Figure 3. Construction of the IRGs prognostic classifier. (A, B) Determination of the number of factors by the LASSO analysis. (C) The 
distribution of RS. (D) The survival duration and status of patients. (E) A heatmap of IRGs in the classifier. 
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Table 2. Univariate and multivariate analyses of prognostic factors and overall survival of melanoma patients in 
TCGA cohort. 

Characteristics 
Univariate Cox regression analysis multivariate Cox regression analysis 

HR 95%CI P Value HR 95%CI P Value 

Age 1.025 1.015-1.035 3.63e-07 1.021 0.01-4.06 4.83e-05 

Gender 0.877 0.655-1.175 3.79e-01 1.088 0.16-0.54 0.592 

Local invasion 0.988 0.955-1.021 4.65e-01 0.987 0.02--0.66 0.511 

Lymph node metastasis 1.087 1.032-1.145 1.74e-03 1.092 0.03-3.3 0.00096 

Distant metastasis 1.161 0.887-1.52 2.78e-01 1.429 0.14-2.55 0.0107 

TNM stage 1.000 0.964-1.038 9.80e-01 0.982 0.02--0.75 0.455 

Multi-IRGs Classify 1.588 1.315-1.919 1.61e-06 1.704 0.1-5.13 2.94e-07 

 

immunodeficiency virus 1 infection, Kaposi sarcoma-

associated herpesvirus infection, Chemokine signaling 

pathway, Epstein-Barr virus infection, Tuberculosis and 

Cytokine-cytokine receptor interaction (Figure 8). 

 

DISCUSSION 
 

Melanoma is a fatal skin cancer that affects many people 

worldwide each year [21]. Currently, immunotherapy is 

a successful treatment option for melanoma [22]. 

Notably, many researchers demonstrates the role of the 

immune cells on tumor cells [23, 24]. Moreover, 

immune components in melanoma tissue can be used to 

evaluate therapeutic efficacy and melanoma prognosis in 

patients [25]. In this study, 63 IRGs were found to be 

associated with melanoma prognosis, of which eight 

IRGs were adopted to construct a classifier. The 

classifier showed reliable predictive value and accuracy. 

In addition, we explored the relationship between RS 

and the prognosis value in melanoma. The findings 

showed differences in immune cell infiltration and 

multiple signaling pathways between high and low-RS 

group. 

The PSME1, CDC42, CMTM6, HLA-DQB1, HLA-C, 

CXCR6, CD8B and TNFSF13 RGs were used in the 

classifier. These IRGs were reported to be associated 

with tumor prognosis in previous studies. Cell division 

cycle 42 (CDC42) protein, a member of Rho GTPases, 

activates multiple cellular processes by regulating actin 

cytoskeleton [26]. In addition, CDC42 facilitates the 

invasion and migration of melanoma cells [27–29]. 

Therefore, CDC42 inhibitors have been effective in 

melanoma treatment [30, 31]. CMTM6 is a ubiquitously 

expressed protein encoded by two distinct gene clusters 

located on chromosome 16 and chromosome 3 [32]. It 

enhances PD-L1 expression and anti-tumor immunity. 

Therefore, CMTM6 is a potential biomarker and 

therapeutic target for melanoma patients [33–35]. 

Among the HLA class I antigens, HLA-C locus 

recognizes the inhibitory killer cells and suppresses the 

functions of NK cells in melanoma patients [36–38]. 

Furthermore, the frequency of HLA-DQB1*0301 and 

HLA-DQB1*0303 alleles are highly expressed in 

melanoma patients [39]. Moreover, melanoma patients 

with DQBI*0301 allele have thicker primary tumor  

and are more likely to have local or distant metastatic 

 

 
 

Figure 4. Expression profile of 8 genes. (A) GSE dataset (B) TCGA dataset. 
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Figure 5. The distribution of time-dependent ROC curves and Kaplan-Meier survival based on the integrated classifier in the 
training and independent validation sets. ROC, receiver operator characteristic. AUC, the area under the curve. (A) ROC curve for the 
GSE cohort. (B) KM curve of the GSE cohort. (C) ROC curve of the TCGA cohort. (D) KM curve of the TCGA cohort. (E) 3-years correlation ROC 
curve in the TCGA cohort for the comparison of the classifier prognostic accuracy and clinical characteristics. (F) 5-years correlation ROC curve 
in the TCGA cohort for the comparison of the classifier prognostic accuracy and clinical characteristics. 
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disease [40]. Besides, the chemokine co-receptor 

CXCR6 was identified as a new biomarker associated 

with asymmetric self-renewal of tissue-specific stem 

cells. CXCR6 + cells cause rapid increase in tumor mass 

compared with CXCR6- cells [41]. TNFSF13, a member 

of the TNF superfamily, was reported to indicate the 

proliferative or survival state in tumor cells [42]. The 

multi-IRGs classifier established in this study showed 

high predictive value and accuracy through various 

analyses. 

 

The degree of immune infiltration significantly affected 

melanoma survival. Previous studies demonstrate that 

immune cells in the tumor microenvironment can be 

used in the prognostic assessment of multiple tumors, 

such as glioblastoma, breast cancer, and melanoma [43–

45]. In this study, the expression of eight genes affected 

immune infiltration scores. Patients with higher immune 

scores had better prognosis. This finding implies that 

prognosis value of risk score is associated with 

melanoma immune system. 

To further explore the immune and risk score, we used 

the CIBERSORT algorithms to calculate the immune 

cell subtype in R platform. Our result showed that the 

two risk score groups expressed differential immune cell 

subtypes. Ali et al. demonstrated that imbalance in 

immune cell component ratio is highly correlated with 

poor prognosis and low survival in cancer patients [46, 

47]. A previous study reported that CD8+ T cells 

produces granulocyte and perforin to kill tumor cells 

[48]. In our study, the immune cells found in melanoma 

mainly comprised macrophages M0, macrophages M2 

and T cells CD8. In this study, T cell CD8 levels were 

low whereas M0 and M2 macrophages levels were high 

in the high-risk group. This implies that imbalance of T 

cell CD8 and M0, M2 macrophage ratio may reduce the 

survival rate of patients in the high-risk group. High 

expression of CD8+T cells may improve the prognosis 

of melanoma patients as well as reduce the risk factors. 

 

GSEA analysis showed differences in 14 important 

signaling pathways between high and low RS groups. 

 

 
 

Figure 6. (A) Impact of immune score on overall survival in melanoma based on KM analysis. (A) GSE cohort. (B) TCGA cohort. (C, D) 
Association with immune score, stromal score and risk score. The high-RS group showed lower immune score and stromal score comparing 
with low-RS group. (C) GSE cohort. (D) TCGA cohort. 
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Figure 7. (A, B) The mean proportion of 22 immune cells in GSE cohort. Macrophages M0, Macrophages M2 and T cells CD8 account for a 
large proportion of melanoma immune cell infiltration. (A) GSE cohort. (B) TCGA cohort. (C, D) Violin plot showing the relationship between 
risk score with immune score and stromal score. Red color represents high-RS group while blue color represents low-RS group. Differential 
immune cell type expression was observed between the high and low-RS groups. (C) GSE cohort. (D) TCGA cohort. 
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Inhibition of MAPK signaling pathway improved 

melanoma immune microenvironment by enhancing  

the melanoma antigen expression and down-regulating 

immunosuppressive cytokines [49, 50]. Additionally, 

chemokine signaling pathway participates in tumor 

growth. Some chemokines, such as CCR10 and  

CXCR3, have been shown to play an important role  

in the proliferation and metastasis of melanoma cells 

[51, 52]. 

 

In this study, LASSO regression analysis was used to 

establish a novel classifier using multiple IRGs and the 

classifier was verified using an independent cohort. 

Currently, few studies have used ESTIMATE and 

CIBERSORT algorithms to explore immune infiltration 

in melanoma. In this study, we use these algorithms to 

explore immune infiltration in melanoma using the R 

software. These preliminary results could provide a 

perspective for exploring the role of immune infiltration 

in melanoma. However, this study has the following 

limitations. First, the reliability of our molecular 

mechanism analysis results is limited due to lack of 

vitro or vivo experiments. Second, this study was a 

retrospective study, therefore, prospective study should 

be carried out to validate the findings of our study. 

 

In conclusion, we successfully constructed a multi-IRGs 

classifier with the powerful predictive function. 

Differences in the overall survival of high and low risk 

groups are implicated in immune infiltration, tumor 

microenvironment and the interaction of multiple 

signaling pathways. This study provides additional 

information on the analysis of melanoma pathogenesis 

and clinical treatment. 

 

 
 

Figure 8. GSEA analysis. 



 

www.aging-us.com  6975 AGING 

MATERIALS AND METHODS 
 

Data Procession 
 

GSE65904 gene expression profiles were retrieved  

from the gene expression omnibus database (GEO: 

https://www.ncbi.nlm.nih.gov/geo/). In this study, the 

samples with no follow-up information or follow-up 

time less than 1 day were excluded. 210 melanoma 

samples were retrieved for subsequent analysis. 

Further, the probe IDs were converted to gene symbols 

using the illuminaHumanv4.db R package. The probe 

IDs with the highest mean value were reversed when 

more than one probe had a matched gene symbol. The 

GEO expression file was converted into log2 

(expression) for further analysis. Additionally, the 

RNA-FPKM data and clinical data of melanoma 

samples were retrieved for external validation  

analysis using the TCGA biolinks R package. Samples 

with no follow-up information or follow-up time less 

than 1 day were excluded. The expression file of 

patients with the highest mean value was reversed 

when more than one expression file had matched 

patients. 428 melanoma samples in TCGA were used 

for analysis. 

 

Immune-related gene extraction 

 

Immune-related genes (IRGs) data were retrieved from 

the ImmPort database (https://immport.niaid.nih.gov) 

(Supplementary File 2). Overlapping immune-related 

genes from the GEO dataset,  

TCGA dataset and IRGs were selected for further 

analysis. 

 

Weighted gene co-expression network analysis 
 

GEO expression file was used for weighted gene  

co-expression network analysis (WGCNA) using 

WGCNAR package. WGCNA was used to explore  

the relationship between the clinical features with 

expression modules. Module eigengenes (MEs) were 

defined as the first principal component of each  

gene module and adopted as the representative of  

all genes in each module. Gene significance (GS), as 

the mediator p-value (GS = lg P) for each gene, 

represented the degree of linear correlation between 

gene expression of the module and clinical features. 

Survival-related modules were defined according to 

P≤0.01 and the higher GS value was extracted for 

further analysis. 

 

LASSO analysis 

 

Univariate Cox regression analysis was performed to 

explore the impact of each gene on overall survival. The 

IRGs of survival-related modules with P<0.01 were 

identified as survival-related IRGs and integrated into 

the Least Absolute Shrinkage and Selection Operator 

(LASSO) regression for identification of prognostic  

risk signatures. The risk score (RS) of each sample  

was calculated using the formula: risk score = 

Σexpgenei* βi. 

 

The Kaplan-Meier curve analysis was further conducted 

to evaluate the relationship between the risk score and 

overall survival. The median value was used as the cut-

off. Univariate and multivariate Cox regression analysis 

were performed to study the relationship between the 

index and the clinical features. To validate the accuracy 

and predictive ability of the signature, it was included in 

the TCGA dataset. The area under the curve (AUC) of 

the ROC curve was calculated and compared to 

examine the classifier performance using time ROC  

R package. 

 

Comparison of the degree of immune cell infiltration 

between high and low RS groups 

 

To explore the relationship between risk score and 

melanoma prognosis, we analyzed the relationship 

between risk score and tumor microenvironment. The 

tumor microenvironment comprises a variety of cell 

types, including immune cells, mesenchymal cells, 

endothelial cells, inflammatory mediators, and 

extracellular matrix (ECM) molecules [53]. We used 

the ESTIMATE algorithm to determine the immune 

score of each sample using R software and further 

compared the difference in degree of immune cell 

infiltration between high and low-risk groups by 

Wilcoxon test. 

 

Comparison of 22 immune cell subtypes between 

high RS and low RS groups 

 

To explore the differences of immune cell subtypes, 

CIBERSORT package was used to assess the proportions 

of 22 immune cell subtypes based on expression file [54]. 

The perm was set at 1000. Samples with P < 0.05 in 

CIBERSORT analysis result were used in further 

analysis. Mann-Whitney U test was used to compare 

differences in immune cell subtypes in the high RS and 

low RS groups. 

 

Gene Set Enrichment analysis (GSEA) 
 

To identify signaling pathway that are differentially 

activated between the high RS and low RS groups, we 

selected an ordered list of genes through limma R 

package and conducted Gene Set Enrichment Analysis 

(GSEA) with adjusted p < 0.05 using the cluster filer  

R package. 

https://www.ncbi.nlm.nih.gov/geo/
https://immport.niaid.nih.gov/
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Statistical analysis 
 

All analyses were carried out by R version 3.5.2 and 

corresponding packages. Kaplan-Meier analysis was 

further conducted to evaluate the relationship between 

immune score and overall survival using the survimer R 

package. The median value was set as the cut-off. The 

glmnet R package was used for LASSO analysis. 

 

Availability of data and materials 
 

The GSE65904gene expression profiles were retrieved 

from GEO (https://www.ncbi.nlm.nih.gov/geo). The 

TCGA data were retrieved from GDC data portal 

(https://portal.gdc.cancer.gov/). The immune-related 

genes (IRGs) data were retrieved from the ImmPort 

database (https://immport.niaid.nih.gov). The R software 

(https://www.r-project.org/) was used for all statistical 

analyses. 

 

Abbreviations 
 

IRGs: Immune-related genes; TME: Tumor 

microenvironment; GEO: Gene Expression Omnibus; 

TCGA: The cancer genome atlas project; LASSO: 

Least Absolute Shrinkage and Selection Operator; 

MEs: Module eigengenes; GS: Gene significance; 

ROC: Receiver operating characteristic curve; AUC: 

Area under the curve; RS: Risk score; OS: Overall 

survival. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1 and 2. 

 

Supplementary File 1. 63 IRGs of the two modules were identified as survival-related IRGs of melanoma with the 
criterion of P < 0.01. 

 

Supplementary File 2. The downloaded data of Immune-related genes (IRGs). 


