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INTRODUCTION 
 

Diabetic encephalopathy (DE) is one of the major 

complications of diabetes, which Is characterized by a 

series of neurophysiological and pathological structural 

abnormalities caused by hyperglycemia [1, 2]. In the 

central nervous system, neuronal function in type 1 and 

type 2 diabetes models are reduced, and neuron numbers 

are significantly reduced [3, 4]. Brain insulin signaling 

system changes [5] cerebrovascular abnormalities [6], 

oxidative stress [7], and increased advanced glycation 

end products [8] are considered to be potential causes  

of DE. 

 

Endoplasmic reticulum (ER) is an important organelle 

for the synthesis of proteins, glycogens, steroids and 

lipids to maintain cell homeostasis in eukaryotic cells 

[9]. Protein disulfide isomerase (PDI) and an 

immunoglobulin binding protein (BIP) assist in the 

correct folding of proteins on the ER. Calcium ion 

imbalance, oxidative stress, and many other factors lead 

to unfolded or misfolded proteins causing ER stress, 

also called unfolded protein response (UPR) [10, 11]. It 

has been reported that ER stress accelerates the death of 

diabetic retinopathy and nerve cells [12, 13]. Abnormal 

glucose levels and insulin signaling trigger ER stress, 

which induces neuronal apoptosis [14]. 

 

Quercetin, a common flavonoid, is widely distributed in 

daily intake of fruits and vegetables [15]. As a potent 

antioxidant, quercetin is effective in scavenging free 

radicals, inhibiting xanthine oxidase activity and lipid 
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ABSTRACT 
 

Studies have shown that diabetes is an important risk factor for cognitive dysfunction, also called diabetic 
encephalopathy (DE). Quercetin has been reported to be effective in improving cognitive dysfunction in DE. But its 
detailed mechanism is still ambiguous. In this study, we used db/db mice to investigate whether quercetin could 
activate SIRT1 and inhibit ER pathways to improve DE. Behavioral tests (Morris water maze and new objects) 
showed that quercetin (70 mg/kg) can effectively improve the learning and memory ability in db/db mice. OGTT 
and ITT tests indicated that quercetin could alleviate impaired glucose tolerance and insulin resistance in db/db 
mice. Western blot analysis and Nissl staining showed that quercetin can improve the expression of nerve and 
synapse-associated proteins (PSD93, PSD95, NGF and BDNF) and inhibit neurodegeneration. Meanwhile, 
quercetin up-regulates SIRT1 protein expression and inhibits the expression of ER signaling pathway-related 
proteins (PERK, IRE-1α, ATF6, eIF2α, BIP and PDI). In addition, oxidative stress levels were significantly reduced 
after quercetin treatment. In conclusion, current experimental results indicated that SIRT1/ER stress is a 
promising mechanism involved in quercetin-treated diabetic encephalopathy. 
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peroxidation [16, 17]. Quercetin has been reported to 

have a number of beneficial effects, including anti-

cancer [15], anti-inflammatory [18, 19], anti-oxidant 

[20], hypoglycemic properties [21]. In the development 

of neurodegenerative diseases, quercetin can improve 

behavioral dysfunction and memory impairment [17, 

22, 23]. Studies have found that quercetin is a potent 

activator of SIRT1 [24–26]. In an aging rat model, 

quercetin up-regulates SIRT1, promotes monoamine 

synthesis in rats, and then improves its cognitive 

function [24]. Meanwhile, quercetin activates SIRT1 

and promote glycometabolism in diabetic rats [27]. 

Although studies have reported that quercetin promotes 

improved learning and memory in diabetic rats [28], the 

mechanism of action of quercetin on DE has not been 

clearly reported. Therefore, SIRT1 pathway has very 

important research value. 

 

SIRT1, a deacetylase, is a member of the sirtuin family, 

and which is involved in the development of cell 

differentiation, proliferation, senescence and apoptosis 

[29]. Cardiovascular disease studies have found that 

inhibition or deficiency of SIRT1 in SIRT1 knockout 

mice increases ER stress-induced heart damage [30]. 

Methyl derivative deficiency (MDD) activates the ER 

stress pathway and reduces SIRT1 expression in rat 

model of colitis. Interestingly, the activation of SIRT1 

protein was accompanied by a decrease in UPR after the 

addition of SIRT1 activator (SRT1720) [31]. In our 

previous study, SIRT1 activation could alleviate ER 

stress and protect cognitive function in diabetic mice 

[10]. However, whether SIRT1/ER stress pathway 

participated in quercetin on DE is still unknown. 

 

In this study, we focused on the mechanism of action of 

quercetin in improve DE. We used an animal model of 

type 2 diabetes (db/db mice) [10] to investigate whether 

quercetin improves cognitive dysfunction through the 

SIRT1/ER stress pathway. We found that quercetin 

activated SIRT1 and regulated the ER stress pathway 

might be an effective mechanism in db/db mice. 

 

RESULTS 
 

Quercetin improves learning and memory impairment 

in db/db mice 
 

To measure the memory and learning abilities of db/db 

mice, we performed Morris water maze and new object 

recognition test. In the Morris water maze test, the time it 

takes for the mouse to find the central platform is 

decreasing (Figure 1B). Compared with the db/m group, 

the db/db group significantly increased the time to find 

the platform. After treatment with quercetin, the time to 

find the platform was significantly shorter, especially in 

the high dose group (Figure 1B). After five days’s 

training, the swimming path of db/db was more 

disordered than db/m, while the quercetin-treatment 

group was significantly improved (Figure 1C). In 

addition, after the platform was removed, the numbers of 

exploration of the db/db group in the platform area and 

the time spend in the target quadrant were significantly 

reduced. Quercetin-treatment group reversed the 

phenomena (Figure 1C, 1D). 

 

In the new object recognition test, the TNI level of  

the db/db group was significantly lower than db/m 

(Figure 1E). After treatment with quercetin, the mice 

exhibited better performance than the db/db group. These 

results indicated that quercetin could significantly 

improve cognitive deficits in db/db mice. 

 

Quercetin alleviates impaired glucose tolerance and 

insulin resistance in db/db mice 

 

In the OGTT test, the blood glucose level and the area 

under the curve at each test time point of the db/db mice 

were significantly higher than those in the db/m group. 

However, after 12 weeks of quercetin treatment, the 

blood glucose level was significantly lower, especially 

in the high-dose group (Figure 2B, 2C). In the ITT test, 

insulin sensitivity in db/db mice was significantly lower 

than in the db/m group (Figure 2D, 2E). After 12 weeks 

of quercetin treatment, insulin sensitivity and area under 

the corresponding curve were relatively improved. 

These results demonstrated that quercetin could reduce 

fasting blood glucose and improves glucose tolerance 

and insulin resistance. 

 

Quercetin decreases oxidative stress in db/db mice 
 

In the brain of db/db mice, the level of endogenous  

lipid peroxide MDA increased, and the activity of  

SOD, CAT and GSH-PX were significantly reduced 

(Figure 3A–3D). Quercetin significantly relieved the 

oxidative stress when compared with the db/db group. 

These results showed that quercetin could remarkably 

decrease the level of oxidative stress in db/db mice. 

 

Quercetin ameliorates neurodegeneration in db/db 

mice 
 

In the brain tissue of db/db mice, the expression of 

proapoptotic protein Bax and cleaved Caspase3 protein 

increased significantly, and the expression of apoptosis-

inhibiting protein Bcl-2 was relatively decreased 

(Figure 4). After 12 weeks of quercetin treatment, Bcl-2 

expression was increased, and the expressions of Bax 

and cleaved Caspase-3 were sharply reduced. In 

addition, the expression of neurotrophic factors (BDNF, 

NGF) and synaptic proteins (PSD93, PSD95) was 

significantly reduced in db/db mice (Figures 5 and 6B). 
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Figure 1. Quercetin improves learning and memory impairment in db/db mice. (A) The chemical structure of Quercetin. (B) Escape 
latency of the five day in MWM. (C) Swimming paths of the db/db mice on the first and fifth day in MWM. (D) Time spent in the target 
quadrant in in MWM. (E) Crossing times of the target platform in MWM. (F) Novel object preference index in NOR. Quercetin-L: 35mg/kg/d; 
Quercetin-H: 70mg/kg/d. Data represent mean ± SEM (n = 10 per group). #p < 0.05, ##p < 0.01, ###p < 0.001vs. db/m; * p < 0.05, ** p < 0.01, 
*** p < 0.001 vs. db/db. 
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Figure 2. Quercetin alleviates impaired glucose tolerance and insulin resistance in db/db mice. (A) Body Weight. (B) OGTT.  
(C) OGTT-AUC. (D) ITT. (E) ITT-AUC. Quercetin-L: 35mg/kg/d; Quercetin-H: 70mg/kg/d. Data represent mean ± SEM (n = 10 per group). #p < 
0.05, ##p < 0.01, ###p < 0.001vs. db/m; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. db/db. 
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Quercetin significantly improved the expression of 

neurotrophic factors and synapse-related proteins. Nissl 

staining was further verified this change (Figure 6A). In 

the hippocampal and cortical areas of db/db mice, Nissl 

body was largely lost and stained weakly. Notably, after 

quercetin administration, these neurons were found a 

deeper and denser Nissl body. These results indicated 

that quercetin could protect against neurodegeneration 

in db/db mice. 

 

Quercetin activates SIRT1 and relieves ER stress in 

db/db mice 

 

In both immunofluorescence and western blot results, 

SIRT1 protein expression was lower in db/db group 

(Figures 7 and 8). Quercetin, especially in the high  

dose group, is effective in increasing the protein 

expression of SIRT1. Subsequently, we measured 

these proteins expression levels of ER stress-related 

proteins (Figure 8). In the db/db group, the expression 

of ER stress marker protein (BIP, PDI) and UPR active 

protein (P-PERK, P-IRE-1α, P-eIF2, ATF6) were 

higher than those in the db/m group. After quercetin 

administration, the expression of these proteins was 

drastically reduced compared to the db/db group. 

Taken together, these results demonstrated that 

quercetin could activate SIRT1 and relieve ER stress 

to protect DE. 

 

DISCUSSION 
 

In this study, we demonstrated that quercetin could 

ameliorate DE. After 12 weeks’ treatment, we found that 

quercetin could relieve learning and memory 

dysfunction, reduce fasting blood glucose, and increase 

insulin sensitivity. Meanwhile, quercetin signally 

inhibited oxidative stress, ameliorated neurodegeneration. 

Furthermore, quercetin activated SIRT1 and inhibited the 

expression of ER stress-related proteins, which may be 

the key neuroprotective mechanism of quercetin. 

 

 
 

Figure 3. Quercetin decreases oxidative stress in db/db mice. (A) MDA. (B) SOD. (C) CAT. (D) GSH-PX. Quercetin-L: 35mg/kg/d; 
Quercetin-H: 70mg/kg/d. Data represent mean ± SEM (n = 10 per group). #p < 0.05, ##p < 0.01, ###p < 0.001vs. db/m; * p < 0.05, ** p < 0.01, 
*** p < 0.001 vs. db/db. 
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Diabetes is caused by insulin synthesis or secretion 

damage, which leads to hyperglycemia [32]. High 

glucose environment and insulin signal changes in the 

brain are the key to DE [10]. Hyperglycemia exacerbates 

oxidative damage and a range of neurochemical and 

structural abnormalities in the brain [33, 34]. Studies 

have shown that quercetin is effective in treating STZ-

induced diabetes [26]. The learning and memory abilities 

of diabetic rats can be significantly improved by 

quercetin [35]. In this experiment, we further 

investigated the neuroprotective mechanism of quercetin 

on db/db mice. Behavioral studies confirmed that 

quercetin could significantly improve learning and 

memory in db/db mice. In addition, OGTT and ITT 

results indicated that quercetin attenuated impaired 

glucose tolerance and insulin resistance in db/db mice. 

These effect of quercetin on DE is consistent with 

previous studies [23, 28]. 

Neuronal apoptosis and oxidative stress are common 

pathological features in the pathogenesis of 

neurodegenerative diseases [36, 37]. The impaired 

learning and memory abilities of T1DM and T2DM are 

closely related to changes in hippocampal synapses [36, 

38, 39]. Changes in glucose and insulin in the diabetes 

model lead to oxidative stress [37, 40]. Interestingly, 

oxidative stress is also a key risk drivers of apoptosis in 

the model of diabetes [41, 42]. In this study, we found 

the quercetin markedly attenuated oxidative stress in 

db/db mice. Simultaneously, quercetin could effectively 

inhibit neuronal apoptosis in db/db mice. Nissl staining 

results also demonstrated the neuroprotective effects of 

quercetin. 

 

SIRT1 is an important member of the sirtuins family, 

which is involved in many aspects such as inflammation, 

apoptosis, and oxidative stress [43, 44]. The SIRT1 

 

 
 

Figure 4. Quercetin protects against neuronal apoptosis in the brain of db/db mice. Western blot analysis: (A) Caspase3;  
(B) Bax/Bcl2. Quercetin-L: 35mg/kg/d; Quercetin-H: 70mg/kg/d. Data represent mean ± SEM (n = 10 per group). #p < 0.05, ##p < 0.01, ###p < 
0.001vs. db/m; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. db/db. 
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Figure 5. Quercetin increases neurotrophic factor levels in the brain of db/db mice. Western blot analysis: (A) PSD93; (B) PSD95; 
(C) NGF; (D) BDNF. Quercetin-L: 35mg/kg/d; Quercetin-H: 70mg/kg/d. Data represent mean ± SEM (n = 10 per group). #p < 0.05, ##p < 0.01, 
###p < 0.001vs. db/m; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. db/db. 
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Figure 6. Quercetin ameliorates neurodegeneration in db/db mice. (A) Nissl’s staining. (B) Immunofluorescence of NGF. Scale bar: 
100 μm. 
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Figure 7. Quercetin activates SIRT1 in the brain of db/db mice. (A) Immunofluorescence of SIRT1 in hippocampus.  
(B) Immunofluorescence of sirt1 in cortex. Scale bar: 100 μm. 
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signaling pathway may be a key mechanism for 

alleviating diabetes-related neurodegenerative diseases 

[27]. In our previous study, we found that activation of 

SIRT1 improved learning and memory in db/db mice 

[10]. Quercetin is a potent activator of SIRT1. 

Therefore, we reasonably hypothesized that quercetin 

could attenuate DE by activating SIRT1 pathway. Our 

results showed that quercetin significantly increased the 

expression of SIRT1. 

Up-regulation of SIRT1 can inhibit three signaling 

pathways (IRE1α, PERK, ATF6) that activate ER 

stress [44, 45]. The downstream, PERK and eIF2α, 

have been shown to be positively correlated with 

cognitive dysfunction [46]. Our previous study 

indicated that ER stress is found in the hippocampus of 

db/db mice [10]. In this study, we examined the ER 

stress pathway in the brain of db/db mice. Our results 

indicated that quercetin can significantly activate 

 

 
 

Figure 8. Quercetin activates SIRT1 and relieves ER stress in db/db mice. Western blot analysis: (A) SIRT1; (B) P-PERK/PERK;  
(C) P-IRE1α/IRE1α; (D) ATF6; (E) BIP; (F) PDI; (G) P-eIF2α/eIF2α. Quercetin-L: 35mg/kg/d; Quercetin-H: 70mg/kg/d. Data represent mean ± 
SEM (n = 10 per group). #p < 0.05, ##p < 0.01, ###p < 0.001vs. db/m; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. db/db. 
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SIRT1 to inhibit ER stress and thereby protect DE in 

db/db mice. 

 

In summary, this study demonstrated that quercetin 

protects DE by SIRT1/ER stress pathway. The 

SIRT1/ER stress pathway provides a reliable reference 

for the prevention and control of DE. However, there 

still needs a deeper exploration. This study might 

provide the possibility of quercetin for DE treatment. 

 

MATERIALS AND METHODS 
 

Chemical reagents 

 

Quercetin (CAS NO: 117-39-5, purity > 95%, Figure 1A) 

was purchased from Sigma-Aldrich. Kits for detecting 

SOD and MDA were purchased from Nanjing 

Jiancheng Bioengineering Institute. The antibodies for 

PSD93, PSD95, SIRT1, Caspase3, Bax, Bcl2, PERK, P-

PERK, eIF2α, P-eIF2α, IRE-1α, P-IRE-1α, BIP, PDI 

were provided by Cell Signaling Technology (MA, 

USA). Anti-β-actin, BDNF, NGF, ATF6 were 

purchased from Abcam, Inc (Cambridge, England). 

 

Animals and treatment 
 

The 10-week-old female diabetic mice (db/db) and age-

matched non-diabetic mice (db/m) were from the Model 

Animal Research Institute of Nanjing University 

(Nanjing, China). The mice were in SPF animal room, 

where is a 12-h light/dark cycle at a relative humidity of 

40-60 % and temperature 20-25 °C. Then, animals were 

allowed free access to food and water. After 30 weeks, 

fasting blood glucose > 11.1 mmol/L was defined as the 

success criterion for diabetic model. The mice were 

randomly divided into four groups: db/m (0.9 % saline, 

n = 10), db/db (0.9 % saline, n = 10), low dosage of 

quercetin (35 mg/kg/day, n = 10) high dosage of 

quercetin (70 mg/kg/day, n = 10). Drugs were 

administered for 12 weeks by gavage. In addition, our 

experiments are in strict compliance with the guidelines 

promulgated and adopted by the NIH. 

 

Morris water maze test 
 

Morris water maze is a test for evaluating spatial 

reference memory in mice. The method of operation is 

based on previous studies [10, 47, 48]. 

 

Novel object recognition (NOR) test 
 

NOR, a method for exploring animal recognition and 

memory of new objects, is based on the instinct of 

animals to explore the characteristics of new objects 

[49]. The computer device recorded the time spent by 

the mice on three objects, respectively, and evaluated 

the learning and memory ability of the mice using the 

recognition index (TNI) = (TN-TF) / (TN + TF) [50, 51] 

(TN: new object time; TF: old object time). 

 

Oral glucose tolerance test and insulin tolerance test 

 

In OGTT test, animals were fasted for 16 h, and 2 g/kg 

glucose solution was orally administered by body weight. 

Then, glucose levels at five time points (90, 30, 60, 90 

and 120 min) were measured with a glucose analyzer 

(ACCU-CHEK, Roche Diagnostics, Basel, Switzerland). 

Three days later, we continued the ITT experiment. Four 

hours after fasting, animals were injected 

intraperitoneally with insulin (0.5 U/kg, Eli Lilly and Co., 

IN). Blood glucose levels at five time points (0, 30, 60, 

90, and 120 min) were measured and the index of the 

total glucose shift was calculated AUC [36]. 

 

Measurement of SOD, MDA, CAT and GSH-PX 
 

After ITT experiments, all mice were anesthetized with 

chloral hydrate (0.04 mL/10g, intraperitoneal injection), 

then they were sacrificed by cervical dislocation. Then, 

we took an appropriate amount of brain tissue, placed it 

in four degrees of normal saline, homogenized, 

centrifuged, and took the supernatant. The 

corresponding SOD, MDA, CAT and GSH-PX levels 

were tested according to the kit instructions. 

 

Nissl staining 
 

The perfused mouse brain was embedded in paraffin 

and cut into 5 μm thick sections from the coronal plane. 

Dewaxing, rehydration, dyeing, dehydration, and 

transparency were sequentially performed according to 

the kit instructions. Images were then analyzed using an 

optical microscope (Life Technologies, Leica). 

 

Immunohistochemistry 
 

The perfused mouse brain was embedded in paraffin 

and cut into 5 [mu]m thick sections from the coronal 

plane. Three paraffin sections were taken from each 

group for dewaxing and rehydration. Antigen retrieval 

was performed in an antigen retrieval solution (sodium 

citrate buffer) by microwave heating. Blocking with 5% 

normal goat serum in PBS at 37°C for 30 min, and then 

incubating with primary antibody SIRT1 (1:200; CST) 

or NGF (1:200; Abcam) overnight at 4 °C. After 

rewarming for 30 minutes, the secondary antibody was 

incubated for 1 h at 37 °C. 

 

Western blot analysis 
 

The brain tissue of the mice was taken at -80 °C. 

Appropriate amount of brain tissue was lysed, 
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homogenized, and then centrifuged for 15 min (4 °C). 

The supernatant of the tissue after centrifugation was 

taken. The corresponding protein concentration was 

measured using a BCA protein assay kit. The 

expressions of these target proteins (SIRT1, PERK,  

P-PERK, eIF2α, P-eIF2α, IRE-1α, P-IRE-1α, ATF6, 

BIP, PDI, Caspase3, Bax, Bcl2, PSD93, PSD95, BDNF, 

NGF) were then detected by Western blotting. 

 

Statistical analysis 
 

Ours experimental values were all presented as mean ± 

SEM. And statistical analyses were all performed using 

SPSS 19.0 program (IBM, Endicott, NY). Statistical 

differences in data between groups were performed with 

ANOVA, and followed by a post hoc test (Dunnett).  

P < 0.05 was presented as statistically significant. 
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